
Code Positioning for VLIW Architectures

Andrea G.M. Cilio and Henk Corporaal

Delft University of Technology
Computer Architecture and Digital Techniques Dept.

Mekelweg 4, 2628CD Delft, The Netherlands
{A.Cilio,H.Corporaal}@et.tudelft.nl

Abstract. Several studies have considered reducing instruction cache misses and
branch penalty stall cycles by means of various forms of code placement. Most
proposed approaches rearrange procedures or basic blocks in order to speed up
execution on sequential architectures with branch prediction. Moreover, most
works focus mainly on instruction cache performance and disregard execution
cycles. To the best of our knowledge, no work has specifically addressed stati-
cally scheduled ILP machines like VLIWs, with control-transfer delay slots.
We propose a new code positioning algorithm especially designed for VLIW-style
architectures, which allows to trade off tighter schedule for program locality. Our
measurements indicate that code positioning, as a result of tighter program sched-
ule and removed unconditional jumps, can significantly reduce the number of ex-
ecution cycles, by up to 21%, while improving program locality and instruction
cache performance.

1 Introduction

Several trends of today’s architectures contribute to make the instruction memory sys-
tem a performance bottleneck. Reduced instruction set architectures have almost dou-
bled [1] the instruction fetch bandwidth requirements. (Instruction-level parallel ma-
chines like VLIWs and superscalars further increase the required bandwidth.) The gap
between memory and processor speed has incremented the memory cycle latency and
consequently the cache miss penalty. Finally, deep pipelines and high ILP levels have in-
creased the penalty which a processor can incur when a control transfer instruction is ex-
ecuted. These trends render several compile-time optimizations, like compile-directed
prefetching of code and data, loop transformations for data caches, and code position-
ing critical for achieving optimal performance. This paper addresses code layout, or
positioning for VLIW-style architectures. By positioning the code blocks adequately,
the following improvements can be obtained:

1. More effective use of the instruction cache.The spatial locality of instruction cache
accesses can be increased, while reducing the number of conflict misses, thereby
improving cache utilization [2][3][4].

2. Reduction of branch penalty overhead.For architectures with branch prediction
basic blocks can be arranged so as to reduce the branch penalty [5][6][7].

3. Reduction of unconditional branches.The basic blocks can be rearranged so as to
eliminate frequently executed unconditional jumps [5][6].

B. Hertzberger et al. (Eds.): HPCN Europe 2001, LNCS 2110, pp. 332–343, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Code Positioning for VLIW Architectures 333

In contrast to architectures with branch prediction, some recent VLIWs machines,
like Trimedia TM1000 [8] and the TI C62x family [9] expose the branch penalty to
the compiler by introducing several branch delay slots. One of the goals of code posi-
tioning for these architectures is then to maximize the number of useful operations that
can be imported into delay slots from other basic blocks while minimizing the number
of frequently executed delay slots that cannot be sufficiently filled. Application-specific
architectures may not even have an instruction cache: the whole program is downloaded
to a local, fast-access instruction memory before starting execution. Clearly, for such
machines the locality of the program code is irrelevant. This gives a degree of free-
dom in the selection of the branch direction, which can be exploited for reducing the
execution cycle count.

These considerations suggest that the cost model and the goals of code positioning
for a statically scheduled, VLIW-style machine with control transfer delay slots may
differ from those found by previous works. The purpose of this paper is to explore
alternatives to the existing code positioning algorithms specifically suited for this class
of machines (with different instruction cache configurations), and to investigate the
effects on the program schedule.

This paper is organized into 5 sections. Section 2 reviews previous work on code
positioning. Section 3 presents our code positioning algorithm, which is evaluated on a
group of benchmarks in Section 4. Section 5 summarizes the results.

