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ABSTRACT

Multi-Agent Systems are a promising way of dealing with
large complex problems. However, it is not yet clear just
how much complexity or pre-existing structure individual
agents must have to allow them to work together effectively.
In this paper, we ask to what extent agents with minimal
resources, local communication and without a directory ser-
vice can solve a consumer-provider matchmaking problem.
We are interested in finding a solution that is massively scal-
able and can be used with resource poor agents in an open
system. We create a model involving random search and
a grouping procedure. Through simulation of this model,
we show that peer-to-peer communication in a environment
with multiple copies of randomly distributed like clients and
providers is sufficient for most agents to discover the service
consumers or providers they need to complete tasks. We
simulate systems with between 500 and 32,000 agents, be-
tween 10 and 2000 categories of services, and with three
to six services required by each agent. We show that, for
instance, in a system with 80 service categories and 2000
agents, each requiring three random services between 93%
and 97% of possible matches are discovered. Such a system
can work with at least 90 different service categories and
tens of thousands of agents.
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1. INTRODUCTION

How do we get computers to solve large, complex prob-
lems? The traditional answer is conceptually straightfor-
ward - write large complex programs. On the other hand,
many problems are too intricate, ambiguous, widely dis-
tributed, or dynamic for humans to handle in this way.
Multi-agent systems present an alternative approach for deal-
ing with complexity. In this approach, in place of simpli-
fying a problem by procedural decomposition one instead
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programs a collection of agents with small sub-problems.
These agents can then themselves work out how to compose
their capabilities to achieve larger goals. There are many
differing schools of thought on how to approach the design
of multi-agent systems. The approaches diverge along two
main dimensions: the complexity of the individual agents
and the amount of centralized control or global knowledge
in the overall system. Most approaches attempt to add some
structure, or to put some high level programming into the
individual agents to get them to cooperate, communicate,
or have some sort of goal-following behavior [2] [5].

In this work, we concentrate on reactive agents in sys-
tems without any pre-existing external structure. We do
this in order to minimize system complexity and the indi-
vidual agents’ resource requirements. We attempt to dis-
cover if there are conditions under which it is possible for
coordination to emerge naturally from an unstructured ini-
tial configuration of trivially simple agents. To carry out
our study we have chosen to consider matchmaking, a task
common to any system where subtasks are distributed and
organizations are not fixed. The matchmaking problem asks
how agents providing a service can find the agents who wish
to use that service, and vice versa.

Many existing agent systems use middle agents or facili-
tators, agents that provide a central directory, for task al-
location [6] [11]. Such facilitators are costly to build, they
must track information on all the providers or consumers in
a system, and must be able to handle the communication
and processing necessary for large numbers of requests for
matches. An alternative is to use market-bidding mecha-
nisms [10] [12]. This approach involves broadcasting bids
and offers to all agents in the market and thus entails high
communications costs. Such facilitator or market-based sys-
tems have a design goal of allowing a consumer to find the
best possible provider for its required service out of the en-
tire agent system. We relax this constraint and instead con-
sider a problem where each consumer is merely looking for
any one of a number of possible provider matches. This al-
lows us to use peer-to-peer communication between agents,
with a number of advantages, including the following:

e The set up cost for the system and the memory, pro-
cessing, and communications resource requirements of
individual agents are kept to a minimum.

e The amount of information stored at, and communi-
cation to any one place in the system is minimized.
This maximizes the amount of parallel communication
possible.



e By avoiding a central facilitator that must understand
advertisements for services, the need for a single com-
mon system wide (capability) language is reduced.

e Privacy concerns involved with advertising requests
or capability information to the entire system are re-
duced.

