
Journal of VLSI Signal Processing 28, 221–234, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Multimedia Execution Hardware Accelerator∗

EDWIN HAKKENNES AND STAMATIS VASSILIADIS
Department of Electrical Engineering, Delft University of Technology, Mekelweg 4, 2628 CD Delft,

The Netherlands

Received October 1999; Revised April 2000

Abstract. In this paper we show that some expressions frequently used in multimedia applications can be formu-
lated as a general add-multiply-add operation. We further show a hardwired implementation of the Add-Multiply-
Add instruction which is no more complex than the multiplier implementation. Furthermore we show that two
frequently motion estimation operations, the Sum and Mean of Absolute Differences, can be implemented in hard-
ware requiring also approximately the same cycle time as the multiplication. We also show that our approach can be
extended easily to provide the computation of the Sum and Mean of Absolute Difference of a 16×16 pixel block in
no more than four machine cycles. Additionally we propose a codec hardwired mechanism for the Paeth predictor
used in the Portable Network Standard (PNG) that requires at most two general purpose ALU cycles. We extend
the paeth unit to include the median, maximum and minimum operations on three inputs with no additional cycle
time and we also extend the Add-Multiply-Add unit to include the mean of three numbers. Finally we propose a
multimedia hardware accelerator to accommodate all the proposed operations. The proposed unit is an extension of
the multiply pipeline with ALU extensions with no extra stages added. The unit operates on 32 instructions in total.

Keywords: multimedia, hardware accelerators, multimedia architectures, subword parallelism, multimedia
instruction set, vector architectures, multimedia processors, SIMD processors, compound instructions

1. Introduction

In order to improve the processing of multimedia ap-
plications, three types of processors have been investi-
gated, namely:

Specialized multimedia standard processors: In this
class of processors a specific standard such as
MPEG2 is assumed, and for such a standard a pro-
cessor is designed that uniquely performs this stan-
dards requirements. There exist several processors
available that assume this approach. Examples of
such processors can be found in [1, 2] and [3]

Specialized augmented multimedia processors: For this
kind of processors, programmability is assumed and

∗This paper is dedicated to my mother, Lida Hakkennes, for the love
and support she has given me over the years.

no restriction to a standard is imposed. That is
the processing follows the usual general purpose
paradigm of programmability and instructions set
definition, with the caveat that all processor archi-
tectural requirements are imposed by multimedia
processing needs, with additions to the architecture
to permit stand alone processing. Example architec-
tures for such a class include the Philips Trimedia
architecture and processors [4] and the Texas Instru-
ments Multimedia Video Processor (MVP) [5]

General purpose processors: This class of processors
constitutes the third and final family of processors.
In this scenario the general purpose machine is ex-
tended with coprocessing capabilities to improve the
performance of multimedia formats. This approach
follows the traditional extension oriented process-
ing. That is in order to improve a certain application
domain a general purpose processor architecture is

222 Hakkennes and Vassiliadis

extended with new architectural features that allow
the design of coprocessors specialized for the con-
sidered application. Examples for such extensions
include the floating point and vector extension of
general purpose computing. Regarding multimedia
examples of this type of extensions include the Intel
MMX [6] and the ALPHA MVI [7] extensions.

All three classes of processors provide improvements
in multimedia processing and there is discussion as
to which of the approaches should be followed. In
this paper we propose mechanisms that provide some
improvements to all possible types of processors by
proposing new execution units. In particular we pro-
pose new instructions that:

– Can be added to existing units, e.g. a multiplier unit,
with small additional cost and that

– Can be implemented by a separate “ALU like unit”
with cycle times comparable to general purpose
ALU/multiply cycles.

These additions we introduce are meant to be the initi-
ation of new unit design and the proposed research di-
rection is to solidify this multimedia unit(s) by adding
instructions in the future with similar hardwired re-
quirements.

The organization of the discussion is as follows: We
first present the proposed unit designs. Consequently
we discuss the architecture and a possible high level
design of the multimedia hardware accelerator we pro-
pose. This paper is concluded with final remarks.

2. Add-Multiply-Add

It is widely accepted that true data dependencies [8]
constitute one of the major obstacles for the improve-
ment of speed in the computer based computational
paradigm. In the recent past it has been shown that
some important classes of true data dependencies for
the general purpose computational paradigm can be
resolved resulting in a substantial gain of performance
[9, 10]. Regarding multimedia, the application analysis
presented by Onion et al. [11] for applications such as
2D convolution, filters, FFT, DCT, histogram flatten-
ing, edge detection, etc., shows that more elaborate data
dependency collapsing hardware is required to resolve
most of the true data dependencies. More in particular
the investigation in [11] has revealed that the following
expressions (assuming the compiler can expose them)

appear frequently in the benchmarks they have con-
sidered: Add-Add, Add-Multiply, Multiply-Add, Add-
Multiply-Add, and Multiply-Add-Add.

