On Correcting Cluster Errors in Nanoelectronic
Memories

Nor Zaidi Haron Said Hamdioui

Delft University of Technology, Computer Engineering Laboratory
Mekelweg 4, 2628 CD, Delft, The Netherlands
{N.Z.B.Haron, S.Hamdioui}@tudelft.nl

Abstract. By combining non-CMOS devices and CMOS devices in a
3D chip, nanoelectronic memories are able to offer extraordinary scala-
bility advantages. However, these extremely dense memories are prone to
high magnitude of faults impacting their reliability. This paper presents
a fault tolerance scheme, developed from Redundant Residue Number
System (RRNS) error correction code, to correct cluster errors in nano-
electronic memories. Three variants of RRNS codes are optimized and ex-
perimentally compared with Reed-Solomon (RS) and conventional RRNS
(C-RRNS) codes. Experimental results show that the optimized RRNS
variants realize better error correction capability while providing larger
data storage capacity and faster decoding speed.

1 Introduction

An emerging memory technology that uses non-CMOS devices to build up the
memory cell array is extensively being studied [1]-[3]. Referred to as nanoelec-
tronic memory, this memory offers extraordinary scaling capability resulting
in larger data storage as compared to semiconductor memories. However, such
memory is also likely to suffer from high permanent and non-permanent faults
[4,5]. Moreover, because the devices that structure the memories are incredibly
tiny and fabricated very densely, such faults might affect adjacent cells (belong-
ing to the same word in the memory cell array) causing cluster errors. Therefore,
designing reliable nanoelectronic memories requires appropriate fault tolerance
scheme.

Coding, such as error correction codes (ECCs), is one of the most known
fault tolerance schemes used to improve the reliability of memory systems. In
particular, ECCs proposed for nanoelectronic memories include Hamming [2],
Bose-Chaudhuri-Hocquenghem (BCH) [6], Low-Density Parity-Check (LDPC)
[7] and Redundant Residue Number System (RRNS) [8]. All these proposed
ECCs, however, subject to high cost in performance penalty and/or area over-
head.

This paper builds upon our previous work [8] that develop an optimized
RRNS code for cluster errors correction in nanoelectronic memories. In this work
we proposed two new optimized RRNS codes with smaller cost. We show that
the optimized ECCs offer larger user data capacity and faster decoding, while
providing a competitive error correction as compared to RS and C-RRNS. The
rest of the paper is organized as follows. Section 2 reviews two ECCs used for
comparison in this paper, i.e., RS and C-RRNS codes. Section 3 introduces the
optimized RRNS variants. Section 4 compares the performance of the optimized
RRNS variants with RS and C-RRNS codes. Section 5 concludes this paper.

2 Background

This section gives an overview of the appropriate conventional ECCs used for
comparison in this work; i.e., RS and C-RRNS.

2.1 Reed-Solomon

Reed-Solomon code is formed by n-symbol codewords, each of which consists of
k-symbol dataword and (n—k)-symbol checkword [10] where n>k, n and k are
positive integers. RS code can correct up to ¢ erroneous symbols in a codeword
by appending a checkword of 2t=(n—k) symbols. In this work Galois Field of
degree eight (m=8) is used; it means that each RS symbol is represented by
eight bits. A d-bit input data is encoded into %—symbol dataword. In order to
ensure that %—dataword is correctable if corrupted, QX%—symbol checkword is
appended resulting into a codeword of 3x %—symbol. Thus, the bit length of
the RS codeword is thrice longer than that of the input data. For instance,
for a 16-bit input data with m=8, 1ff:2—symbol are needed for the dataword;
and, 2><%:4—symbol are required for the checkword to correct the 2-symbol
dataword. All the required number of symbols and their corresponding number
of bits for different codeword length of RS code are shown in Table 1.

2.2 Conventional RRNS

RRNS code has a similar structure and error correction capability as RS code
[9]. The k-symbol dataword is referred to as non-redundant residues, whereas
the (n—k)-symbol checkword is referred to as redundant residues. The residues
may have different length depending on the moduli used to encode the input
data into the RRNS codeword (i.e., b=|logz(moduli — 1) 4+ 1] bits). There are
three requirements when developing RRNS code: (i) the moduli are mutually
prime positive integers, (ii) the succeeding moduli must be bigger than that of
preceding moduli, and (iii) the product of both moduli sets must be larger than
a operating legitimate range, i.e., 2¢—1 where d is input data length. More detail
can be found in [8,9].

