
HIERARCHICAL INTELLIGENT SIMULATION

Tudor Niculiu Sorin Cotofana
Bucharest University of Technology Delft University of Technology

Splaiul Independentei 313 Mekelweg 4
77206 Bucuresti, Romania 2600 GA Delft, The Netherlands

tudor@messnet.pub.ro S.D.Cotofana@dutepp0.et.tudelft.nl

Keywords
Hierarchical, Combined simulation, AI in simulation.

Abstract
Separating the different hierarchy types reveals their
comprehensive constructive importance based on structural
approach, symbolic meaning, object-oriented representation, their
combination in looking for self-organization, self-control and
conscience. Knowledge and construction hierarchies can
cooperate to integrate design and verification into simulation;
object-oriented concepts can be symbolized to handle data and
operations formally; structural representation of behavior
manages its realization. Hierarchy types open, or at least show,
the way to simulate intelligence as adaptable consciousness.
Artificial Intelligence means simulation of intelligence, either
behavioral (functional or procedural) or structural (e.g., neural,
genetic, cellular). Only hierarchical simulation, assisted
mathematically to build theories and formalisms, can lead to
understand the results, so to manage them truly. The hierarchical
approach should concentrate on knowledge hierarchies, to enable
metaknowledge simulation, for the system's adaptability, but also
for looking for the way to simulate consciousness.

Introduction
Intelligence assumes, at least, consciousness and adaptability.
Consciousness simulation demands transcending the present
limits of computability, by an intensive as well as extensive
research effort to integrate essential physical and mathematical
knowledge and intuition guided by philosophical goals. An
algorithm is a computer simulable entity, so it represents
computability, bottom-up (construction, design, plan) or top-
down (understanding, verification, learning). The algorithmic
approach is equivalent to the formal one: If a sentence of a
formal system is true, then an algorithm can confirm it.
Reciprocally, for a verification algorithm of the mathematical
sentences a formal system can be defined, that holds for true the
sentences in the set closure of the algorithm's results towards the
operations of the considered logic. Formal systems, partial-
recursive functions, Turing machines, λ -calculus, are only the
best-known formalisms for computation, i.e., for algorithm and
computability.

Hierarchy Types
Multiple, coexistent and interdependent hierarchies structure the
universe of models for complex systems. They belong to
different hierarchy types, defined by abstraction levels, block
structures, classes, symbolization and knowledge abstractions.
Abstraction and hierarchy are semantic and syntactical aspects of
a unique fundamental concept, the most powerful tool in
systematic knowledge; hierarchy results formalizing abstraction.
Hierarchy types correspond to the various abstraction ways
(↑abstraction goal):

Class hierarchy (↑ concepts) ↔ virtual framework to represent
any kind of hierarchy, based on form-contents dichotomy,
modularity, inheritance, polymorphism; an object is defined by
identity, state and behavior, being instance of a class, that defines
its structure and behavior (internal - completing the structure,
external - for communication); to exist behaviorally, the object
hides its structure, what helps it to integrate in a world of
adaptable objects that intercommunicate, developing towards
conscious and intelligent objects, i.e. subjects.

Symbolization hierarchy (↑ mathematics) ↔ stepwise formalism
for any kind of types, e.g., hierarchy types.

Structure hierarchy (↑ problem-solving) ↔ stepwise managing
of all (other hierarchy) types on different levels by recursive
autonomous block decomposition, following the principle
"Divide et Impera et Intellige".

Construction hierarchy (↑ simulation) ↔ design/ verification (=
simulation) framework of autonomous levels for different
abstraction grades of description; time is explicit at highest
(behavioral) levels, being integrated in the model, and exterior on
lowest (structural) levels, being implicit for the system’s activity;
artificial intelligence approaches try to configure the simulation
hierarchies as reciprocal to knowledge hierarchies.

Knowledge hierarchy (↑ theories) ← reflexive abstraction ("in a
deeper sense"); each level should know of its inferior levels,
itself included; recurrence of structures and operations enables
self-knowledge (with improved precision on the higher levels of
knowledge hierarchies); a continuous model for hierarchy levels,
without loosing the hierarchy attributes, would offer a better
model for conscience and intelligence.