In this section we consider fixed point, two’s comple-
ment number representations and combine four of the
above five exposed expressions in a single instruction.
Our investigation strongly suggests that the expression
we consider, in addition to the covering of the expres-
sions or operations revealed in [11], can potentially
be implemented using a parallel hardware organization
and potentially be executed within two machine cycles.
The previous conjecture is put in place by showing that
the partial product matrix associated with the expres-
sion requires no more than n+2 rows, n being the num-
ber of bits of the input-values, which will most likely
require no more cycle time than a fixed point multiplier
in most implementations. That is we perform the fol-
lowing: Given that the two’s complement notation −X
is almost equal to X̄ (to be precise: −X = X̄ + 1),we
rewrite the (A ± B) ∗ C so that we compute it with
A ∗ C + B ∗ C̄ (or A ∗ C + B̄ ∗ C̄), in which C chooses
between passing A or B(B̄). As an example, we will
compute (A − B) ∗ C . We can do so by rewriting it to:
(A − B) ∗ C = A ∗ C−B ∗ C = A ∗ C + B ∗ (−C).
In this last equation, we use the two’s complement rule
in that we rewrite −C as C̄ + 1. The hot one is not
added directly in this case. This makes (A − B) ∗ C =
A ∗ C + B ∗ (C̄ + 1) = A ∗ C + B ∗ C̄ + B.

This means that for each bit of C , we have to add
either A (if the bit of C is one) or B (if it is zero) to
the partial product matrix, in stead of both or neither
of them. C is used as a set of select signals to choose
between them. Normally, if a certain bit of C is one,
we would have to feed A and −B to the partial product
matrix on that position. If that bit would have been zero,
we would have to add nothing. The maximum number
of partial product rows would be equal to two times
the number of bits of C . In our scheme, each row is
always filled with either A or B, and the number of rows
equals the number of bits of C and one extra row for B.
The other three instances of (A ± B) ∗ C ± D can be
rewritten in a similar way. This yields the expressions
of Table 1. In the Table op1 and op2 (the operations)
are the control signals to the hardware to indicate what
needs to be computed. Equal to zero implies addition
and equal to one implies subtraction.

The four instances can be combined into a single
expression as follows:

(A oper1 B) ∗ C oper2 D

= A ∗ C + B̂ ∗ C̄ + B̂ + Ĉ + D̂ + op1 + op2

Multimedia Execution Hardware Accelerator 223

Table 1. The possible operations.

Expression used for the Inversion
op1 op2 Expression Selection Technique

0 0 (A + B) ∗ C + D A ∗ C + B̄ ∗ C̄ + B̄ + C̄ + D + 1

0 1 (A + B) ∗ C − D A ∗ C + B̄ ∗ C̄ + B̄ + C̄ + D̄ + 2

1 0 (A − B) ∗ C + D A ∗ C + B ∗ C̄ + B + D

1 1 (A − B) ∗ C − D A ∗ C + B ∗ C̄ + B + D̄ + 1

Figure 1. Graphical representation of the Add-Multiply-Add.

in which B̂ = B ⊕ op1, Ĉ = C̄ & op1 and D̂ =
D ⊕ op2. The graphical organization of this structure
is described in Fig. 1.

In this section, we have introduced a technique which
uses the fact that the partial products generated by ci ∗ A
and those generated by c̄i ∗ B can be added by simply
OR-ing them together. This results in n + 2 partial
product lines, that can be summed up in an arbitrary
counter structure. In the next section, we will introduce
the Sum of Absolute Differences unit, which jointly
uses the partial product reduction tree.

3. Sum and Mean Absolute Difference

In this section we proceed by investigating the Sum of
Absolute Differences (SAD) operation. The SAD op-
eration is used as a metric in determining the closeness
of two blocks of successive frames of a video sequence
[12]. In general, the SAD is computed in software using

the following expression.

SAD(x, y, r, s)

×
i=15∑

i=0

j=15∑

j=0

|A(x+i,y+ j) − B((x+r)+1,(y+ j)+s)|

In this equation, (x, y) are the coordinates of the upper-
left pixel of the original block and (r, s) is the motion
vector of which the SAD will be computed.

A direct approach for the computation of the SAD
consists of the following steps:

– Compute (Ai − Bi) for all 16×16 pixels in the two
blocks A and B.

– Determine which Ai − Bi are less that zero and pro-
duce in that case Bi − Ai as the absolute value, else
produce Ai − Bi .

– Perform the accumulate operation to all 16×16 ab-
solute values.

In order to speed up the computation, we perform a
multiplicity of operations in a single operation. In the
case of the computation of the SAD we want to elimi-
nate the absolute-difference operations. Generally, it is
not possible to eliminate these operations, because of
the inability to take an absolute operation out of a sum-
mation. Our solution to this problem is as follows. By
determining the smallest of both operands and subtract-
ing it from a constant, which is greater or equal than
the maximum value of a pixel, it becomes possible to
eliminate the absolute operations. This subtraction is a
trivial operation, if the constant is chosen correctly.

To achieve our goal, we first briefly describe an unit
capable of computing the SAD of 16×1 pels in paral-
lel, where each pel(pixel) is represented in 8 bits (in
unsigned binary notation).

Determine the smallest of two operands: This is done
by inverting one of the operands, and computing the
carry-out which would arise from the addition of
both operands.

224 Hakkennes and Vassiliadis

Pass proper operands an adder tree: The smallest
operand is inverted, which means that its value
changes to 28 − 1 − X = 255 − X . Both the in-
verted smallest and the largest values are passed
to the adder-tree, which corrects for the constant
(28 − 1 = 255).

The above two steps can be carried out in parallel for
16 pels. This results in 32 eight-bit values, on which
the following steps are applied.

Addition of a correction term: The correction term is
added to account for the 2n − 1’s introduced by the
inverting of the smallest value.

Reduce the 33 rows to 2: The resulting 32 rows are
passed to the adder tree together with the correction-
term. These 33 rows are reduced to 2 rows by using
a counter scheme, see for example [13].

Reduce the 2 rows to 1 (accumulation): In this final
step, a full summation of the two remaining rows is
performed. The carry out of this addition is the total
sum of all constants, which has to be discarded.

