
MULTI-HIERARCHICAL LEARNING-BASED COSIMULATION

TUDOR NICULIU
«Politehnica» University Bucuresti, Faculty of Electronics ft University of Technology

Splaiul Independentei 313, 77206 Bucuresti, Romania
tudor@messnet.pub.ro

SORIN COTOFANA
Delft University of Technology, EE Faculty

Mekelweg 4, 2600 GA Delft, The Netherlands
S.D.Cotofana@dutepp0.et.tudelft.nl

ABSTRACT

Intelligence supposes, at least, consciousness and
adaptability. Consciousness simulation demands
transcending the present limits of computability, by an
intensive as well as extensive research effort to integrate
essential physical and mathematical knowledge guided by
philosophical goals. Separating the different hierarchy
types reveals their comprehensive constructive importance
based on structural approach, symbolic meaning, object-
oriented representation, their combination in looking for
self-organization, self-control and conscience. Multiple,
coexistent and interdependent hierarchies structure the
universe of models for complex systems, e.g., hardware/
software ones. They belong to different hierarchy types,
defined by abstraction levels, block structures, classes,
symbolization and knowledge abstractions. Abstraction
and hierarchy are semantic and syntactical aspects of a
unique fundamental concept, the most powerful tool in
systematic knowledge; hierarchy results by formalizing
abstraction; only, hierarchies are still constraint by
computability, while abstraction assists beyond learning
also consciousness and intuition. Hierarchies of different
types correspond to the kind of abstraction they reflect.
The gap that appears between reflexive abstraction and
hierarchical computation is an important challenge for the
mathematical and scientific community.

KEYWORDS: Hierarchical Intelligent Simulation,
Hierarchy Types, Cosimulation.

INTRODUCTION

Artificial Intelligence means simulation of intelligence,
either behavioral (functional or procedural) or structural
(e.g., neural, genetic, cellular). The first way should not be
neglected, although the second one is actually more
efficient for bottom-up learning. Only hierarchical
simulation, assisted mathematically to build theories and
formalisms, can lead to understand the results, so to
manage them truly. Hierarchical approach should
concentrate on knowledge hierarchies, to enable

metaknowledge simulation, for the system's adaptability,
but also for looking for the way to simulate consciousness
as good as possible. We present the different hierarchy
types, respective formalization ideas and examples,
emphasizing the knowledge hierarchy types. The last
section presents a hierarchical schema for hardware/
software cosimulation. Conclusions and important
references end the paper.

SIMULATED INTELLIGENCE

Intelligence supposes, at least, consciousness and
adaptability. Consciousness simulation demands
transcending the present limits of computability, by an
intensive as well as extensive research effort to integrate
essential physical and mathematical knowledge guided by
philosophical goals. Separating the different hierarchy
types reveals their comprehensive constructive importance
based on structural approach, symbolic meaning, object-
oriented representation, their combination in looking for
self-organization, self-control and conscience. Knowledge
and construction hierarchies can cooperate to integrate
design and verification into simulation; object-oriented
concepts can be symbolized to handle data and operations
formally; structural representation of behavior manages its
realization. Hierarchy types open, or at least show, the way
to simulate intelligence as adaptable consciousness,
offering a third alternative way to look for extending the
limits of computability; this should be integrated with the
first two: heuristic - risking correctness for completeness,
and scientific - imitating biochemical structures or looking
for a quantum revolution; the three choices remind of
Thomas Mann's Zauberberg, Johann Wofgang von
Goethe's Faust and Hermann Hesse's Glasperlenspiel.