In this work C-RRNS with three-residue dataword and six-residue checkword
is used. The latter is required to ensure the protection of the former, i.e., t=3.
This code is encoded based on: (i) {2P—1,2P,2P+1} restricted non-redundant
moduli where p is positive integer and (ii) unrestricted redundant moduli com-
posed by prime integers larger than those of the restricted non-redundant moduli.
For non-redundant-moduli, the p value is selected in such a way that it results in
the product of moduli as close as possible to the operating legitimate range. This
in turn realizing a cost-effective implementation. Table 1 exhibits the number
of the residues (symbols) needed in C-RRNS codeword and their corresponding
bit length for different input data.

Table 1. RS and C-RRNS parameters for different memory bandwidth

Types of ECCs|# of Symbols per Codeword| # of Bits per Codeword
16-bit 32-bit, 64-bit 16-bit 32-bit 64-bit
RS 6 12 24 48 96 192

C-RRNS 9 9 9 61 106 205

3 Optimized Redundant Residue Number System ECCs

This section introduces the optimized RRNS variants. First, it describes the
strategies used for optimization; thereafter, the optimized ECCs.

3.1 Strategies Used for Optimized RRNS ECCs

From Table 1 one can clearly conclude that the bit length of C-RRNS codeword is
longer than that of RS codeword regardless of the input data length. However,
C-RRNS possesses a better overall error correction capability than RS (will
be discussed in Section 4.2). To reduce the bit length of C-RRNS codeword
while providing a competitive correction capability, the following strategies are
considered:

1. For non-redundant moduli: the number of non-redundant moduli is mini-
mized as long as their product is larger than legitimate range. This implies
smaller number of redundant moduli for a set error correction t:"T_k.

2. For redundant moduli: the redundant moduli with smaller integer value than
that of the non-redundant moduli are chosen; yet their product is larger than
the operating legitimate range. Note that this strategy violates the second
requirement in developing RRNS code as mentioned in Section 2.2 because
of the smaller succeeding moduli (redundant moduli) than the preceding
(non-redundant moduli). This violation may cause an inconsistency during
decoding where a single read codeword might be decoded into more than
one (ambiguous) output data. However, the third strategy is introduced to
solve this problem.

3. Mazimum likelihood decoding (MLD): this method is used to determine the
authentic output data from the ambiguous data [11]. First, each ambiguous
data is encoded resulting into new codeword. Then, Hamming distance be-
tween each new codeword and the read codeword (i.e., the codeword that
produce the ambiguous data) is calculated. Finally, the ambiguous data of
the codeword that has the smallest difference (Hamming distance) is re-
garded as the authentic output data.

3.2 Six-Moduli RRNS variants (6M-RRNS)

The optimized RRNS code is referred to as Six-Moduli RRNS (6M-RRNS). This
code is encoded based on two non-redundant moduli and four redundant moduli.
The latter are used to protect the former from faults, i.e., t=2. 6Ma-RRNS have
been presented in [8], whereas 6Mb-RRNS and 6Mc-RRNS are proposed in this
work. Table 2 gives the three 6M-RRNS variants together with the values of p
and their corresponding codeword bit length.

Table 2. Optimized RRNS parameters for different memory bandwidth

Types of ECCs Values of p # of Bits per Codeword
16-bit 32-bit 64-bit 16-bit 32-bit 64-bit
6Ma-RRNS 8 16 32 40 88 184
6Mb-RRNS 9 17 33 38 86 182
6Mc-RRNS 10 18 34 36 84 180

1. 6Ma-RRNS is based on non-redundant moduli set {2P+1, 2P} and redundant
moduli set {27~ 1-1,20-2-1, 2P—3-1 2p—441}.

2. 6Mb-RRNS is based on non-redundant moduli set {2P-1,2P~14+1} and re-
dundant moduli set {2P~3,2P=4-1 2P=541 2P—5-1}.