Figure 2 gives a graphical representation of the first
two steps. We note here that steps 1 and 2 substitute
two adders and multiplexing logic of the output of the
adders with carry-out-detection logic and multiplex-
ing of operands improving both the hardware and the
delay requirements. Figure 3 shows a graphical repre-
sentation of a 16×1 unit, that is a unit operating on 16
couples of elements producing a single output value.
The top half shows 16 times steps 1 and 2 in parallel,
and steps 4 and 5 are depicted in the bottom half. Step 3
is represented by the addition term at the left (16).

The concept can be expanded to an array capable of
computing the SAD of 16×16 pel blocks. In this case,

Figure 2. First two computation steps of the SAD.

Figure 3. 16×1 block SAD computation.

Figure 4. A 16×16 pel SAD computation unit.

the 2 rows going into the 2-to-1 reduction should go
into another 32-to-2 reduction unit, together with the
30 rows of the 15 other units. The result of this 32-to-2
reduction is then reduced by a 2-to-1 final adder. This
saves both the execution time and the area of 15 2-to-1
reduction units. For a block diagram of this extension
see Fig. 4.

4. Paeth Prediction and Coding

This section describes an execution unit capable of
computing the Paeth Predictor [14], as used in the
Portable Network Graphics (PNG) standard. The hard-
wired predictor/codec is capable of computing three
different quantities:

Multimedia Execution Hardware Accelerator 225

Figure 5. The PNG Paeth encoding routine.

– the Paeth predictor of three inputs,
– the difference of the current pixel and the Paeth pre-

dictor of the other three inputs (Coding),
– the sum of the coded input and the Paeth predictor

of the other three inputs (Decoding).

The Paeth predictor is normally computed in software.
The routine used for this is defined in the PNG standard
and shown here as Fig. 5.

To compute the Paeth predictor on a SunSparc
10 processor, 21 instructions are needed, including 6
branches. To improve the execution speed, we propose
a hardwired Paeth prediction unit, which computes the
Paeth predictor of a set of three input values in at most
two machine cycles. As the predictor is selected from
the input values, and the critical path is the control of
the output selectors, we can also precompute the dif-
ference or the sum of a fourth input (d) with each of
the three inputs. This means that we are also able to
compute the coded or decoded value within the same
machine cycles. We compute the predictor by directly
computing the distances of the initial estimator (p) to
each input, and selecting the input which has the small-
est distance. If we use the codec structure, we select the
current pixel +/− the inputs. The proposed scheme op-
erates as follows:

– Direct computation of the distance of each of the
inputs a, b and c to the initial estimate.

– Compare these distances using Carry-generators.
– Select the input with the lowest distance.

For the codec unit, we precalculate three temporal
results, which are the sum (decoding) or difference (en-
coding) of the current pixel and each of the inputs,
and select one of these precalculated values. Using this

Figure 6. The definition of the position of the a, b, c and d input
pixels.

scheme, the critical path is not affected, and yet the
number of executed operations is increased.

Figure 6 gives the naming conventions of the Paeth
predictor within the PNG standard. The pixels denoted
with “-” have been dealt with in the past and are no
longer of interest, the pixel denoted with “d” is the
current pixel and the pixels denoted with “.” will be
transmitted in the future.

In order to propose a hardware implementation of
the routine in Fig. 5, we rewrite it. In Fig. 7 we can

Figure 7. Simplified Paeth-Algorithm.

226 Hakkennes and Vassiliadis

distinguish three steps. These steps will be exposed
in the hardware implementation. In the first step, we
compute pas, pbs and pcs. These are the signed variants
of pa, pb and pc, denoted as 10 bit, two’s complement
intermediate numbers. In the second step, we compute
Test 1,Test 2 and Test 3. The third step is the selection
of the right input as the output.

The computation of pas, pbs and pcs is done by an
adder circuit [15]. As the range of the unsigned bytes a,
b and c is from 0 to (28 −1), the variable pcs can range
from 0 + 0 − 2 ∗ (28 − 1) to 28 − 1 + 28 − 1 − 2 ∗ 0,
which is from − 29 + 2 to 29 − 2. This range is just
covered by a 10-bit two’s complement number, which
ranges from − 29 to 29 − 1. Although pas and pbs are
representable as 9-bit two’s complement numbers, we
also represent them as 10-bit two’s complement num-
bers to facilitate the subsequent comparisons and to
preserve the regularity of the unit. In binary notation,
this leads to the following additions:

pas = (b − c) = (00b + 11c̄ + 1) (1)

pbs = (a − c) = (00a + 11c̄ + 1) (2)

pcs = (a + b − 2c) = (00a + 00b + 1c̄1 + 1) (3)

As can be concluded from the previous three formulas,
a sign-extension takes place to make all the input num-
bers 10 bits long. The negative value of −c is computed
using an inversion and the addition of a hot-one.

The computation of pcs involves a 3 to 1 addition,
where one of the operands is shifted one position to the
left (multiplied by 2). This is accommodated by using
an extra level of Full-Adders, which performs a carry-
save addition of the three operands, resulting in a sum
and a carry word. These are then added in a 2–1 binary
adder.

After the computation of pas, pbs and pcs, there are
several ways to compute Test 1, Test 2 and Test 3. To
compute Test 1 we have to find out whether |pas| ≤
|pbs|. We can use a carry-based comparison of pas and
pbs. This means that we add them in some form and
that the resulting carry reflects whether the inequality
was true or false.