HIERARCHY TYPES

Generally, multiple, coexistent and interdependent
hierarchies structure the universe of models for complex
systems, e.g., hardware/ software ones. They belong to
different hierarchy types, defined by abstraction levels,
block structures, classes, symbolization and knowledge

abstractions. Abstraction and hierarchy are semantic and
syntactical aspects of a unique fundamental concept, the
most powerful tool in systematic knowledge; hierarchy
results by formalizing abstraction. Hierarchies of different
types correspond to the kind of abstraction they reflect
(abstraction goal is shown between brackets):

Class hierarchy (↑concepts) ↔ virtual framework to
represent any kind of hierarchy, based on form-contents
dichotomy (class-instance), modularity, inheritance,
polymorphism; an object is defined by identity, state and
behavior, being instance of a class, that defines its
structure and behavior (internal - completing the structure,
external - for communication); to exist behaviorally, the
object hides its structure, thus integrating in a world of
adaptable objects that intercommunicate, developing
towards conscious and intelligent objects, i.e. subjects.

Symbolization hierarchy (↑mathematics) ↔ stepwise
formalism for all types, e.g., for hierarchy types.

Structure hierarchy (↑managing) ↔ stepwise managing
of all (other hierarchy) types on different levels by
recursive autonomous block decomposition, following the
principle "Divide et Impera et Intellige".

Construction hierarchy (↑simulation) ↔ design/
verification (= simulation) framework of autonomous levels
for different abstraction grades of description; time is
explicit at highest (behavioral) levels, being integrated in
the model, and exterior on lowest (structural) levels, being
implicit for the system’s activity; artificial intelligence
approaches try to configure the simulation hierarchies as
reciprocal to knowledge hierarchies.

Knowledge hierarchy (↑theories) ← reflexive abstraction
("in a deeper sense"); it aims that each level has
knowledge of its inferior levels, including itself; recurrence
of structures and operations enables approximate self-
knowledge (with improved precision on the higher levels
of knowledge hierarchies); a continuous model for
hierarchy levels, without loosing the hierarchy attributes,
would offer a better model for conscience and intelligence;
a possible interpretation of such hierarchies is: real time of
the bottom levels (primary knowledge/ behavior/ methods)
is managed at upper levels (concrete types/ strategies/
models) and abstracted on highest levels (abstract types/
theories/ techniques).

The formalization of hierarchy types is guided by their
relations and can be done using the theory of categories
[1]; constructive type theory permits formal specification
and formal verification by generating an object satisfying
the specification:
• knowledge ← structure, classes, symbolization

(abstraction, recurrence → reaction);

• construction ← structure, classes, symbolization
(recurrence, space ↔ time);

• classification ← existential abstract types
(syntax of construction/ knowledge);

• symbolization ← universal abstract types
(semantics of construction/ knowledge);

• structure ← comprehensive concrete
types (pragmatics of construction/ knowledge).

Understanding and construction have correspondent
hierarchy types: their syntax relies on classes, their
meaning on symbols, their use on modules.

 simbolization object-orientation

structure

knowledge
construction

 Figure 1: H - diagram

ABSTRACTION LEVELS

A net of abstraction levels, representing a unique object/
process, is defined by: ({Li}, {Ai}); the abstraction

relations {Ai} induce a partial ordering on the level set

{Li}. The behavior defined on a lower level includes the

behavior defined by an upper level. Abstraction represents
either specialization neglecting irrelevant information
(examples → prototypes), or passing from imprecise to
categorical models (reality → examples).

Qualitative simulation [2] operates on the prototype level,
built upon abstraction morphism (or on a collection of
independent example sets).

(D, rel-abs) - prototype domain, structured by rel-abs;
(E = D1 ×...×Dn, rel) - examples domain, rel-structured;

A: E → D (abstraction);
K: D → E (concretization);
compatibility: A ° K = IdD;

specialization: K ° A ≠ IdE;

X ⊂ E, independent set: rel defined by representatives;
A: E →D, morphism: transports the structure on E to D.

Figure 2: Qualitative Simulation

Qualitative simulation (qualSim) should be:
• complete, i.e., any real simulation can be represented

as K ° qualSim ° A;

• correct, i.e., for any qualSim, there is K so that
K ° qualSim ° A is a "real" simulation.

Uncertain simulation is based on a mathematical model for
the transmission of uncertainty when applying simulation
operations [3]: uncertainty propagation when composing
operations, hypothesis combination, operation correlation.
Statistical concepts model objective lack of information;
fuzzy concepts describe subjective lack of knowledge.