Understanding and construction have correspondent hierarchy
types: their syntax relies on classes, their meaning on symbols,
their use on modules (Figure 1).

simbolization object-orientation

structure

knowledge
construction

Figure 1: H - Diagram

All hierarchy types have common structures as the following:

(U, { Hi∈Sh}) - universe, with different hierarchies Hi,
Sh - set of hierarchies, Sl - set of hierarchy levels:

H = (Rel_eq, {(Levelj,Structurej): j∈Sl},
Rel_ord, {Aj: j∈Sl}) - generic hierarchy:

Rel_eq - equivalence relation, divides U in levels,
Structurej - structure defined of level j,
Rel_ord - order relation (total), defined on Sl,
Aj∈{(x,y):x∈Levelj-1,y∈Levelj, j∈Sl} - abstraction.

Hierarchies are leveled structures, which represent different
domains. A level is an autonomous mathematical structure,
containing abstract/ concrete entities, linked by intralevel
relations. Abstraction relates the levels: this induces an interlevel
order relation, partial, concerning entities, and total, regarding the
levels. Beyond the hierarchical point of view, the system can be
formalized as an autonomous domain, structured by
metahierarchical relations, building a level in a higher order
hierarchical system. Hierarchical structures exhibit two
complementary processing strategies: top-down and bottom-up.
A sketch to formalize hierarchy types follows:

• Knowledge ← structure, classes, symbolization
(abstraction, recurrence → reaction)

• Construction ← structure, classes, symbolization
(recurrence, space ↔ time)

• Classes ← existential abstract types
(syntax of construction/ knowledge)

• Symbolization ← universal abstract types
(semantics construction/ knowledge)

• Structure ← comprehensive concrete types
(pragmatics construction/ knowledge)

The different hierarchy types can be formalized by the theory of
categories (Kasch and Pareigis 1986). Constructive type theory
permits formal specification as well as formal verification by
generating an object satisfying the specification.

Example: The classical activities in complex systems simulation,
that regard different levels of the construction or knowledge
hierarchy, can be expressed symbolically then represented object-
oriented and simulated structurally, as sketched in Figure 2:

Symbolical

Object-oriented

observed behavior

required behavior abstract instance

concrete instance

class

consistency simulation

 hi-le simulation

completeness simulation

validation simulation

structural simulation

functional simulation

Structure

Figure 2: Hierarchical Simulation Paradigm

A simulation approach/ paradigm is interesting only when
summing more of the following attributes: incremental,
algorithmic, integrated, hierarchical, intelligent, inspired:

Construction ⇐ inspired, intelligent, concrete
Knowledge ⇐ integrated, intelligent, abstract
Intelligence ⇐ conscious, adaptable
Consciousness ⇐ knowledge hierarchy, incremental
Adaptability ⇐ simplifying hierarchies + algorithm
Will ⇐ | conscious - adaptable |

The simulation framework permits self-organizing, offering at
any level of abstraction of the simulation hierarchy: description
of the system in a convenient and commonly used language, e.g.,
C++ extended for parallelism by synchronization constructs;
automatic learning-based partition of the description into
hardware and software; correct and complete communication
between heterogeneous parts and with the exterior; simulation
and validation of the whole system during any design phase
(Figure 3).

Figure 3: Knowledge-based Simulation Framework

If one of the imposed properties (design constraints) is not
fulfilled after applying a technique, using a model and suitable
methods for measure and improvement, different strategies

Design

Verification

Test

Representation

Reasoning

Learning

permit altering one of the technique/model/method, to repeat the
process for the initial behavioral specification or the one resulted
from prior (insufficient) improvement. This calls for an
intelligent choice of the designer or the AI system that assists/
automates the design. The methods are recursive to handle the
different components in the behavioral specification of the
system. The process continuation is controlled by measurement
functions, so, generally, these must be called for each call of the
improvement functions, but there are also methods demanding
for a global improvement based on a prior measurement.

The constructive theory of intelligent simulation specifies its
syntax and axioms its semantics based on a knowledge hierarchy:
a bottom level consists in the logical base, the upper level
contains the operations, and the highest level is a theory of types.
Axiomatic semantics does not refer to a particular
implementation of the functions, offering a mathematical theory
of intelligent simulation, where the design can be demonstrated
correct regarding the specification or the equivalence of two
designs can be shown. Reasoning about functions and types is
performed in a predicate calculus; the intuitionistic one sustains
the correct design by a constructive proof of the specification.
The theory of operations gives axioms for equality, definition and
application of functional operations. Termination of programs/
activities can be formalized extending general functions to partial
ones. λ -calculus offers a formal framework for these aspects.
Types in simulation are important as theoretical guides and as
practical aids.