We first have to adjust the signs of pas and pbs.
In order to compare them, we check whether |pbs| −
|pas| ≥ 0. In order to facilitate this, we have to make
sure that pbs has a positive sign and pas has a negative
sign. If the sign is opposite, we invert the operand and
add a hot-one to the result. This hot one is taken care off
in the addition. If both pas and pbs are inverted, there
are two hot ones. The carry-generator needs a special

Figure 8. The computation of Test 1.

structure to accommodate this. This is implemented as
a layer of half-adders, as shown in Fig. 8. It should
be noted that in the figure bit number 9 is the Most
Significant Bit, the Sign-bit. The outputs 0 to 9 are not
used, and need not be computed. They are only shown
for clarity.

The test |pbs| − |pas| ≥ 0 is now modified to
pbpos + paneg ≥ 0. The test for carry out is basically
the test for result ≥ 210. We have to keep in mind that
the sign-bit of pas is interpreted as a positive number
here, with value 29 in stead of −29. We are therefore
essentially adding 210. The binary summation is there-
fore: paneg + 210 + pbpos ≥ 210 So if pbpos + paneg ≥ 0
the binary addition pbpos +paneg generates a carry out.
Figure 8 gives a graphical representation of the unit
which computes Test 1 from pas and pbs. Test 2 and
Test 3 are computed using similar logic.

A possible extension of this unit is the extension
to a Paeth codec, which has not only the a, b and
c input, but also uses the to be encoded or decoded
pixel, d. When the prediction is known, the coding is
simply subtracting the prediction from the actual data,
that is Coded Data = Actual Data − Prediction =
d − pred. Decoding is done by adding the prediction
and the received coded data, that is Original Data =
Coded Data + Prediction = d + pred These opera-
tions are done modulo 256, as defined in the standard
[14]. The program-notation for this is given in Fig. 9. A
graphical representation of the implementation of this
optimized execution unit is shown in Fig. 10.

We have presented a sample implementation of a
4-input Paeth codec, capable of coding and decoding

Multimedia Execution Hardware Accelerator 227

Figure 9. The optimized Paeth Codec Algorithm.

Figure 10. Optimized implementation of the Paeth Codec.

images using the Paeth Predictor as described in the
PNG standard.

The critical path of the codec unit is the control
of the output multiplexers. It is basically two levels
of binary adders long. The path to the data-input of
the multiplexers is only one level of adders long. We

estimate that the speed of this unit equals that of a
standard two-cycle multiply unit or requires two ALU
cycles. This estimation is based on the fact that the crit-
ical path is basically two times an adder delay, which
is bounded by an ALU cycle time.

5. Median, Max, Min, and Mean

In this section we will introduce an extension of the
Paeth unit so that is can additionally compute the Me-
dian of three inputs, used in video-deinterlacing. We
will show that using the same paeth extended logic,
it is trivial to compute also the maximum and mini-
mum of the three inputs. Furthermore, we introduce
an extension of the Add-Multiply-Add unit, in order to
compute the Mean of three inputs.

The median is defined as the middle value of a sorted
list of input values. For the median computation we
propose a hardware unit also described in [16] which
calculates the median in two steps as follows:

Step 1: (Compute three inequations (a ≥ b, b ≥ c,
a ≥ c)

As indicated earlier we compute the three inequa-
tions: a ≥ b; b ≥ c; a ≥ c in the first step. As the
Paeth computation uses the ten bits wide two’s com-
plement notation of both b−c and a−c as intermediate
results, we will use the same hardware. As an exam-
ple we show that the testing of b ≥ c is equivalent to
the testing whether b − c ≥ 0. This is a simple test
on the sign-bit of the result of the subtraction. That is
the inequation holds true if the sign-bit is zero. The
carry-out of the addition is the inverse of this sign-bit.
That means that the carry-out is one if-and-only-if the
sign-bit is zero. The computation of the first inequation
is performed in a similar way, we compute the ten-bit,
two’s complement number a − b and use the carry-out
of that subtraction.

To summarize, we only have to add one carry-chain
generator to the Paeth logic to perform the computation
of the a ≥ b inequation. For the other two inequations
the logic is already there. Let Test1, Test2 and Test3

represent the result of a ≥ b, b ≥ c and a ≥ c respec-
tively:

Test1 ⇐⇒ a ≥ b ⇐⇒ 00a + 11b̄ + 1 ≥ 2n+2 (4)

Test2 ⇐⇒ b ≥ c ⇐⇒ 00b + 11c̄ + 1 ≥ 2n+2 (5)

Test3 ⇐⇒ a ≥ c ⇐⇒ 00a + 11c̄ + 1 ≥ 2n+2 (6)

Note that the input-numbers are extended with two bits
to ten bit inputs. This stems from the paeth unit, which

228 Hakkennes and Vassiliadis

Table 2. Requirements for Min, Max and Median.

a ≥ b b ≥ c a ≥ c
Test1 Test2 Test3 Min Median Max

True True True c b a

True True False – – –

True False True b c a

True False False b a c

False True True c a b

False True False a c b

False False True – – –

False False False a b c

needs the 10-bit result of b−c and a−c. We could also
pick the 9th bit of this subtraction, thereby reducing the
critical path a little.