Composionality:
behavior ⇐ structure component behavior

Causality:
local behavior ⇐ classification (implicit description)

Stationarity:
behavior discretization ⇐ adequate symbolization

Functionality:
knowledge hierarchy levels:

- function of the system
- procedural behavior of the system

Figure 3: Construction hierarchy relations to other types

BLOCK DECOMPOSITION

Structural partition is represented as a tree or a non-cyclic
directed graph; it is approached by the "Divide et Impera
et Intellige" principle:

template <class ProblemType, class SolutionType>
 class StructureHieararchy {

LIST <ProblemType> subproblems;
LIST <ProblemType> solutions;
BOOLEAN simple (<ProblemType>);
<SolutionType> solution (<ProblemType>);
LIST <ProblemType> decompose (

<ProblemType>);
<SolutionType> compose (LIST <SolutionType>);
LIST <SolutionType> add(SolutionType>);

 public:
<SolutionType> DivImpInt (

<ProblemType> problem) {
IF simple (problem)

RETURN (solution (problem));
subproblems ⇐ decompose (problem);
FOR EACH problem IN subproblems
 solutions ⇐ add (DivImpInt (problem));
RETURN (compose (solutions));
}

};

Figure 4: Divide et Impera et Intellige
CONCEPT HIERARCHY

The hierarchical principle applies to the approach (a
problem is solved as an effect of representing its domain

and some stimuli), as well as to the structure of knowledge
(it mediates the action of a paradigm on an environment).
Knowledge-based architecture, both at environment and
simulation component level, ensures flexibility of the
framework realization, by defining it precisely only in the
neighborhood of solved cases [4].

OBJ = interpretation (obj1, ..., objm);

(obj1, ..., objm) = implementation (obj'1, ..., obj'm');

OBJ - abstract object;
obj - hard/ soft object;
obj' - concrete object;

abstraction = interpretation o implementation:
behavioral (functional/ procedural)/ structural;

simulation-component = (abstraction,
implementation,
interpretation):

module - energy/ information processing,
connection - energy/ information transmission.

Figure 5: Object-oriented abstraction

SYMBOLIZATION DEGREE

Class-instance hierarchy can support symbolic operations
(λ-calculus, extended to cope with program termination,
i.e., partial functions) and evaluation [5]. A symbolic
expression is knowledge about an expression obtained by
evaluation of some symbols (metaknowledge). For linear
and weakly nonlinear systems, mathematics offers
symbolic methods, that directly determine the functional
behavior; their instantiation result in the correspondent
numerical methods. Relaxation methods result by
expanding symbolization hierarchy on the base level.

METAKNOWLEDGE

Knowledge is based on a morphism that maps the state-
space of the object-system onto the internal representation
of the simulator. An intelligent simulator can learn by
generating and validating models of the object-system [6].
Therefore: representation for design and verification
should be common; the algebraic structures on which the
different hierarchy types are based on should be extended
to topological structures; the different simulation entities
should be symbolic, having attributes as: type, domain,
function. A topology on the space of symbolic objects
permits grouping items with common properties in classes.
A dynamically object-oriented internal representation
results, that can be adapted to the different hierarchy
types. Topological concepts, as neighborhood and
closure, can be applied in verification and optimization, for
objects and classes as well.

Knowledge-based architecture separates representation
from reasoning. A system capable of reflexive abstraction
("intelligent") reasons controlled by the problem
specification and by solving strategies. These are derived
from a higher level of knowledge, representing principles
of approach, which are structured by an even higher level,
containing hierarchy types. An object-oriented simulation
framework permits the representation of different
knowledge levels, each having concept, symbol, structure
hierarchy. For representation, this principle offers the
advantage of open modeling. Models are described by the
user, following a general accepted paradigm (e.g., entity-
architecture decomposition) that ensures syntactic
correctness, leaving the meaning to be specified by user-
defined semantic functions that control the simulation. For
example, a module in an unfinished design can be
characterized by constraints regarding its interaction to
other modules; the constraints system is a model, open to
be interpreted, thus implemented, in different ways that
derive from adequacy criteria in a non-monotonic logic [7].