Hierarchical to Intelligent
The planned simulation environment prepares a framework for
representing entities and relations of the system to be simulated
(designed/ verified), as well as general knowledge about the
simulated universe. Objects are defined by properties: structural
attributes (part of a set/ configuration built from other objects)
and behavioral methods (response to stimuli received from the
other objects). Symbolization hierarchies are used to manage
formal representation of the previous kinds of properties, as well
as of the knowledge abstraction.

Knowledge-based architecture separates representation from
reasoning. A system capable of reflexive abstraction
("intelligent") reasons guided by the problem specification and
by solving strategies. These are derived from higher levels of
knowledge, representing principles of approach that are
structured by even higher levels, containing hierarchical type
theories. A possible interpretation of such hierarchies is: real time
of the bottom levels - corresponding to primary knowledge/
behavior/ methods, is managed at upper levels - corresponding to
concrete types/ strategies/ models, and abstracted on highest
levels - corresponding to abstract types/ theories/ techniques.

An object-oriented simulation framework (Zeigler et al. 2000)
permits the representation of different knowledge levels, each
having a concept hierarchy, possibly abstraction/ symbolization/
structure leveled. Knowledge-based architecture, both at
environment and simulation component level, ensures flexibility
of the framework realization, by defining it precisely only in the

neighborhood of solved cases. Knowledge levels are
mathematical data/ operations types, approach/ solving strategies,
simulation (description, representation, processing) and
application concepts. The upper levels contain functions defined
on the lower ones. Knowledge is represented as a hierarchical
associative net of concepts: each level consists of clusters of
related concepts.

Class-instance hierarchy can support symbolic operations; e.g., λ
-calculus, extended to cope with program termination, i.e., partial
functions, and evaluation. Symbolic formula is knowledge about
expressions obtained by evaluation of some symbols
(metaknowledge). For linear/ weakly nonlinear systems, algebra
offers symbolic methods, to determine directly functional
behavior; their instantiation result in the correspondent numerical
methods.

To simulation, the hierarchical principle offers the advantage of
adaptable modeling: Models are described by the user, following
a general accepted paradigm (e.g., entity-architecture
decomposition) that ensures syntactic correctness, leaving the
meaning to be specified by user-defined semantic functions that
control the simulation. E.g., an unfinished design module is
characterized by constraints regarding its interaction to other
modules, resulting a model system, open to be interpreted, thus
implemented, in different ways that derive from adequacy
criteria.

Explanation is a key concept for knowledge-based systems. It can
be expressed as proof in a deductive system, whose axioms are
the equations constraining component models and input signals,
theorems are simulation results, inference rules represent logic
and domain-specific calculus. Using constructive predicate logic,
e.g., intuitionistic (Turner 1991), behavior or structure of the
simulated system can be extracted from the proof.

Knowledge is based on a morphism that maps the state-space of
the object-system onto the internal representation of the
simulator. An intelligent simulator learns by generating and
validating models of the object-system. Representation for design
and verification should be common; the algebraic structures on
which the different hierarchy types are based on should be
extended to topological ones; the different simulation entities
should be symbolic, having attributes as: type, domain, function.
A topology on the space of symbolic objects permits grouping
items with common properties in classes. A dynamically object-
oriented internal representation results, that can be adapted to the
different hierarchy types. Topological concepts, as neighborhood
and closure, can be applied in verification and optimization, for
objects or classes as well.

Knowledge hierarchy is not based on a form of simplifying
abstraction, as are the other hierarchy types; it explicitly
represents metaknowledge (knowledge about knowledge), based
on a reflexive abstraction form, that links (abstract) objects to
recursive functions defined for these objects. Interlevel relations
can be interpreted as planning (top-down) and learning (bottom-
up). A continuous model or a better approximation of continuity

by is needed to have the necessary conditions for conscience,
what, together with adaptability, is necessary for intelligence.