This paper presents a parameterized model of such a peer-
to-peer architecture. Each agent in the model has a number
of tasks for which it must find help to complete. These
agents randomly search among their neighbors for matching
abilities. When a match is found the two agents involved
are considered able to cooperate. They are combined into a
cluster that allows each agent to extend its neighborhood
and thus the search space for its remaining tasks. This
model is analyzed for particular values of the parameters,
and robustness as the parameters change. We find that:

e For a range of parameters the system converges to an
almost fully matched configuration. With 80 service
categories and 2000 agents, each looking for 3 random
services 93% to 97% of possible matches are found.

e Under conditions when the system does converge, it
does so rapidly and consistently over a class of ran-
dom starting conditions. For the above parameters
convergence occurs within 500 to 900 turns.

e The system can find matches when there are up to
90 categories of services, and preliminary simulations
indicate that it could support thousands of categories,
depending on the number of tasks each agent is given.

e The time needed to reach an end configuration in-
creases approximately linearly with the number of cat-
egories of services and less then linearly with the num-
ber of agents. We are able to simulate systems with
up to 32,000 agents.

This paper is organized as follows: In section 2 we define
more precisely the problem we are exploring and the form
of solution we are looking for. Section 3 discusses other
approaches found in the literature. In Section 4 we define
the model we are working with. Section 5 then presents
simulation results and attempts to provide some explanation
of how the model behaves. We conclude in Section 6 with a
summary of our model’s limitations that must be explored
in future work.

2. PROBLEM DEFINITION

The problem we are working on is that of Distributed
Matching of Service Providers and Consumers. The prob-
lem is one of a world where there are a number of services,
and a number of providers and consumers for each service.
The number of services is potentially very large. Each agent
within the system is a provider for some number of services,
and/or a consumer of some others. A successful resolution
of this problem is one where a large proportion of the agents
in the system have their provider and consumer needs sat-
isfied. The solution to such a problem involves the creation
of a large number of provider/consumer pairs, formed by a
provider and a consumer of a particular service meeting and
agreeing to work together. Such a solution can be viewed
as coordination between the agents making up the overall

system. Rather than trying to write complex agents which
reason about the space, and have complicated algorithms
for attempting to find other agents with whom they can co-
operate, we aim to create a system with the following design
goals:

e The agents are very simple. We want to avoid agents
that attempt to reason about their situation since these
are difficult, if not impossible, to program, and require
large amounts of computing resource per agent.

e There is no centralized control. A centralized con-
troller, limits the scaling capability of the system. As
the system grows, a central controller that stores data
on all agents will need more and more memory. It will
also need an increasing amount of processing time to
search for matches among its stored advertisements,
and it will need more and more bandwidth to handle
requests from the agents.

e There is no global knowledge or global structure. Agents
have only local knowledge, and there is no entity in
the system other than the agents. Global knowledge
and structure can be expensive to maintain. They also
makes it hard to add new agents which must be ini-
tialized somehow.

e The communication requirement between agents is lim-
ited. Large amounts of communication to or from spe-
cific points can also limit the scalability of the system
and place high resource demands on individual agents.
Moreover, we do not want every agent to be required to
speak a language that would allow it to communicate
with any other agent in the system. Such a require-
ment would be a form of global knowledge that would
make it more difficult to add new agents.

If a solution can be found under such constraints, we have
for all practical purposes an inherently scalable and open
solution to the problem. In the following sections we propose
a model based on these guidelines, and run simulations to
explore it’s behavior.

3. RELATED WORK

There are a number of common approaches to matchmak-
ing involving either broadcast queries or central controllers.
In this section, we consider solutions that have been used in
multi-agent systems, and discuss some of their advantages
and limitations. A more detailed overview of this area is
given in Ferber, chapter 7 [2].

The simplest solution is for the system’s creator to prede-
termine how agents will interact. Tasks are decomposed and
agents are matched by hand. This is the approach taken in
object oriented design and does not strictly fit with multi-
agent systems philosophy. However, a multi-agent system
with a limited number of agent types and interactions can
be designed in this way.