Step 2: (Select the median) Based upon the three
resulting carries, we select one of the three operands as
the result, using Table 2. The Table 2 has six columns.
The first three describe the eight output combinations
of the comparisons and the last three columns deter-
mine which of the operands needs to be chosen as the
minimum, median and maximum respectively. Note
that two out of the eight combinations cannot occur,
as there is no set of a, b, and c which for which these
conditions hold true. One would need a ≥ b, b ≥ c
and a �≥ c. From the first two conditions, one can de-
duce that a ≥ c, which means that if Test1 and Test2

are True, Test3 would also have to result in True.
In order to implement the median(a, b, c) instruction

we note that the two steps require three carry genera-
tors and the implementation of the logic implied from
Table 2. All median requirements can be performed
from the logic depicted in Fig. 11. This can be proven
by the following: The first part of the logic (the carry-
generators) determine which of the three conditions
(Test1, Test2 and Test3) hold true. That is carry generator

Figure 11. Implementation of the three-input Median Filter.

1 determines Test1 (a ≥ b), carry generator 2 deter-
mines Test2 (b ≥ c) and carry generator 3 determines
Test3 (a ≥ c).

Clearly, once we have computed the three inequa-
tions, it is trivial to select the maximum and the mini-
mum of the three inputs. In order to do so, we extend
the unit with an extra set of multiplexers, which con-
trols the control-signals to the output multiplexers. To
compute the min and max of three inputs, we need to
determine which input to select on the basis of the three
computed test signals. These selection requirements are
deduced form Table 2 which determines which operand
to select as min and max output. In order to compute
the mean of three numbers and avoid the division oper-
ation, we perform the following: Assume that the input
numbers, a, b and c are in two’s complement notation
and that each number is representable in 8 bits, then:

Step 1: Compute X and Y as the carry-save sum of
A+ B+C . In this step, three eight-bit numbers
are converted into two nine-bit numbers, using
a carry-save addition. Both are sign extend to
ten-bit, two’s complement numbers.

Step 2: Compute ((X + Y)∗341 + 511) using a ten-bit
input Add-Multiply-Add unit described in
Chapter 2. The result is a 21-bit number in
two’s complement notation. Note that 341

1024 ≈
1
3

1, and 511
1024 is as close as we can come to 1

2
using 10-bit 2’s complement numbers.

Step 3: Shift the result 10 positions to the right. (dis-
carding the lower 10, and the upper three bits).

Proof of correctness: Assume the result of the mean-
operation is P . This implies that the sum of A, B and
C equals either 3P , 3P + 1 or 3P − 1 (as the mean is
equal to one third of this sum, rounded to the nearest
whole number).

If we undo step 3, the rounding, we observe that the
result of step 2 is P ∗ 1024 + rest, where 0 ≤ rest ≤
1023. This means we have to prove that rest remains
within its range for all P we can expect as output.
As the range of the mean of any number of inputs is
equal to the range of the input numbers, we have to
prove that for all values P can take in two’s comple-
ment, the rest is within bounds. Consequently we have
to prove whether rest remains within bounds for all P
in the output range, taking the rounding into account.
That is rest = (SUM) ∗ 341 + 511 − P ∗ 1024, where
SUM can be P + 1, P or P − 1. is P ∗ 1024 + rest
equals (3P +1)∗341+511 for all input combinations.

Multimedia Execution Hardware Accelerator 229

There are three cases to consider:
Case 1: Sum = 3P

P ∗ 1024 + rest = 3P ∗ 341 + 511
P + rest = 511
rest ∈ {0...1023}
P ∈ {−511...512}

Case 2: Sum = 3P + 1

P ∗ 1024 + rest = (3P + 1) ∗ 341 + 511
P + rest = 511 + 341 = 852
rest ∈ {0...1023}
P ∈ {−171...852}

Case 3: Sum = 3P −1

P ∗ 1024 + rest = (3P − 1) ∗ 341 + 511
P + rest = 511 − 341 = 170
rest ∈ {0...1023}
P ∈ {−853...170}

The intersection of these three sets is P ∈ {−171
...170}. This covers the range of the input values,
{−128...127}, so the result will be correct for all in-
put combinations.

Figure 12 give a graphical representation of the
Mean3 Unit, implemented using a Carry-Save adder
and the Add-Multiply-Add unit. It is noted that there
is additional hardware to perform a carry-save oper-
ation may produce a critical path delay problem (the
extra logic required is the XOR of 3 inputs). If such a

Figure 12. Implementation of the three-input Mean unit using an
Add-Multiply-Add unit.

problem occurs than an additional cycle should be
added in order to perform the mean operation.

Note: This subsection’s primary concern was in
accommodating the mean of three inputs with the mod-
ification of the add-multiply-add unit. However, this is
not strictly necessary as if we have only an AMA unit
available, we can still use this method, using three in-
structions. The first instruction would be an add of A
= A + B. The second would be the AMA operation
as (A + C)*341 + 511. The third operation is a right-
shift over 10 positions. Note however that this also will
require modifications, as we need a 10-bit AMA unit
for 8-bit inputs. Special care has to be taken not to gen-
erate an overflow, as the intermediate result is a 20-bit
number.

6. Putting it all Together

In building a multimedia extension to a general purpose
processor, it might be more convenient to follow the
general processor paradigm which has few units with
each unit used by multiple instructions. That is it is of
interest to combine the units we have proposed into one
single execution unit.

We begin by noting that all units operate on more
than the usual two operands (with the exception of
some of the simpler instructions of the Add-Multiply-
Add unit and the SAD instruction, but the SAD would
use any extra operands supplied). This suggests com-
bining the units in one general unit, which has at
least four inputs. If two instruction(slots) are needed
to specify the operands for the unit, we could think
of delivering two results as well. This would only
need some extra logic on the output-stage. Note that
not all combinations would be possible. Another so-
lution to this problem is the specification of regis-
ter pairs. This register addressing mode implies that
only two source registers are specified, and that the
other two source registers are implicit. For example
the machine instruction ama r2, r6, r5 would specify
that r5 gets the result of (r2 + r3)*r6 + r7. That is
whenever a register is specified as a source register, its
“upper neighbor” is also specified implicitly. The “up-
per neighbor” of a register is the subsequent register.
The basic data-types the proposed architecture supports
are:

unsigned byte (8 bit) This is frequently used for pixel-
data, where it contains one color-component, or the
luminance of a pixel.