2 Related Work

Code positioning can be applied at various levels of granularity. Early work in this
direction focused on reducing page faults of virtual memory machines by positioning
memory pages. Later, as the instruction cache began to play a critical role in the overall
performance, the attention shifted towards finer levels of granularity, namely single
procedures, segments of procedures and single basic blocks. Most of the techniques
mentioned below, as ours, base their algorithms on profiling information gathered by
previous program executions using representative input data.

In [3] Hwu et al.present a set of compiler techniques that improve instruction cache
performance; among these are Function layout(i.e., basic block positioning) and Global
layout, which tries to arrange whole procedures in a sequential order that minimizes
conflict misses. McFarling [10], who also addresses both levels of granularity, proposes
a code positioning algorithm that minimizes conflict misses; he also proposes to avoid
caching instructions that are not frequently executed. Pettis and Hansen [5] present a
refined version of Hwu’s algorithm and evaluate also the reduction of branch penalty
cycles and executed instructions. Gloy and others [4] build on the work of Pettis by tak-
ing into account the temporalordering of executed procedures. Their work is restricted
to procedure placement (i.e., global layout). Mendlson et al. [2] consider reducing of
cache misses due to conflicting blocks in a loop. Their approach uses the concept of
abstract cachesto place a set of blocks of the same loop in a conflict-free manner.
Controlled code duplication is used when multiple uses of the same blocks in different
loops would conflict with other blocks in the respective loop. Differently from other
works, this approach is directed by a static cost model and does not use program profil-

334 Andrea G.M. Cilio and Henk Corporaal

(a)

0

0

1000B

A

C

(c)

B

C

A

(b)

A

B

C

Fig. 1. Example of Code Placement. The numbers next to the edges represent execution
counts obtained from profiling.

ing. Calder and Grunwald [6] exclusively address branch cost reduction. This restricted
form of the code positioning problem, termed branch alignment, does not consider pro-
gram locality. The authors propose improved models of the branch costs that expose
the branch prediction schemes of the underlying machine microarchitecture. Young et
al. [7] modeled the branch alignment optimization problem as a Directed Traveling
Salesman Problem (DTS) and attained near-optimal speedup.

All these works evaluate sequential architectures, as opposed to explicitly pro-
grammed ILP machines. Furthermore, all these works have mainly been aimed at re-
ducing the instruction cache misses or the branch penalty. We will show that for VLIW
architectures with branch delay slots code positioning has a significant impact on the
program schedule and the execution cycle count.

3 Code Positioning Algorithm

Traditional compilers generate code in which segments rarely executed during typical
runs are interspersed with frequently used parts. Often, infrequent code is executed to
handle exceptional situations. See for example block B in the control flow graph (CFG)
of Fig.1(a). A traditional compiler would place this CFG as shown in Fig.1(b), thus
forcing the processor to take a branch every time block A is entered. Figure 1(c) shows
a better code placement of the same CFG. In this case, the branch will never be taken,
and the control flow will fall through to block C. Even in architectures (like VLIWs)
for which the branch penalty is identical in both paths, the second layout is preferable,
because it increases the probability that blocks A and C end up in the same cache line.

We consider the problem of code positioning in the context of explicitly programmed
ILP architectures of the VLIW type in which control transfer instructions have archi-
tecturally visible delay slots. Delay slots are an architectural feature to hide the penalty
of control transfer instructions. The scheduler tries to fill the delay slots with operations
always useful, which may logically precede the control transfer or may belong to basic
blocks that are dominated by it. In machines with jump delay slots the scope and the
algorithm of the instruction scheduler interact with code positioning and affect its effec-

Code Positioning for VLIW Architectures 335

jump

(a) (b) (c)

jump

op op
op op

op
op

op

op op
op

op
op
op

op op
op

op
op
op

op op

Fig. 2. Effect of adding a jump to a basic block: (a) original, partially scheduled code;
(b) jump added with zero cost; (c) jump added with cost proportional to L = 2.

tiveness. Our scheduler uses the regionscheduling scope [11]1 which allows to extract
parallelism from several paths and move operation across join points. The scheduler
first schedules the current basic block with a list-based algorithm and then tries to im-
port operations from successor basic blocks in order to fill the unused operation slots
and possibly reduce the overall path length to the successors.