A more flexible approach is the use of markets for task dis-
tribution, as studied by Smith in Contract Net [10]. There is
a significant amount of research dedicated to market mech-
anisms and how they can be used to fairly distribute goods.
This is easily extendable to trading services in place of goods
[12]. Such research focuses on one-to-many or many-to-
many negotiation. Markets involve all participants seeing



all bids and offers, and thus are well suited to problems
that require negotiation to obtain a fair price for services or
goods. The market mechanism however depends on a mar-
ketplace, which is often centralized. All agents in the market
must know bids and offers, and this must be done though
a large amount of broadcast communication. The central
market controller must keep a list of all the agents partici-
pating, and each bid or offer involves sending a message to
each participant. Market rounds can involve all agents mak-
ing a bid or an offer. This can result in a prohibitive amount
of traffic in large markets since each agent receives as many
messages each round, as there are agents in the market.

A second popular approach is to use a facilitator, such as a
broker, to centrally determine matches [6]. There are a num-
ber of different versions of facilitators, differing in whether
consumer or provider information is stored, and if the facil-
itator directly connects consumers and providers or acts as
an intermediary for transactions [1]. However, all facilitator
architectures involve offered services or requests being stored
in a central location. Agents wishing to find matches then
apply to this location. Facilitator architectures are good for
finding optimal matches since the facilitator is in a position
to compare all available possibilities. It can then return the
agent that best fulfils requirements or best distributes pro-
cessing load. However, since facilitators provide complete
directories of the consumers or providers in a system they
can consume a large amount of memory and all advertise-
ments and requests must be made in a way the facilitator
can understand. Also since all matches are made through
requests to the facilitator they can become a communica-
tion bottleneck. To lessen this problem facilitators can be
distributed. Mullender and Vitdnyi [7] present a general
model of a distributed directory service and its memory and
messaging costs. Jha et al [4] discuss splitting a single facil-
itator’s function among a number of agents.

A third way agents can locate potential partners is by
asking each other for recommendations. In acquaintance
networks [2] [8] agents in a fixed network get neighbors to
pass on requests for services. Thus, each agent only needs to
know who its neighbors are. However, in terms of the num-
ber of message passes, this is even more costly then directly
broadcasting requests. In addition it requires agents to re-
member which messages they have seen before, to prevent
messages being passed round in circles. Forner [3] discusses
using recommendations among agents that naturally group
into categories to find other like-minded agents. He however
encounters a bootstrapping problem; agents still need to find
an agent that can provide the service of recommending ini-
tial agents to form seed groups. He falls back on broadcast
requests or a central registry to solve this problem.

Another way of using acquaintances to allocate tasks is to
form coalitions. However choosing which coalitions to form
can be difficult. Shehory and Kraus [9] present a distributed
algorithm for coalition formation. Still, it involves recur-
sively calculating possible coalition values, and then picking
the coalition with the best system wide value. Coalition val-
ues can be calculated in parallel, but this phase requires each
agent to know of all other agents in the system. Moreover,
to determine the best value they resort to broadcast.

In this paper we consider systems where there are mul-
tiple possible provider matches for each consumer. Con-
sumers look only for an acceptable match, not the best pos-
sible match. Providers and consumers are distributed ran-

domly around the system. Thus, it is perceived as likely that
any particular consumer can find the provider he is looking
for within a local area. To make use of this property, we
have agents search locally for matches, then create simpli-
fied coalitions to find further matches. At any point in time
an agent knows the location of only as many other agents
as it has open matches to find. It queries these other agents
directly to determine if they are good matches. If any are
acceptable, a match is made and the involved agents form
a group. Addresses that do not provide good matches are
then exchanged with other group members, and a new set of
direct queries are made. Some of the benefits this approach
provides are:

e The amount of information stored at any one place in
the system is minimized. Each agent only has to keep
track of as many other agents as it has open tasks. In
our experiments group membership is stored centrally
for each group, however this only involves keeping a list
of addresses of unmatched tasks, it is not necessary to
keep full descriptions of the tasks.

e Communication time is minimized. Queries to check

for good matches are made point-to-point between agents,

and thus can be done in parallel.

e Consumers directly query their potential providers so
only suitable providers need to be able to understand
their queries.

e Direct queries allow agents to control who they give
sensitive information to.