230 Hakkennes and Vassiliadis

Table 3. Instruction set.

1 input 2 input 3 input 4 input

Add-Multiply-Add unit

Negate Add Add-Multiply Add-Multiply-Add

Subtract Subtract-Multiply Add-Multiply-Subtract

Multiply Multiply-Add Subtract-Multiply-Add

Multiply-Subtract Subtract-Multiply-Subtract

Add-Add

Add-Sub

Sub-Add

Sub-Sub

Mean

Sum-Absolute-Difference unit

SAD 2 SAD Accumulate SAD 4

Paeth unit

Paeth PNG Paeth PNG Encode

Paeth PNG Decode

Minimum Maximum Median unit

Min Min encode

Min decode

Max Max encode

Max decode

Median Median encode

Median decode

signed byte (8 bit) This is used for intermediate results.
unsigned half-word (16 bit) This is also used for pixel-

data in very-high color-depths. The PNG standard
supports this, but states that the 16 bits should be
treated as two independent bytes.

signed half-word (16 bit) This is used for audio
samples.

unsigned word (32 bit) This is used for intermediate
results.

signed word (32 bit) This is used for intermediate
results.

unsigned double-word (64 bit) This is used for inter-
mediate results.

signed double-word (64 bit) This is used for inter-
mediate results.

The base of our representation is 2 and the bit
enumeration is from high order to low (that is the
most significant bit has the highest number and the
least significant bit has the number 0). We note that all
signed numbers are represented as two’s complement

numbers. The instructions we support can be found in
Table 3, from which it can be observed that the instruc-
tions have been divided into 4 categories and every cate-
gory into instructions. Furthermore the instructions are
divided according to the number of inputs they require.
More specifics on the instructions can be found in [17].

A possible implementation of the unit is describe
here using a general dataflow. As control logic is
dependent on various other factors, such as decod-
ing, accessing registers, structural hazards etc, it is not
discussed here. Also no specific unit logic implemen-
tations details, such as adders, multipliers and carry-
logic etc, are presented and they are left to individual
designers.

The general dataflow of the execution unit we
propose is described in Fig. 13. The unit is designed
to assume four inputs denoted by the source registers
rs1a, rs1b, rs2a, and rs2b. Control logic signals are
added to determine the correct flow of data. It com-
prises a number of blocks, denoted as sub-units, which
are described in the text to follow.

Multimedia Execution Hardware Accelerator 231

Figure 13. The combined execution unit.

The sub-unit Paeth MMM, computing the Paeth,
Median, Minimum and Maximum related operations
is described in Fig. 14. In this figure the data inputs
are called A, B, C and D. These are connected to rs1a,
rs1b, rs2a and rs2b respectively. The three control sig-
nals, op 1, op 2 and mode are to used to control the
operation of the unit. These three inputs are decoded
from the opcode. All data-inputs A, B, C, and D are 64
bits wide. These inputs can be split into several smaller
parts, namely 8 times 8 bits, 4 times 16 or two times
32 bits. For clarity, this is not shown in the figure. Fur-
thermore, the inputs can be signed or unsigned. The unit
was originally designed for unsigned inputs. A trivial
adaptation makes it possible for it to operate on signed
inputs in two’s complement as well. We should note
that this is not defined for the Paeth operations, as the
PNG standard [14] explicitly states that all operations
are carried out on bytes, which are to be interpreted as
unsigned.

We show the operation for an eight bit slice of the
Paeth MMM unit. This means that 8 of these units are
present and operate in parallel. In order to operate on
larger data-types, several signals have to be chained
together. Note also that we only show the operation
for unsigned data. The operation of the Paeth MMM
unit is as follows: Carry-generator 1 and Adders 2 and
3 are used for the comparison of inputs A, B, and C.
Based on these results, MTest 1, MTest 2 and MTest 3,

the dashed block denoted as Min, Max and Median
determine which of the inputs is to be selected. At the
same time, adders 2, 3 and 4 compute the intermediate
results pas, pbs and pcs. These are compared in blocks
8–10, which determines which of them has the lowest
absolute value, as described in Section 4. This results
in three similar test-signals, Test 1, Test 2 and Test 3.
The dashed block denoted as Paeth determines which
of A, B, and C is to be selected as the Paeth Predictor.
Selectors 11 and 12 are used to determine which of the
four functions is shown on the outputs and selectors 13
and 14 select the actual value. This can be the value A,
B or C if input D is blocked, or (D − A), (D − B), (D −
C) in case of encoding or (D + A), (D + B), (D + C) in
case of decoding. Using these precalculated values it
is possible to compute the Paeth-encoded value in the
same number of cycles needed as for the Paeth predic-
tor. Note that these additions and subtractions are done
modulo 2n , in accordance with the PNG specification
[14]. Finally we state that in case of an instruction is ex-
ecuted on the Paeth MMM unit, the bottom multiplexer
(C) of the combined execution unit (Fig. 13) needs to
select its left input.