We implemented code positioning as a pre-scheduling pass because of its simplic-
ity. A post-scheduling pass would require partial rescheduling. Though simpler, a pre-
scheduling pass leaves us with the difficulty of finding an accurate cost model to guide
positioning. Recent works suggest that to achieve better results in cache miss reduction,
a cost model based on cache and basic block size must be used [2][4]. However, this
is not possible in a VLIW instruction scheduler with global scope because the block
sizes depend on the program scheduling and are very difficult to estimate. Some blocks
can be enormously enlarged2, while other blocks may disappear altogether, absorbed
into predecessor blocks owing to operation importing. To make things worse, the exact
schedule itself depends on the code layout, as will be shown below. For these reasons,
we will use the proximity heuristic to minimize cache misses: blocks that are placed
closer have less chances of competing for the same cache line.

Cost Estimates.Differently than for architectures with branch prediction [6][7], the
exact cost of branches and unconditional jumps strongly depends on the schedule. For
example, the cost is very low if the scheduler succeeds in placing it in an empty oper-
ation slot L cycles before the end of the basic block, where L is the number of delay
cycles that follow a jump or a branch. See the example in figure 2(a–b); each tile repre-
sents an operation slot and “op” indicates that a slot is occupied.

The goal of our algorithm is to arrange the basic blocks of a procedure in an order
that minimizes the number of operations executed and maximizes the locality of the
instruction fetch. This objective can be reformulated as the problem of deciding for
each edge e = a → b whether block b must be the sequential successor of block a.

1 Regions, which correspond to loop bodies, are the most general scheduling scope, in the sense
that traces, superblocks and trees are also regions. Our schedule supports speculation and
guarding, therefore can achieve an effect equivalent to hyperblock if-conversion.

2 This can be due, e.g., to the presence of dependencies from long-latency operations, or to the
fact that a block is a duplication point for operations imported up along another path.

336 Andrea G.M. Cilio and Henk Corporaal

b

a
eie ej je’

bi bj

Fig. 3. Example of Control Flow Used to Determine the Cost Model.

This decision is guided by a function which estimates the cost of placing b immediately
below a.

Definitions. In order to describe the algorithm, the following definitions are given:

1. CFG(B, E, s) is a directed cyclic graph representing a procedure;
2. nodes b ∈ B are the basic blocks of the procedure;
3. directed edges bi → bj ∈ E (bi, bj ∈ B) are the control flow edges from a source

block to a destination block;
4. let b ∈ B, then pred(b) = {bi : ∃bi → b ∈ E}, succ(b) = {bi : ∃b → bi ∈ E};
5. ∃!s ∈ B : pred(s) = ∅; i.e. there is one and only one block (the entry point of the

procedure) that does not have predecessors;
6. to each edge e ∈ E is attached a weight fe that gives the execution count obtained

from the profiling.

We will begin with a cost model that considers only the execution cycles and ignores
locality. Let us consider an edge e = a → b of an unconditional jump, as shown in fig. 3.
If we knew the exact effect on scheduling of making b the sequential successor of a,
we would be able to compute the cost of this decision. Given the complexity of our
operation-based, global list scheduler [11], it is not possible to predetermine the effect
of reordering a block without backtracking. We therefore resort to a cost estimate.