Explanation is a key concept for knowledge-based
systems. It can be expressed as proof in a deductive
system, whose axioms are the equations constraining
component models and input signals, theorems are
simulation results, inference rules represent logic &
domain-specific calculus. Using constructivism in logic,
e.g., intuitionistic predicate logic [8], behavior or structure
of the simulated system can be extracted from the proof.

Knowledge hierarchy is not based on simplifying
abstraction, as are the other hierarchy types; it explicitly
represents metaknowledge (knowledge about knowledge),
based on a reflexive abstraction form, that links (abstract)
objects to functions defined for these objects. Interlevel
relations can be interpreted as planning (top-down) and
learning (bottom-up).

Learning derives a formal structure on the upper level (e.g.,
a static structure), from experiences on the lower level
(procedures executed using resources that are not present
at the upper level, e.g., time). It has two complementary
aspects: 1) induction - extensive knowledge at the lower
level is transformed into intensive knowledge at the upper
level, using non-reflexive abstraction (equivalence,
isolation, emphasis, stationary approximation, idealization);
2) deduction - intralevel concept production (conditioning,
association, stress, imitation).

(Superior levels)

Structures
Principles

Concepts

Inferior level

Types
Strategies

Operations

Specification
Abstract plan

Correct plan

Complete/
optimal
plan

Figure 5bis: Knowledge hierarchy

Planning transforms declarative knowledge (formal, but
limited) in partially procedural knowledge (unlimited, but
implying a context with resources that are not formalized at
the upper level; the main resource is time). Artificial
intelligence studies planning as reasoning about actions;
actions are elements of a lower level, generally represented
by states (instances of upper level functions in the
presence of a context) and operations (determining state
transitions). The plan is a non-commutative system of
declarative knowledge; extreme cases are: commutative
rule set, sequential procedure.

Design

Verification

Test

Representation

Reasoning

Figure 6: Knowledge-based Simulation System

TYPE THEORIES FOR SIMULATION

 The constructive theory of intelligent simulation specifies
its syntax and axioms its semantics based on a knowledge
hierarchy: a bottom level consists in the logical base, the
upper level contains the operations, and the highest level
is a theory of types. Axiomatic semantics does not refer to
a particular implementation of the functions, offering a

mathematical theory of intelligent simulation, where the
design can be demonstrated correct regarding the
specification or the equivalence of two designs can be
shown. Reasoning about functions and types is performed
in a predicate calculus; the intuitionistic one sustains the
correct design by a constructive prove of the specification.
The theory of operations gives axioms for equality,
definition and application of functional operations.
Termination of programs/ activities can be formalized
extending general functions to partial ones. The λ-calculus
offers a formal framework for these aspects. Types in
simulation are important as theoretical guides and as
practical aids.

HIERARCHICAL CO-SIMULATION

Intelligent systems call for hierarchical co-simulation of its
hardware/ software [9], digital/ analog, thermal/ electrical
etc parts, in the context of a unified representation of
design and verification. Simulation (design/ verification)
should remain correct, with increasing complexity and
optimization requirements of the object-system. The
hierarchical principle, applied to knowledge and simulation,
(locally) bounds the complexity, by problem
decomposition, and assures (almost) correct-by-
construction designs and design-adapted verification; its
apparent lack of efficiency is due to nonhierarchical
optimization techniques.

The designed framework permits self-organizing, offering
at any level of abstraction of the simulation hierarchy:

description of the system in a convenient language,
e.g., C++ extended for parallelism by synchronization

constructs; automatic learning-based partition of the
description into hard/ soft; correct and complete
communication between heterogeneous parts and with the
exterior; simulation and validation of the whole system
during any design phase.

The simulation environment prepares a framework for
representing entities and relations of the system to be
simulated, as well as general knowledge about the
simulated universe. Objects are defined by properties
(static attributes & dynamic methods): behavioral
(response to stimuli received from the other objects);
structural (part of a set/ configuration built from other
objects); functional (formal properties).