We will assume the Mean3 instructions to work on
32-bit values only. In order to accommodate unsigned
numbers, we will internally use 33 bits. That is we sign-
extend with a zero if we operate on unsigned numbers
and with the proper sign if we operate on signed num-
bers. As we need two extra bits in order to get the
required precision, we need an Add-Multiply-Add unit
which is 35 bits wide. The Mean3 part of Fig. 13 is
represented in more detail in Fig. 15. It supplies the
internal Add-Multiply-Add unit with the intermediate
results of adding rs1a, rs1b and rs2a, and the constants
235/3 and 234 −1. These four inputs are used in an add-
multiply-add instruction, and the result is shifted to the
right over 35 bits.

The Add-Multiply-Add logic needed for the
MEAN3 instruction is also available for general use.
The 35 bit wide unit can support both signed and un-
signed 32-bit words. For unsigned operation, we sign-
extend the 32-bit inputs with zero’s and for signed op-
eration we sign-extend the 32-bit inputs with their own
sign-bit. After that we can treat the inputs as signed, 35
bit values.

The Add-Multiply-Add sub-unit is represented in
Fig. 1. The inputs of the Add-Multiply-Add unit come
from multiplexer (A), which chooses between the out-
put of the the Mean3 unit, depicted in Fig. 15, or the
direct inputs of the total unit. This multiplexer can also

232 Hakkennes and Vassiliadis

Figure 14. The total Paeth MMM unit.

block one or more of the inputs, thereby enabling the
computation of several simpler expressions, such as
Add-Add and Multiply-Add.

The Add-Multiply-Add unit can operate in two
different ways, explained in Section 2. The Inversion
Selection Technique uses the fact that −X is almost

equal to X̄ . To be precise, −X = X̄ + 1. There-
fore we can rewrite for instance (A − B) ∗ C + D
as (A ∗ C) + (B ∗ −C) + D, which can be rewritten
as (A ∗ C) + (B ∗ (C̄ + 1)) + D == (A ∗ C) + (B ∗
C̄) + B + D. As a given bit of C can only be 1 or 0,
and the corresponding bit of C̄ is 0 respectively 0, we

Multimedia Execution Hardware Accelerator 233

Figure 15. Graphical representation of the Mean-part of Fig. 13.

are essentially multiplexing A and B instead of adding
them together.

The SAD operation takes place on 16 unsigned byte
pixels in parallel, therefore using 32 bytes as input.
For each pair of input bytes, it is determined which of
them is the smallest. This is done by inverting the first
operand and adding the result to the second operand.
The carry out of this addition determines which of them
is the smallest. After that the smallest of each pair of
inputs is inverted. Note that the figure shows the con-
figuration for unsigned bytes as input. By coupling unit
0 and 1 it is possible to operate on 8 couples of half-
words as well. In that case the carry-out of unit 0 is
used as carry-in for unit 1. The carry-out of unit 1 is
then used to determine which of the operands to invert.
The constant 16 should be changed to 8 in that case.

7. Final Remarks and Conclusions

The present section is dedicated to some final remarks
regarding our investigation. In brief the following has
been achieved.

– We have shown that a number of true data de-
pendencies that have been identified to be present
in large percentages in embedded system applica-
tions [11] can be captured by an unique expres-
sion: (A ± B) ∗ C ± D. Consequently, assuming
two’s complement representation, we propose two
schemes for the implementation of such an expres-
sion. Both schemes require no more machine cycles
than the multiplication of two numbers.

– For a very frequent motion estimation operation, the
Sum of Absolute Differences (SAD), we proposed a
vector instruction and we investigated possible im-
plementations for such an instruction. Assuming a
machine cycle comparable to the cycle of a two cy-
cle multiply, we have shown that for a block of 16×1
or 16×16, the SAD operation can be performed in
3 or 4 machine cycles respectively.

– We propose a hardwired solution for the paeth pre-
dictor for the Portable Networks Graphics standard
and proposed a hardware Paeth codec, capable of
computing three different quantities: the Paeth pre-
dictor of three inputs, the difference of the current
pixel and the Paeth predictor of the other inputs
(Coding), and the sum of the coded input and the
Paeth predictor of the other three inputs (Decoding),
within two cycles, where a cycle is comparable to a
general purpose ALU cycle. Depending on the mode
of operation, the proposed mechanism produces the
predictor or the (de/en)-coded pixel value.

– We have shown that without additional pipeline
stage time penalties an extension of the Paeth unit
is possible so that is can additionally compute the
Median of three inputs. This median is used in video-
deinterlacing, which is needed when displaying nor-
mal video on a non-interlaced computer screen or a
modern, high-end television set. We have also shown
that the median operation can be computed by itself
in one machine cycle.

– We have introduced a number of new instruc-
tions and shown that these instructions can be im-
plemented with trivial additions to the multiply
(multiply-add) hardware together with other well
known instructions, for example multiply,multiply-
add, multiply-subtract etc. We have also shown that
the remaining instructions can be executed by a new
execution unit that is no more complex than a tradi-
tional ALU design.

– As a minor contribution we have shown that us-
ing the same paeth extended logic, it is trivial to
compute also the maximum and minimum of the
three inputs. Furthermore, we introduced an exten-
sion of the Add-Multiply-Add unit, whereby the
Add-Multiply-Add unit can compute the Mean of
three inputs.

Note

1. There is no power of 2 which is dividable by 3, so we have to
approximate. Note however that the result is always rounded
correctly.

References

1. K. Aono, M. Toyokura, T. Araki, A. Ohtani, H. Kodama, and
K. Okamoto, “A Video Digital Signal Processor with a Vector-
Pipeline Architecture,” IEEE Journal of Solid-State Circuits,
Vol. 27, No. 12, pp. 1886–1894, December 1992.