Let Eu ∪ Ec ⊂ E be the set of incoming edges of b; Eu is the set unconditional
edges, while Ec is the set of edges which come from a basic block terminating with a
conditional branch; fe is the frequency of execution of the control flow edge e. As a
first approximation, we consider only the local effects of placing b in the fall-through
path of a, i.e., consider only the effects on the schedule of the predecessors of b and
ignore the other basic blocks. The general formula of the local cost (estimated number
of additional cycles required) of taking b as sequential successor of a is then:

SeqCost(e) =
∑

ei∈Eu∪Ec

φ(ei) − φ(e). (1)

where φ(e) is the cycle penalty associated with an edge e when it cannot be selected
as fall-through path. The cycle penalty depends on the characteristics of the source and
destination blocks of the edge e. For an unconditional edge φ(e) = Lf e · cu(e), where
L is the number of delay slots of a control flow operation and cu(e) depends on how
early the scheduler can place the jump operation of e (compare figure 2(b) and 2(c)).
For a conditional branch edge the value of φ(e) is more problematic, because it depends

Code Positioning for VLIW Architectures 337

on the placement of the alternative edge:

φ(e) =
{

0, if the other branch edge e ′ is sequential
(L + 1) · min{fe, fe′}, if neither branch directions is fall-through.

(2)

if either branch direction can be selected as fall-trough path then no unconditional jump
needs to be inserted. Equation (2) takes the minimum frequency between the two branch
edges because if a basic block with an unconditional jump must be inserted, it is always
possible to assign the less frequent direction to this jump. Note that it is possible to have
branches for which neither direction is fall-through. As noted in [6], in some cases such
branch alignment can be preferable.

The expressions for SeqCost(·) and φ(·) are local approximations: since the deci-
sions taken in other blocks of the procedure affects the scheduling globally, φ(·) de-
pends on the ordering of all blocks of the scheduling scope. Given a basic block b,
its best sequential predecessor is indicated by the edge e ∈ pred(b) that minimizes
SeqCost(·). If we assume that the sum terms in (1) are not affected by the positioning,
then the minimization becomes a problem of maximizing the only term that is different
in each expression. For unconditional edges the best fall-through path is then the most
frequent path, as in the greedy algorithms of the literature [5][6]. This path is also the
best choice from the point of view of program locality, given our proximity heuristic.
For branch edges φ(·) completely depends on the placement of the alternative edge. On
the one hand, we would like to postpone the decision for less critical branches until we
know the placement of one of the two edges and we can use (2) to estimate the local
costs. On the other hand, a critical branch edge should be decided first.

This problem motivated the introduction of a priority functionto determine the order
in which edges are selected for placement. Our priority (applied to blocks) ensures that
outgoing edges of more critical blocks are selected first, thereby postponing the decision
for less critical branch edges until we might have a better estimate for φ(·). As priority,
we take the frequency for the blocks with unique outgoing edge, and the following
function for the blocks with outgoing branch edges e, e ′:

prio(b) = min{fe, fe′}. (3)

For the cost of a branch edge when the placement of the alternative edge is unknown we
take the following formula, in which cb ∈ [0, 1] reflects the probability that the branch
needs an additional unconditional jump: φ(e) = cb(L + 1)min{fe, fe′}.

These cost and priority functions are not adequate if program locality is also to be
taken into account. If only the program locality is relevant, a more suitable priority is
simply based on the edge execution frequency, therefore a block terminating in a branch
has the same priority of its most frequent outgoing edge:

prio(b) = max{fe, fe′}. (4)

Similarly, the cost φ(·) for a branch edge uniquely depends on its frequency, like for
unconditional edges: φ(e) = Lfe.

338 Andrea G.M. Cilio and Henk Corporaal

3.1 Algorithm Description

Our algorithm can be divided into two parts; the first part sorts the basic blocks for later
selection according to a priority, the second part selects the basic blocks and places
them according to the local cost estimate described above.

First, a priority is assigned to every basic block of a procedure. For blocks with a
unique successor, the priority is proportional to the execution count of the jump. Blocks
which end with a conditional branch are assigned the following priority, which com-
bines (3) and (4):

prio(b) = α · min{fe, f
′
e} + (1 − α) · max{fe, f

′
e}. (5)

The parameter α ∈ [0, 1] allows to balance execution count reduction (α = 1) against
enhancement of program locality (α = 0). The latter choice results in the same selec-
tion order of the greedy algorithms found in the literature.