3. 6Mc-RRNS is based on non-redundant moduli set {27, 2P~4+1} and redun-
dant moduli set {2P~5+41,2P=5-1,2P=641 2P=7-1}.

4 Experimental Results and Analysis

This section evaluates the 6M-RRNS variants by comparing their performance
to RS and C-RRNS. First, it presents the simulation set up followed by the
experimental results of error correction capability of these ECCs for 32 and 64-
bit dataword memory. Thereafter, it give the analysis of three different aspects
of the results including: (i) the required codeword length of each ECC, (ii) the
ratio of correctable bits over the required codeword length, and (iii) the decoding
latency of RRNS codes.

4.1 Simulation Setup

The RRNS variant codes, RS code, memories and fault injection were described
using MATLAB script. All codes were set to the desired ¢ to protect their corre-
sponding codeword from faults. For RRNS decoding, an algorithm called Mized
Radix Conversion was used. For RS code, MATLAB built-in RS encoding and
decoding functions were used [12]. Clustered faults were randomly increased from
two bits up to 35 bits for 32-bit memory and two bits up to 68 bits for 64-bit
memory. Fault rates from 1% to 10% were applied during the experiments.

4.2 Overall Results

Figure 1 shows the simulation results of C-RRNS, 6M-RRNS variants and RS
codes for 32 and 64-bit dataword memory. Overall, C-RRNS provides the
best error correction capability followed by 6M-RRNS variants, whereas RS
scores the worst. As the input data increases the difference between all inves-
tigated ECCs becomes marginal. For example, the difference between C-RRNS
and 6Mb-RRNS is 0.8% for 32-bit, yet it is only 0.4% for 64-bit.

Good memory word (%) Good memory word (%)
100 - - 100 T - . . .
1
99.5 | 1 1 995 W
99 2 3 99 - 5 i
3
98.5 | 4 L 9ss|
98 - 5 98 |
97.5 1 97.5 |
97 - 97 L
1 —¢— C-RRNS 1 —&— C-RRNS
96.5 - 2 —*— 6Mb-RRNS 96.5 2 —— 6Mb-RRNS
3 o 6Ma-RRNS 3 o 6Ma-RRNS
96 | 4 —O— 6Mc-RRNS 96 1 4 —o— 6Mc-RRNS
95.5 | 5 RS 95.5 | s RS
95 L L L L L L L L L 95 L L L L L L L L L
0 1 2 3 4 5 6 708 9 10 0 1 23 4 5 6 7 $ 9 10
Fault rate (%) Fault rate (%)

(@ (b)

Fig. 1. Simulation results for (a) 32-bit memory (b) 64-bit memory

It is clear from the above that the 6M-RRNS variants can realize a compet-
itive error correction capability; especially for large memory word size, which is
expected to be the case for nanoelectronic memories. In next section, we will
explain their advantages over RS and C-RRNS in terms of user data capacity
and decoding speed.

4.3 ECCs versus Codewords Length

Figure 2 shows the required codeword length (in terms of bits) of the investigated
ECCs for all considered input data length. The bit length of the ECCs are also
given in Table 1 and 2. The figure shows that all 6M-RRNS variants have shorter
codeword length as compared to RS and C-RRNS. For example, for a 64-bit
dataword memory 6Mc-RRNS realizes a codeword which is 6.25% and 12.20%
shorter than that of RS and C-RRNS codes, respectively. Overall, 6Mc-RRNS
requires the shortest codeword bit length among the optimized codes.

Having shorter codeword length provides more capacity of user data storage
for a given memory size. For instance, if we assume a memory size of 1Tbit, then

capacity (in terms of memory words) is calculated by dividing 1T=2%" bits by
codeword length B,, i.e., C:%ﬁ. For example, for a 64-bit dataword memory,

the capacity of stored data encoded into 6Mc-RRNS is 6.11Gwords. It means
that 6Mc-RRNS provides 6.25% more storage than RS and 12.20% more storage
as compared to C-RRNS.