4. SYSTEM DEFINITION

As stated above, we are looking for solutions to the match-
making problem that can be applied in an extremely large
open system. We assume a system where agents already
have a way of knowing what services they are asking for, in-
cluding knowing what they will give in return. We want to
avoid the use of broadcast queries, or of a central registry of
available services. We begin by building the simplest model
possible of such a system. In this model, our aim is to ob-
tain as fine a grain distribution as possible, and to keep the
individual behavior and resource requirements as small as
possible. The components that such a model must include
are:

e A collection of agents.

e For each agent, a set of tasks that the agent needs to
obtain outside help on to complete.

e A way of checking whether two agents are compatible;
i.e. if they can cooperate on a particular task.

e A search algorithm with which agents can locate po-
tentially compatible agents.

We instantiate these as follows:

e The overall system has tasks of varying categories,
C = {c1,...,cm}, to complete. The number of dif-
ferent task categories, m, is one of the key parameters
affecting the behavior of the system. We mostly con-
sider values of m of the order of one to two hundred.
We consider briefly systems with up to 2000 task cat-
egories.



e The system has a set of n agents: A = {a1,...,an}.
The number of agents is an important parameter, but
our goal is to build a system where this parameter
is less important than it might be. In particular, in
an ideal world, the overall performance of the system
should be independent of this parameter.

e Each agent has a set k of tasks, T, = {t1,...,tx}, it
has to find matches for, each task belonging to a cat-
egory in C. (T, can contain more than one task from
a category) These are assigned at random to represent
agents with different overall goals. The overall behav-
ior of the system when this number of tasks is one or
two is relatively simple (see below). Interesting behav-
ior arises when each agent has three or more tasks to
complete.

e We start with a fixed and trivially simple model of
compatibility checking: we ask the question “is this
task of this agent-number-one compatible with this
task of this agent-number-two” and get a yes/no an-
swer. Thus we define a pairing among the categories:
f:CxC—{0,1} with

[ 1, if (¢, ¢y) is a matching pair
fleies) = { 0, otherwise.
We consider the case where each category has only one
match and matches are symmetric.

e Agents start with their tasks paired at random to a
task of another agent. This represents an initial un-
coordinated state for the system. Such an initial state
is derived from some starting connections formed by
some means outside of the system, for instance based
on location. Agents then do a local random search of
the tasks of their neighbors to find matching tasks.

The final element of the model, the way that agents search
for compatible partners, needs some more careful descrip-
tion. We want to create a search mechanism that is as
simple as possible and to uses only local knowledge. By
local knowledge we mean knowledge obtained from agents
who are direct neighbors. However, if agents only ever see
their neighbors the system will quickly stagnate. We thus
allow agents to extend their search space by forming further
searching agreements between agents who find that they are
compatible when working together on a task. We justify this
by considering that agents that can cooperate on a task are
likely to have more in common, for instance they might rep-
resent devices made by the same manufacture or conforming
to the same standard. A high-level description is as follows:

e We consider each task that an agent has to perform as
an “interface” to the agent. We visualize the agents
being distributed spatially so that for each agent each
interface is adjacent to an interface for another agent.
This creates a neighborhood for each agent as large as
its number of tasks.

e Initially we simply check compatibility amongst adja-
cent interfaces. If two adjacent interfaces are compati-
ble, we form a “cluster” of the agents, joined along the
compatible interface.

e We then allow clusters (individual agents are clusters
of size 1) to “rotate”, permuting which yet unattached
interfaces are paired to which neighboring cluster’s in-
terfaces. In the following experiments we do a dif-
ferent random permutation each turn. This enables
agents to “search” for a compatible interface among
the free interfaces of their neighbors. Two interfaces
that are paired up but are not compatible are left un-
changed and swapped again on the next turn. When
two newly paired interfaces are compatible their clus-
ters are merged. All the unattached interfaces in the
resulting cluster become potentially adjacent to any of
the adjacent interface to the original clusters.

e This is how the search spreads out from adjacent agents.
As agents find compatible neighbors, clusters form and
(in a successful system) gradually get larger. A suc-
cessful trial of the system is one that ends up with
most of the agents connected to each other, usually
in a single large cluster. Note that our success crite-
rion is that most of the opportunities for coordination
are exploited, not that all of them are. This criterion
should be sufficient for numerous practical applications
assuming that “most” is in the range of 90% or so.