Algorithm 1 places the basic blocks of CFG by assigning a label to every edge
e ∈ E. Initially, all edges are labelled as undefined. An edge e = b i → bj , is labelled
SEQ if bj is the sequential successor of bi; vice versa, label(e) = NSEQ if bj does
not follow bi. The actual placement is performed after all edges have been assigned
a label and merely involves moving pointers to list elements around; this pass inserts
any unconditional jumps and basic blocks necessary to ensure that the code executes
correctly. The function BestCandidate estimates the sequential cost with (1) and returns
the destination block with smaller cost. The estimation of φ(e) for a branch edge e
combines execution cycle reduction and locality enhancement objectives:

φ(e) =
{

0, if only the other edge, e′ is sequential,
cb(1 − α)Lfe + cbα(L + 1) · min{fe, fe′}, otherwise.

(6)

Note that at this point φ(e) may be exactly determined for some branch edges because
their branch has been already aligned. When both branch directions are known not to
be fall-trough we take cb = 1.

Like the greedy algorithm proposed by Pettis and Hansen [5], this algorithm is able
to restructure the placement of loop basic blocks so that a loop header appears in the
middle of the loop. In addition, this algorithm partially solves the problem indicated in
[6], whereby a conditional edge is given precedence over an unconditional edge with
the same frequency, without need to exhaustively search several possible orders, simply
because unconditional paths can be given priority over conditional edges.

A few additional, practical considerations are in order. For blocks that contain indi-
rect (computed) jumps the positioning of the successors is relevant only for the locality.
All successor edges are marked NSEQ before starting LayoutBasicBlocks. This im-
proves the placement of other blocks with branches. We must check for cyclic chains
of edges marked SEQ. If such a chain would be formed by assigning a SEQ label, the
edge is assigned label NSEQ (and the cycle is broken).

4 Evaluation

Our placement algorithm has been evaluated in a series of experiments. This section
first describes the method used to perform our measurements and the target machines

Code Positioning for VLIW Architectures 339

Algorithm 1 LayoutBasicBlocks (CFG).
AssignLabels(CFG)
for all b ∈ B, sorted by priority(·) do

if |succ(b)| = 1 ∧ ¬label((b, b1)) = NSEQ then
label((b, b1)) = SEQ, label((b′, b1)) = NSEQ ∀b′ ∈ pred(b1), b

′ 	= b
else if |succ(b)| = 2 then

if label((b, b1)) = NSEQ ∧ label((b, b2)) = NSEQ then
// Nothing to do

else if label((b, b1)) = NSEQ then
label((b, b2)) = SEQ, label((b′, b2)) = NSEQ ∀b′ ∈ pred(b2), b

′ 	= b
else if label((b, b2)) = NSEQ then

label((b, b1)) = SEQ, label((b′, b1)) = NSEQ ∀b′ ∈ pred(b1), b
′ 	= b

else
bbest = BestCandidate(b1, b2)
label((b, bbest)) = SEQ, label((b, bworst)) = NSEQ
label((b′, bbest)) = NSEQ ∀b′ ∈ pred(bbest), b

′ 	= b
end if

else
label((b, b′)) = NSEQ ∀b′ ∈ succ(b)

end if
end for

used. Then the benchmark programs are briefly presented. The rest of this section is
dedicated to the results of the simulated execution and their analysis. Also, we compared
our algorithm with an improved version of Pettis and Hansen’s [5] which, as proposed
in [6], uses a specific cost model for our architecture.

4.1 Experimental Setup

To perform our measurements we used a cycle-accurate simulator for transport-triggered
architectures (TTAs)[11]. TTAs are a class of statically scheduled architectures for
which data transports and bypasses of the general-purpose registers are explicitly pro-
grammed. For the purpose of this paper, we can consider our test architecture to be
comparable to a VLIW. The simulator is part of a software design system that allows
to schedule and simulate the execution of programs for a range of machines. The cache
performance has been measured by using the cheetahcache simulator [12], which can
model the behavior of different cache configurations. In this way we are able to evaluate
the effect of code placement on the cache performance.