If one of the imposed properties (design constraints),
regarding communication, correctness or testability, is
considered as not being fulfilled after applying a
technique, using a model and suitable methods for
measure and improvement, different strategies permit
altering one of the technique/ model/ method, to repeat the
process for the initial behavioral specification or the one
resulted from prior (insufficient) improvement. This calls
for an intelligent choice of the designer or the AI system
that assists/ automates the design. The methods are
recursive (iterative) to handle the different components in
the behavioral specification of the system. The process
continuation is controlled by measurement functions, so,
generally, these must be called for each call of the
improvement functions, but there are also methods
demanding for a global improvement based on a prior
measurement.

Symbolical

Object-oriented

observed behavior

required behavior abstract instance

concrete instance

class

consistency simulation

 hi-le simulation

completeness simulation

validation simulation

structural simulation

functional simulation

Structure

Figure 7: Hierarchical Co-Simulation Paradigm

 Man-machine dialog:

learning, specification, results

 Integrated design:
 Knowledge-based
 construction of the
 system structurie

 Model
 generator

 Knowledge base

 classes & obiects,

 relations, constraints,

 analysis interpretation,

 problem solving

Integrated verification for

 different types of integrated analysis

Figure 8: Behavioral Adaptable Design Framework

CONCLUSIONS

We studied hierarchy types, separately and in relation one
to another, especially:
• interlevel relationships, with qualitative theories and

uncertainty formalisms;
• “Divide et Impera et Intellige” (recursive approach) to

solve algebraic/ differential non/linear systems,
represented with sparse matrices, at different
structural levels;

• object-oriented methodology, reducing multiple
inheritance, due to coexistent hierarchies, by multiple
entities and constraints;

• symbolical approach as an instantiation hierarchy
(evaluation) or as knowledge hierarchy
(function = role);

• hierarchical principle applied to the object of
knowledge as to the knowledge structure itself, to
mediate the action of a paradigm on an environment.

Simulation theory is based on algorithmic mathematics.
Intelligence simulation implies hierarchical approach of
different types. Knowledge hierarchies demand for an
extension of the concept of algorithm. Hardware new
architectures, to permit unlimited parallelism of the
correspondent software, are needed. A systematic
hierarchical approach permits representing all hierarchy
types, leading to compact, non-redundant, easy to modify
models, for systems as well as processes, sequential or
parallel. Representations are formalized in constructive
mathematics style, advancing from correct specification to
correct representation and, further, to correct simulation.
Combining complementary directions by object-orientation
unifies the simulation methods for the different kind of
parts. Knowledge-based object-oriented multi-hierarchical
simulation procedures allow recurrence for different
hierarchy types. Representation-inference dichotomy, that

characterizes knowledge-based methods, enables reflexive
abstraction, thus, producing new knowledge starting with
problem specification, following solving strategies,
structured by approach principles and hierarchy types.

REFERENCES

[1] F. Kasch and B. Pareigis, Grundbegriffe der
Mathematik (München, Germany: Fischer Verlag, 1986).

[2] P. Winston, Artificial Intelligence, 3rd Edition
(Reading, Ma: Addison-Wesley, 1992).

[3] B. Stroustrup, The C++ Programming Language, 3rd
Edition (Reading, Ma: Addison-Wesley, 1997).

[4] G. Booch, Object-oriented Analysis and Design, 2nd
Edition (Reading, Ma: Addison-Wesley, 1996).

[5] P. Jalote, An Integrated Approach to Software
Engineering, (Berlin, Germany: Springer, 1991).

[6] B. Meyer, Introduction to the Theory of Programming
Languages (Englewood Cliffs, NJ: Prentice-Hall, 1990).

[7] W. Bibel et al., Wissensrepräsentation und Inferenz
(Braunschweig, Germany: Vieweg, 1993).

[8] R. Turner, Constructive Foundations for Functional
Languages, (New York, NJ: McGraw Hill, 1991).

[9] D. Gajski et al., Specification, and Design of Embedded
Systems (Englewood Cliffs, Prentice-Hall, 1994).