2. P.A. Ruetz, P. Tong, D. Bailey, D.A. Luthi, and P.H. Ang, “A
High-Performance Full-Motion Video Compression Chip Set,”

234 Hakkennes and Vassiliadis

IEEE Transactions on Circuits and Systems for Video Technol-
ogy, Vol. 2, No. 2, pp. 111–122, June 1992.

3. K. Herrmann, M. Seifert, K. Gaedke, H. Jeschke, and P. Pirsch,
Architecture and VLSI Implementation of a RISC Core for a
Monolithic Video Signal Processor, VLSI Signal Processing.
New York: IEEE, 1994, pp. 368–377.

4. S. Rathnam and G. Slavenburg, “An Architectural Overview
of the Programmable Multimedia Processor, TM-1,” in Pro-
ceedings of COMPCON ’96, IEEE, 1996, pp. 319–326, Los
Alamitos, 25–28 February 1996.

5. K. Guttag, R.J. Gove, and J.R. van Aken, “A Single-Chip Multi-
Processor for Multimedia: The MVP,” IEEE Computer Graphics
and Applications, Vol. 12, No. 6, pp. 53–64, November 1992.

6. A. Peleg and U. Weiser, “MMX Technology Extension to the
Intel Architecture,” IEEE Micro, Vol. 16, No.4, 1996, pp. 42–
50.

7. R.L. Sites and R. Witek, Alpha AXP Architecture: Reference
Manual, 2nd edn., Digital Press, Burlington, 1995.

8. P.M. Kogge, The Architecture of Pipelined Computers,
Advanced computer science series. McGraw-Hill Book
Company, New York, 1981.

9. R. Montoye, E. Hokenek, and S. Runyon, “Design of the IBM
RISC System/6000 Floating-Point Execution Unit,” IBM Jour-
nal of Research and Development, Vol. 34, No. 1, 1990, pp. 59–
70.

10. S. Vassiliadis, J. Phillips, and B. Blaner, “Interlock Collaps-
ing ALU’s,” IEEE Transactions on Computers, Vol. 42, No. 11,
1993, pp. 825–839.

11. F. Onion, A. Nicolau, and N. Dutt, “Compiler Feedback in ASIP
Design,” Technical Report 94-2, Department of Information and
Computer Science, University of California, September 1994.

12. J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall,
MPEG Video Compression Standard, Digital Multimedia Stan-
dard Series. Chapman and Hall, New York, 1996.

13. L. Dadda, “Some Schemes for Parallel Multipliers,” Alta
Frequenza, Vol. 34, 1965, pp. 349–356.

14. T. Boutell and T. Lane, “PNG (Portable Network Graphics)
Specification,” version 1.0. ftp://ftp.uu.net/graphics/png/docu-
ments/png-1.0-w3c.ps.gz.

15. S. Waser and M.J. Flynn, Introduction to Arithmetic for Digital
Systems Designers, CBS College Publishing, 1982.

16. T. Doyle and P. Frencken, “Median Filtering of Television
Images,” in Proceedings of the International Conference on
Consumer Electronics, Digest of Technical Papers, June 1986,
pp. 186–187.

17. E.A. Hakkennes, “Multimedia Hardware Accelerators,” Ph.D.
Thesis, Delft University of Technology, December 1999.

Edwin A. Hakkennes received his Ir. degree (M.Sc) in electrical
engineering in 1995, and his Dr. degree (Ph.D) in 1999, both from

Delft University of Technology, The Netherlands. From 1995 to 1999
he was at Delft University of Technology, as a research and teaching
assistant. His research interests are Computer Engineering, in partic-
ular the design of execution units for special purpose and application
domain specific processors. In 2000 he joined X Integrated Circuits
in Rotterdam, The Netherlands, as design engineer.
e.hakkennes@et.tudelft.nl

Stamatis Vassiliadis is a professor in the Electrical Engineering
department of Delft University of Technology (T.U. Delft), The
Netherlands. He has also served in the faculties of Cornell Univer-
sity, Ithaca, NY and the State University of New York (S.U.N.Y.),
Binghamton, NY. He worked for a decade with IBM in the Advanced
Workstations and Systems laboratory in Austin TX, the Mid-Hudson
Valley laboratory in Poughkeepsie NY and the Glendale laboratory
in Endicott NY. In IBM he has been involved in a number of projects
regarding computer design, organizations, and architectures and the
leadership to advanced research projects. He has been involved in
the design and implementation of several computer systems includ-
ing for example the IBM 9370 model 60. A number of his inven-
tions have been implemented in commercially available systems and
processors including the IBM POWER II, the IBM AS/400 Mod-
els 400, 500, and 510, Server Models 40S and 50S, and the IBM
AS/400 Advanced 36. For his work he received numerous awards
including 23 levels of Publication Achievement Awards, 15 levels
of Invention Achievement Awards and an Outstanding Innovation
Award for Engineering/Scientific Hardware Design in 1989. Six of
his 67 patents have been rated with the highest patent ranking in
IBM and in 1990 he was awarded the highest number of patents in
IBM. Dr. Vassiliadis is an IEEE fellow. His research interests in-
clude computer architecture, parallel embedded systems, hardware
design and functional testing of computer systems, parallel proces-
sors, computer arithmetic, EDFI for hardware implementations, neu-
ral networks, fuzzy logic and systems, and software engineering.
s.vassiliadis@et.tudelft.nl