We performed our evaluations on DSP applications and on the Unix programs com-
pressand cjpeg, the standard JPEG compressor. The DSP programs, taken from [13],
are subdivided into audio applications (arfreq, g722main, music), and image process-
ing applications (edge, expand, smooth). These benchmarks were compiled with gcc
(ported to our architecture) into sequential code and then scheduled. We profiled and
simulated complete programs, including library code.

The simulations have been performed on two different machines, one “low-end”
(M1) and one “high-end” (M2). Table 1 summarizes their characteristics. Both ma-

340 Andrea G.M. Cilio and Henk Corporaal

Table 1. Simulated Target Machines. “Long immediates” is the number of long imme-
diates that can be specified each cycle.

quantity quantity
resource M1 M2 unit latency M1 M2
transport busses 3 8 ld/st unit 2 2 3
long immediates 1 2 IALU 1 2 4
integer registers 24 64 multiply 3 1 1
FP registers 16 48 divide 10 1 1
boolean registers 2 4 FPU 3 1 1

chines have 2 cycles of delay for control transfer operations. The transport busses are
used for the data traffic between functional units or registers. Two transport busses
roughly deliver the same instruction bandwidth of one conventional VLIW operation
slot. Unoccupied transport slots contain a no-transport code.

4.2 Experimental Results

Table 2 summarizes the effect of code positioning on the program schedule. The cy-
cle counts do not include the stall cycles due to instruction cache miss. Data memory
accesses are assumed to always hit the cache. Each row of the tables refers to a differ-
ent benchmark. For each machine, the left column below label cyclesshows the cycles
spent to execute the benchmark without code positioning optimization (i.e., using the
code layout generated by gcc); the right column gives the cycle count reduction ob-
tained with code positioning. This reduction is the performance improvement to be
expected on a machine in which the fetch subsystem never stalls the execution engine.
The columns below sizeshow the static code size (in instruction words) of each bench-
mark before code positioning and the size reduction achieved by code positioning. The
next two columns show the percentage of control transfer operations (CT) executed in
the original and in the optimized program. Function calls are not influenced by this op-
timization and are not included in the counts (their percentage is very low). Although
the extent of the speedup varies largely, all benchmarks improve. The programs show-
ing best speedup are compress, smoothand expand; this is partly explained by the high
frequency of control flow transfers (16–24% of operations are control transfers).

Our algorithm tries to reduce conflict misses and exploit cache line locality in the
instruction cache by ordering frequently executed paths sequentially. This results in
a longer sequence of instructions executed between two taken control transfer opera-
tions. To evaluate the instruction cache performance, we measured the miss reduction
of a number of direct-mapped caches. We simulated caches with 16 instruction-word
lines, with sizes ranging from 128 to 8192 instruction words. 3 Figure 4 shows the cache
miss count in the original and in the optimized code for a selection of benchmarks. All

3 Our binary encoder produces instruction words of 12 and 32 bytes for M1 and M2 machines,
respectively. Much denser encodings are easily attainable, but we did not investigate this as-
pect, since it is marginal to our discussion.

Code Positioning for VLIW Architectures 341

Table 2. Effect of Code Placement on the Program Schedule.