Learning derives a formal structure on the upper level (e.g., a
static structure), from experiences on the lower level (procedures
executed using resources that are not present at the upper level,
e.g., time). It has two complementary aspects: induction -
extensive knowledge at the lower level is transformed into
intensive knowledge at the upper level, by non-reflexive
abstraction (equivalence, isolation, emphasis, stationary
approximation, idealization) and deduction - intralevel concept
production (conditioning, association, stress, imitation).

Planning transforms declarative knowledge (formal, but limited)
in partially procedural knowledge (unlimited, but implying a
context with resources that are not formalized at the upper level;
the main resource is time). Artificial intelligence studies planning
as reasoning about actions - elements of a lower level, generally
represented by states (instances of upper level functions in the
presence of a context) and operations (determining state
transitions). A plan is a non-commutative system of declarative
knowledge; extreme cases: commutative rule set, sequential
procedure.

Human intelligence uses a reflexive, associative and prospective
memory. Part of it is fast and volatile, performing interpreting
operations; an other part is slow and persistent, storing the
interpretation results (long-term memory). The volatile part is
partly conscious (short-term memory), partly subliminal (work
memory). Long-term knowledge is accessed through association
to linguistic entities, transferred to the work memory, where
interpretative operations, using their initial cognitive context,
determine the coherence of the initial statement. A coherent
interpretation causes surpassing the threshold of the
consciousness; this calls for adding the statement to the short-
term memory, then processing an automatic acquisition as well as
a conscious treatment. Using this human architecture in
simulation, we get closer to conscious simulation, thus extending
adaptable to intelligent simulation, and to simulate intelligence.
Sense is not just a composition of lexical entities any more, but
corresponds to a contextual effect that can be modeled as a state
transition of the system that recognizes the context-dependent
language (linear-bounded-memory automaton) (Brecht et al.
1995). Based on knowledge accessibility of a subliminal level, a
competitive (parallel) self-tuning models the semantic selection
in the context. The state of the knowledge context acts as
hypothesis set that gives priorities to the most coherent
interpretations.

Hierarchical co-simulation
Intelligent systems call for hierarchical co-simulation of its
hardware/ software parts, in the context of a unified
representation of design and verification. Different hierarchy
types structure the knowledge representation as well as the
simulator itself: abstraction levels, block decomposition, concept
hierarchies, symbolization degree, metaknowledge. In our
opinion, a systematic hierarchical approach should follow next
directions (Niculiu et al. 2000):

• object-oriented paradigm, which permits representing all
hierarchy types, leading to compact, non-redundant, easy to
modify models, for systems as well as processes, sequential
or parallel;

• representation-inference dichotomy, that characterizes
knowledge-based methods, enabling reflexive abstraction,
thus, producing new knowledge starting with problem
specification, following solving strategies, structured by
approach principles and hierarchy types;

• unifying the simulation methods for the software/ hardware
parts, combining complementary directions by object-
orientation;

• formalizing representations in constructive mathematics
style, advancing from correct specification to correct
representation and, further, to correct simulation;

• multi-hierarchical simulation procedures expressed in an
object-oriented knowledge-based framework, allowing
recurrence for different hierarchy types.

Conclusions
We created a theoretical kernel for systems self-organizing by
formal hierarchical descriptions. Unified representation for
constructive and comprehensive activities, separated from the
general methods of multi-hierarchical operation gives a new
perspective on simulation. This permits further progress to
simulated intelligence. We intend to develop an integrated
programmable adaptable system for hardware/ software co-
simulation. Further conclusions of this work, guiding our future
research, are:
• Simulation is algorithmic theory.
• Simulated intelligence needs a hierarchy types theory.
• Knowledge hierarchies demand for an extended concept of

algorithm, i.e., extending computability.

References
Brecht, W. 1995. Theoretische Informatik . Vieweg Verlag
Braunschweig, Germany.

Kasch, F. and B. Pareigis1995. Theoretische Informatik . Fischer
Verlag München, Germany.

Niculiu, T.; C. Aktouf; S. Cotofana,. 2000. "Hierarchical
Interfaces for Hardware/ Software Systems". in Proceedings of
the European Simulation Multiconference (Ghent, Belgium, May
23-26)..SCS Europe, Ghent Belgium , 647-655.

Turner, R. 1991. Constructive Foundations for Functional
Languages. McGraw Hill, New York, NJ.

Zeigler B. et al., 2000. Theory of Modeling and Simulation,
Academic Press, San Diego, CA.