Thus, we have created a model with the following param-
eters: the number of categories of tasks within the overall
system, the number of agents, and the number of tasks (or
interfaces) per agent. Currently, we have fixed an initial
value for several other potential parameters. The task dis-
tribution among agents is random, and each agent has the
same number of tasks. The initial connections among agents
are also random and take no account of agent locality. We
use a local random search mechanism. We enlarge search
spaces by forming search agreements between agents that
proved compatible on the task-matching front.

It must be noted that in this model cluster size is not lim-
ited and thus our design goal of avoiding centralized control
is not fully met. A cluster can grow to include almost all
agents in the system, and in our simulations show a cluster
can have up to of 1/3 of the interfaces in the system to keep
track of. This problem of limiting cluster size or distributing
cluster operations is left to be addressed in later work. For
now we concentrate on the interesting behavior the simpler
system displays. We also note that there are two ways of
defining our pairing function f. Categories can either each
match to themselves, or can form client-server pairs. In this
paper we consider the first case, however simulations con-
firm that there is no noticeable difference between the two.
In each case any two randomly chosen interfaces still have
the same chance of being compatible.

5. RESULTS

The above model was coded into a simulation tool that
allows us run hundreds of trials of experiments to gather
statistical data. The following section describes our explo-
ration of system behavior through these simulations. In this
section, we first describe what happens with an initial set of
parameters and then vary each of the parameters to get a
broader picture.



5.1 Basic behavior

We begin by investigating systems of agents with with
three interfaces each. Three interfaces should be the lowest
interesting number, agents with one interface will at best
form pairs, and agents with two interfaces lines and circles,
neither creating large clusters.

We first consider an extremely low number of categories of
tasks. Figure 1 shows a trial run with 10 categories and 2000
agents. The Y-axis shows the percentage of interfaces that
have found matches, and the X-axis shows time, measured
in turns. A turn in our simulation is a period during which
each agent or cluster in the system is allowed to move (i.e.
shuffle its free interfaces) once. In Figure 1 you can see that
with this low number of categories almost all the interfaces
quickly find matches. We do not expect all of the interfaces
to be matched at the end of the run since we assign cate-
gories at random, and thus there can be an odd number of
interfaces of a particular category.
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Figure 1: 3 interfaces, 10 categories, 2000 agents

Figure 2 shows the other extreme, a trial with 300 cate-
gories of tasks. Here the chance of interfaces finding a match
is so low that only a few tiny clusters form. Some agents are
lucky enough to be near to matching agents in the initial
set-up. However, after these matches are made, the agents
find themselves surrounded by others with whom they have
no tasks in common, and no further connections are formed.
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Figure 2: 3 interfaces, 300 categories, 2000 agents

We now consider a system with an intermediate number
of categories of tasks . Figure 3 shows a run with 80 cate-
gories. We again create 2000 agents, giving an average of 75
interfaces of each category, enough that the chance of hav-
ing a very uneven distribution of categories is low. What we
intuitively expect to happen is that some of the interfaces
will start next to matches, thus forming many small initial
clusters. Each turn some number more will find matches

so that these clusters will grow. Two randomly chosen in-
terfaces have a 1/80 chance of matching, so clusters will
probably grow steadily and slowly, and eventually reach a
point where the available search space for each cluster con-
tains no more matches. At this point, the system will stop
changing.