machine ‘M1’ machine ‘M2’
benchmark exec. cycles size CT % exec. cycles size CT %

orig. red.% orig. red.% orig. opt. orig. red.% orig. red.% orig. opt.
compress 22.3M 16.1 6015 7.2 20.4 13.1 18.9M 21.3 5143 9.6 16.2 10.2
cjpeg 4.4M 3.7 13031 0.2 12.3 10.9 3.2M 4.0 9838 1.0 12.1 10.9
arfreq 11.5M 1.8 1541 7.7 8.3 7.9 8.3M 2.4 1352 8.4 7.5 7.1
g722main 19.1M 11.2 7353 8.5 11.9 8.1 12.1M 20.1 5804 10.3 10.1 7.1
music 37.6M 3.4 6494 -0.3 10.2 9.6 24.8M 8.7 5648 -0.6 9.1 8.0
edge 1.0M 11.8 8941 19.3 19.6 16.0 0.8M 17.2 8155 22.5 15.9 12.1
expand 0.6M 16.5 6766 4.5 24.7 19.7 0.5M 21.2 6005 5.9 23.6 18.1
smooth 0.4M 12.5 6049 11.1 20.5 16.7 0.4M 19.8 5377 13.6 17.1 12.6
average 12.1M 9.6 7023 7.3 16.0 12.8 8.6M 14.3 5915 8.8 13.9 10.8

these programs have a rather small footprint (all fit in a 128KB cache). The miss rate
reduction is of course relevant only for caches where conflict and capacity misses oc-
cur. For compress, for example, the reduction is above 50% for all relevant cache sizes.
Other benchmarks, like cjpeg, show more modest improvement. The case of arfreq is
interesting; this benchmark shows a slight miss reduction increase for certain cache
sizes. This is due to the presence of two very critical loops in different procedures. De-
pending on the placement of the two procedures, these loops may or may not generate a
large number of conflict and capacity cache misses. Such problem can be substantially
alleviated by procedure positioning, as shown in [2][4].

The overall execution time is computed by combining the execution cycle count
with the stall cycles due to instruction cache miss. Table 3 summarizes the results ob-
tained by simulating the benchmarks on target machine M2 with a cache size of 128
and 1024 instruction words, (4KB and 32KB, respectively). For each cache, the column
cyclesshows the total number of cycles (including stalls). Next columns show the exe-
cution cycle speedup and the overall cycle count reduction including stalls. The columns
under stallsshow the fraction of stall cycles in the original and the optimized program.
The results show that the speedup obtained is highly dependent on the cache size and
so is the effect of the two optimizations: program locality and execution cycle count.
For large caches, e.g., execution cycle reduction dominates the achieved speedups.

Alongside our code placement algorithm we implemented and tested the block
placement algorithm described by Pettis and Hansen. Our algorithm always yields lower
execution cycle counts, although the difference is very small. On average, we measured
14.3–13.5% execution cycle reduction (depending on the value of α) versus 13.2%. The
cache performance is also very similar. Pettis and Hansen’s algorithm performs slightly
better when α = 1 is chosen for our algorithm and the cache is small. For low values of
α our algorithm always performs better.

We also evaluated the impact of the heuristic parameter α (described in section 3.1).
For lack of space, the discussion of the results are omitted. In summary, while most
programs, as we anticipated, showed a trade-off between execution cycle count and
program locality, the entity of such differences were minimal.

342 Andrea G.M. Cilio and Henk Corporaal

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256 512

Cache Size [Kbytes]

Total Misses (x 1e+06)

g722main.M1 orig.
g722main.M1 optm.

g722main.M2 orig.
g722main.M2 optm.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32 64 128 256 512

Cache Size [Kbytes]

Total Misses (x 1e+06)

compress.M1 orig.
compress.M1 optm.

compress.M2 orig.
compress.M2 optm.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 4 8 16 32 64 128 256 512

Cache Size [Kbytes]

Total Misses (x 1e+06)

cjpeg.M1 orig.
cjpeg.M1 optm.
cjpeg.M2 orig.

cjpeg.M2 optm.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256 512

Cache Size [Kbytes]

Total Misses (x 1e+06)

arfreq.M1 orig.
arfreq.M1 optm.

arfreq.M2 orig.
arfreq.M2 optm.

Fig. 4. Miss Reduction with Various Instruction Caches for g722main, compress, arfreq
and cjpeg.