4.4 Decoding Latency of RRNS Codes

Another advantage of having shorter codeword length for the optimized RRNS
variants is faster decoding. This is because the correction procedure in RRNS is
an iterative process, which is proportional to the number of residues in the code-
word, i.e., C{L:#it)! [9]. Regardless of codeword length, C-RRNS requires nine
residues to protect its three-symbol dataword, i.e., t=3. This code stops when it
recovers the correct data (data less then the operating legitimate range). Hence

1 9!
3 X3193)1
ever, 6M-RRNS variants require six residues to protect their two-symbol data-

word. In addition, these codes always need an extra MLD step (see Section 3).

. . c? . .
on the average, this code needs maximum of =*= =42 iterations. How-

Number of bits | [EDataword [l Checkword [J Codeword |
250

200 I

150 ’7 L

100

50

z1212 z1212 z1212|2

~ 4 4 ~ ~ [~ 4 ~ 4

% 2|2 % 2|2 22| | =

< =} o < o Q @) < el Q

slslzg glzgle clzgle
16-bit 32-bit 64-bit

Types of ECCs

Fig. 2. Comparison of bit length of RS and RRNS variants codes

Therefore, they require maximum C$+M LD :#ﬁz)!—klzm iterations during

decoding procedure. Thus, 6M-RRNS decodes 2.6 times faster than C-RRNS.

5 Conclusion

In this paper the optimized variants of RRNS to correct cluster errors in nano-
electronic memories have been introduced and experimented. Three strategies
were used to have the optimized ECCs such as: (i) smaller number of non-
redundant moduli, (ii) smaller integer value for redundant moduli, and (iii)
maximum likelihood decoding. Experimental simulation and analysis show that
all optimized RRNS codes are able to provide competitive correction capability
with better data storage as compared to well-known RS and C-RRNS codes.
Among the optimized RRNS variants, 6Mc-RRNS is the best as it provides the
shortest codeword and thus the largest data storage. Furthermore, all 6M-RRNS
variants operate times faster than C-RRNS. This investigation has proven that
the optimized RRNS offer an attractive solution for reliability improvement in
developing nanoelectronic memories at low cost.

References

1. The International Technology Roadmap for Semiconductors 2009. Available:
http://www.itrs.net/Links/2009ITRS/Home2009.htm

2. D. B. Strukov and K. K. Likharev, “Prospects for Terabit-scale Nanoelectronic
memories”, J. Nanoscience and Nanotechnology, vol. 16, no. 1, pp. 137-148, 2005.

3. A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, “Nonphotolithographic
Nanoscale Memory Density Prospects”, IEEE Trans. on Nanotechnology, vol. 4,
no. 2, pp. 215-228, 2005.

4. M. Mishra and S. C. Goldstein, “Defect Tolerance at the End of the Roadmap”,
in Proc. of International Test Conference, vol. 1, pp. 1201-1211, 2003.

5. M. Butts, A. DeHon, and S. Goldstein, “Molecular Electronics: Devices, Systems
and Tools for Gigagate, Gigachips”, in Proc. of IEEE/ACM International Confer-
ence on Computer-aided Design, pp. 433-440, 2002.

6. D. B. Strukov and K. K. Likharev, “Defect-Tolerant Architectures for Nanoelec-
tronics Crossbar Memories”, J. Nanoscience and Nanotechnology, vol. 7, no. 1, pp.
151-167, 2007.

7. H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoder for NanoMem-
ory Applications”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol.17, no.4, pp. 473-486, 2009.

8. N. Z. Haron and S. Hamdioui, “Residue-based Code for Reliable Hybrid Memo-
ries”, in Proc. of IEEE/ACM International Symposium on Nanoscale Architectures,
pp- 27-32, 2009.

9. F. Barsi and P. Maestrini, “Error Correcting Properties of Redundant Residue
Number Systems”, IEEE Trans. of Computers, vol. 22, no. 3, pp. 307-315, 1973.

10. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications.
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2004.

11. V. T. Goh and M. U. Siddiqi, “Multiple Error Detection and Correction based on
Redundant Residue Number Systems”, IEEE Trans. on Communications, vol. 56,
no. 3, pp. 325-330, 2008.

12. MathWorks™. Reed-Solomon Decoder Simulation. Available:
http://www.mathworks.com/matlabcentral