This intuition however fails to materialize. There are a
couple surprises depicted in Figure 3; first the fact that 95%
of the interfaces find matches, and second, the shape of the
curve. After a set of initial connections, matches are found
slowly as we expected, but then suddenly the system takes
off and the remaining interfaces are matched up at a much
faster rate. This happens over all the random starting con-
ditions we generate. The turning point varies slightly but
not much.
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Figure 3: 3 interfaces, 80 categories, 2000 agents
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A closer inspection of the size of the clusters on each turn
gives us a better intuition into this behavior. This is hard to
depict in a graph, so instead we will give a description. The
initial set-up creates many small clusters as it did in Fig-
ure 2 when there were a large number of categories. Each of
these clusters grows slowly during the first part of the curve,
region A in Figure 3. However, once one of these clusters
becomes large, it will have many free interfaces. The search
space of each of these interfaces and thus their chance of
forming a connection grows. Moreover, when a new con-
nection is formed the chance that it is to another cluster
instead of to an individual agent becomes large. Once this
happens the cluster grows even bigger, and its chances of
connecting to other clusters are even larger. In regions B
and C of Figure 3 the system acts more like Figure 1, the 10
categories case. In region B, there is a phase where all the
small clusters are rapidly grouped together into one large
cluster. This cluster has many free interfaces, which quickly
connect to the remaining free agents in the system. The
rate at which connections form then slows down; new con-
nections are between agents already within the cluster. In
region C of Figure 3, the agents are mostly interconnected
and the search space for each free interface is all of the other
free interfaces. Thus in this region we see a slow down in
connection rate as the remaining free interfaces in the final
cluster pair up.

In these simulations, we have a centralized controller for
each cluster that shuffles the free interfaces and reassigns
pairings sequentially. If this process is not much faster than
the following parallel check for task compatibility, a turn for
a cluster with many free interfaces will take longer than a
turn for a cluster with few free interfaces. We do not show
this on our graphs as we anticipate creating a version of the
system with decentralized clusters.



5.2 Number of categories of tasks

In the previous section we saw that our system has two ba-
sic kinds of behavior; with 300 categories of tasks the agents
remain separate and almost no interfaces are matched, while
with 10 categories agents connect into a single large cluster
with almost all interfaces finding matches. However, what
happens in between? We looked at one point, 80 categories,
between these two extremes and found it acted most like the
10 categories case. However, how does this behavior change
as the number of categories is varied? Does the percentage
of connected interfaces at the end of the trial slowly dimin-
ish until it reaches the 300 categories case? Alternatively, is
there a region where some trials form a large cluster as in
Figure 1 and some behave as in Figure 27 How rapidly does
this change occur?

Further experimentation shows that all trials, no matter
what the parameters, either form more than 90% of possible
connections or don’t connect at all, forming less than 15% of
possible connections. Figure 4 shows what happens as you
change the number of categories. The X-axis is the number
of task categories in the experiments run; the Y-axis shows
the percentage of trials that form a large cluster. Inter-
estingly, for 90 categories and below trials always connect.
From there we find a steep drop off where very quickly all
trials never connect, or almost never connect (the tail end
of the curve is not as precise as the head).
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Figure 4: Percentage of trials that formed large clus-
ters; 3 interfaces, 2000 agents, 100 trials per point

This is useful from an engineering standpoint. We can
say that if a system has less than 90 task categories we
can be sure of it connecting, and above that, it is probably
not worth running. Ninety categories is a surprisingly large
number, probably high enough for simple applications. We
show later that as you increase the number of task matches
each agent is searching for the number of categories sup-
ported by the system increases. For 6 tasks per agent we
can have up to 2000 categories.

We are also interested in knowing how large an effect the
number of categories has on running time. Figure 5 shows
that as you increase the number of categories the time it
takes for the system to connect appears to increase linearly.
Here the X-axis shows the number of categories, and the Y-
axis shows the number of turns run until no more changes
occur in the system. We plot data from 100 trials at each
point, showing the maximum, minimum and average values.
The upper set of lines represents the trials that formed a
large cluster; the lower set of lines represents the trials that
remained unconnected.

In Figure 6 we compare some typical connecting runs for
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Figure 5: Time until trials stop changing; 3 inter-

faces, 2000 agents, 100 trials per point

trials with 10, 50, 90, 130 and 170 categories. This shows
how the shape of the curve in Figure 3 changes as the number
of categories changes. The A region of Figure 3 grows longer
and the steep part of the curve in region B becomes more
gradual. The maximum percentage of connected edges also
decreases, however this effect is lessened for trails with more
agents. Trials with 120 categories and 2000 agents form
between 92.5% and 94.9% of possible connections, for 20,000
agents this increases to between 97.7% and 98.2%.
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Figure 6: Sample for varying numbers of categories;
3 interfaces, 2000 agents

5.3 Waittime

Looking at the 300 category case in Figure 2, you could
speculate that it will eventually behave like Figure 3, the 80
category case, if only we let the system run for longer. This
could be especially true when the number of categories is
just large enough that the system doesn’t always connect.
Perhaps waiting longer would allow us to get a higher per-
centage of connecting trials when running experiments with
large numbers of categories.

In Figure 4 we waited 100 turns after the system stopped
changing before terminating a run. Running this experiment
with a wait time of 400 or 800 turns produces no difference
in the results. This is because when clusters are small the
search space of their free interfaces is also small. One hun-
dred turns are enough to cover all the possible combinations
of pairings. The search space for a cluster only changes if it
forms a new connection or one of the clusters near it forms
a new connection. If no clusters change during 100 turns
none of the search spaces change. This means we can be
fairly sure that the system has stagnated. This is a valuable
property; it means that an individual cluster has a guideline



to determine if it is in a system, or a part of a system, that
has come to a standstill. We can use this later when we
want agents to be able to determine if they should switch to
a more complex behavior to make a system connect.

5.4 Number of agents

We now examine how well the system scales as the number
of agents increases . How much more time does it take the
interfaces to connect? Does the number of categories that
the system can support change?

In Figure 7, we graph the number of categories at which 50
percent of trials connect for experiments with differing num-
bers of agents. In Figure 4, this occurs at just under 140
categories. We use the 50 percent point rather the point at
the end of the 100 percent success rate because it is easier to
determine. The X-axis in Figure 7 show logs of the number
of agents in the system; the Y-axis is the number of cate-
gories at which 50 percent of all trials connect. From the
graph it appears that the number of categories supported
by the system increases approximately logarithmically with
the number of agents in the system.
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Figure 7: Number of categories for which 50% of

trials are successful

In Figure 8 we fix the number of categories at 120 and
plot trial length as a function of the number of agents. We
can see that this time increases slowly, and perhaps even
logarithmically. Based on Figures 7 and 8, we can say that
we have a system that scales well with the number of agents.
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5.5 Number of interfaces

We have done some initial exploratory experiments to ex-
amine system behavior as the number of interfaces per agent
increases. We find that the number of categories supported
by the system increases quite dramatically. This is sketched

in Figure 9. We also find that the shapes of the curves shown
above for 3 interfaces remain generally the same. However,
they become elongated and less precise as the number of
interfaces increases. As this research is still in progress, we
leave a more thorough exploration of these properties for a
later report.
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Figure 9: Number of categories supported vs. num-
ber of interfaces per agent

6. CONCLUSION

In this paper, we have studied a system of simple agents
that search for service consumer-provider matches without
resorting to a central facilitator or broadcasting requests.
We considered systems where consumers are looking for any
one of a number of possible providers, and made use of the
fact that a consumer probably dose not have to search the
entire system to find an acceptable provider. We attempted
to minimize the resources used by individual agents, requir-
ing them to store only the addresses of as many other agents
as they had open tasks. We also attempted to minimize the
communications time in the system, having agents talk di-
rectly to possible matches. This allowed us to check a large
number of possible matches in parallel, and removed the
need for a system wide capability description language that
all the agents could understand.

We have shown that such an agent model is able to solve a
distributed matchmaking problem using only local informa-
tion. We found that the clustering behavior that our agents
use to increase their search space gives the system some in-
teresting and useful properties. There is an avalanche effect
in the success of agents in finding partners for their tasks.
Once some agents are successful in collaborating, they in-
crease their search space, and that of their neighbors, thus
increasing the chance of success for themselves and all those
around them. This means that once a “seed” set of agents is
successful we are guaranteed of the success of almost every
agent in the system. It also means that each individual’s
local chance of success is not solely what determines its suc-
cess or failure as a whole. Thus a system with very low local
probabilities of agents matching tasks with their neighbors
can still coordinate, as long as the chance that some agents
somewhere will be successful is high.

We have run simulations of this system with up to 32,000
agents, 10 to 2000 categories of tasks, and three to six tasks
per agents. We looked in detail at systems with 2000 agents,
each searching for three task matches. We found that for
these parameters, and when the system contained fewer than
90 task categories, configurations where 90% or more of pos-
sible matches were made were found consistently over all



the random initial setups generated. The time needed to
find these configurations increased linearly with the num-
ber of categories, and remained below 1000 turns for 90
categories. We also did some initial experiments involv-
ing larger numbers of agents. We showed that more agents
could support more categories. Systems with 32,000 agents,
each with three tasks, could support around 120 categories,
while the time they took to run increased less than linearly.
32,000 agent systems ran in less than 18000 turns. Finally
we looked briefly at increasing the number of tasks per agent,
showing that this had an even greater effect on the number
of categories supported, with six tasks per agent we could
have up to 2000 categories.

Future work on this approach to matchmaking must be
aimed at decreasing the gap between our skeleton model and
a real world system. We intend to continue our research in
a number of directions, as described below.

First, we need to discover a way of decentralizing our clus-
ters, or of limiting cluster size. The clusters in our simu-
lations are centralized. A cluster controller deals with the
swapping of free interface connections each turn, and does it
in a uniform random way. For some applications, this may
be an acceptable limitation. For instance, if the time for
agents to check for and negotiate matches takes much longer
than the time the cluster center takes to reassign partners.
However, memory usage still places a limit on how large a
cluster can grow. Centralizing clusters also makes splitting
up clusters difficult once a task between two agents has com-
pleted. It is possible to decentralize part of the cluster cen-
ter’s function within each cluster. We have run simulations
that show it is possible to use the same permutation to swap
partners each turn, if time is asynchronous. This means that
each agent only needs to be told once, each time its cluster
changes, where to pass unaccepted partners. However, com-
bining or splitting up clusters without some global cluster
information is more difficult. Should we fail to decentralize
clusters completely, another alternative would be to limit a
cluster’s size. However, if clusters are kept too small they
could remain separate and limit the systems ability to reach
a fully matched configuration.

Second, in our current experiments we only simulate agents
finding partners and building up clusters, we do not consider
what happens when partnerships end. Our model should be
extended to incorporate tasks that have a limited duration,
and agents that go on to perform new tasks once they have
completed their original ones. We would like to create a
system where clusters are continuously built up and broken
down again as partnerships are created then completed, and
new partnerships are formed. This mechanism should also
include adding and removing agents.

Third, we need to refine our model to run in continuous
rather than discrete time. Currently, cluster movement is
synchronized by the simulator, each cluster moves once each
turn. A real system is more likely to be run in continuous
time, with some clusters moving faster or more often than
others do. In addition, if we remove cluster centers then the
clusters as a whole should also be unsynchronized.

Fourth, we need to run simulations with differing distribu-
tions of task categories and initial connections. In our model
the distribution of categories is uniform, both in the num-
ber of tasks of each category, and location of these tasks
within the system. In a real system, we are likely to find
that certain types of agents and thus certain categories of

tasks and combinations of tasks are more common than oth-
ers. This can change the probability of seed clusters form-
ing, or stop clusters from growing beyond a certain size. In
addition, initial connections are unlikely to be completely
random in a real system. We need to look at simulations
where initial connections take into account possible locations
of agents, for instance a system where agents on a single
machine are randomly connected, but connections between
agents on separate machines are sparser.

Finally, we need to determine how many tasks agents have
in real world problems, and how many categories of tasks
are typical. We found our system could support at least 90
categories when we gave each agent three tasks, and this
grew up to 2000 categories when agents had six tasks. We
however did not look at systems where agents had varying
numbers of tasks.
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