5 Conclusions

Code placement is an important optimization technique, which has a sizeable effect on
horizontally scheduled ILP machines with jump delay slots. In this paper we showed
that a placement algorithm can be tuned for VLIW-type architectures by placing higher
priority to reducing the unconditional jumps executed. Reducing the number of critical
jump delay slots has a positive effect on the program schedule. The measurements con-
firm that the simple reduction in execution cycle count (up to 21%) is a significant factor
of the overall speedup and becomes dominant when the cache size is large. The algo-
rithm by Pettis and Hansen achieves comparable results, indicating that the heuristic
parameters have weak influence on the speedup.

References

1. J. W. Davidson and R. A. Vaughan. The effect of instruction set complexity on program size
and memory performance. In ASPLOS-II, pages 60–64, Palo Alto, CA, 1987.

2. Abraham Mendlson, Shlomit S. Pinter, and Ruth Shtokhamer. Compile time instruction
cache optimizations. In Compiler Construction, pages 404–418, April 1994.

3. W. W. Hwu and P. P. Chang. Achieving high instruction cache performance with an optimiz-
ing compiler. In ISCA-16, pages 242–251, Jerusalem, Israel, May 1989.

Code Positioning for VLIW Architectures 343

Table 3. Overall Speedup Obtained with Two Different Cache Sizes, Target Machine
’M2’.

benchmark 128-word cache 1024-word cache
cycles cycle red. % stalls % cycles cycle red. % stalls %

orig. exec. total orig. optm. orig. exec. total orig. optm.
compress 86.0M 21.3 55.6 78.03 61.07 18.9M 21.3 21.3 0.16 0.15
cjpeg 9.6M 4.0 34.3 66.69 51.36 3.3M 4.0 4.4 3.63 3.25
arfreq 14.3M 2.4 36.4 41.89 10.90 8.3M 2.4 2.4 0.01 0.01
g722main 43.6M 20.1 40.6 72.26 62.67 15.5M 20.1 37.6 21.99 0.14
music 108.5M 8.7 52.1 77.14 56.48 25.1M 8.7 9.0 1.16 0.86
edge 3.2M 17.2 37.9 74.50 66.00 1.3M 17.2 43.6 34.33 3.66
expand 1.6M 21.2 47.4 65.63 48.53 0.7M 21.2 37.1 21.77 2.02
smooth 1.5M 19.8 41.5 74.97 65.68 0.5M 19.8 43.4 30.10 0.86
average 33.5M 14.3 43.2 68.9 52.8 9.2M 14.3 24.9 14.1 1.4

4. Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-ordering infor-
mation. ACM TOPLAS, 21(5):977–1027, September 1999.

5. Karl Pettis and Robert C. Hansen. Profile guided code positioning. In PLDI, pages 16–27,
White Plains, New York, June 1990.

6. Brad Calder and Dirk Grunwald. Reducing branch costs via branch alignment. In ASPLOS-
VI, pages 242–251, October 1994.

7. Cliff Young, David S. Johnson, David R. Karger, and Michael D. Smith. Near-optimal in-
traprocedural branch alignment. In PLDI, pages 183–193, June 1997.

8. Jan Hoogerbrugge. Instruction scheduling for trimedia. JILP, 1(1–2), 1999.
9. Texas Instrument Inc. TMS320C6000 Programmer’s Guide, 2000.

10. S. McFarling. Program optimization for instruction caches. In ASPLOS-III, pages 183–193,
May 1989.

11. Jan Hoogerbrugge. Code Generation for Transport Triggered Architectures. PhD thesis,
Technical University of Delft, February 1996.

12. Rabin Sugumar. Multi-Configuration Simulation Algorithms for the Evaluation of Computer
Architecute Designs. PhD thesis, University of Michigan, August 1993.

13. Paul M. Embree. C Algorithms for Real-Time DSP. Prentice Hall, 1995.

	Introduction
	Related Work
	Code Positioning Algorithm
	Algorithm Description

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusions

