IMPLEMENTATION OF ENCRYPTION ALGORITHMS ON
TRANSPORT TRIGGERED ARCHITECTURES

T T o of e 1 FOSRTS S 1 2 .]
P. Himildinen', M. Hénnikéinen', T. Héimildinen', H. Corporaal’, and J. Saarinen

'Digital and Computer Systems Laboratory
Tampere University of Technology
Hermiankatu 3 A, 33720 Tampere, Finland
{panuh, markoh, timoh, jukkas} @cs.tut.fi

ABSTRACT

The paper studies a configurable processor architecture, Transport
Triggered Architecture (TTA). for encryption algorithm
implementations. The automatic TTA design space exploration is
applied and configurations with good cost-performance ratio are
found. It is shown that TTAs are at least equal to commercial
processors in performance. According to earlier studies the
performance level is also achieved at far lower cost, which
encourages for further development with tuned functionality.

1. INTRODUCTION

Originally microprocessors were meant to be used in general-
purpose computers for solving mathematical problems. However.
during the years special-purpose embedded systems have become
the most important area of the processor market. The demand for
flexible and configurable architectures has markedly increased. It is
impossible to design an optimized architecture suitable
everywhere, but by making it as adaptable as possible without
impairing performance. most requirements can be met. One family
of processor architectures that are specifically developed
considering flexibility and configurability is called Transport
Triggered Architectures (TTAs) [2]. In addition to the flexibility
and application specific processor design, the architecture also
provides support for instruction level parallelism (ILP).

One field that can make use of these special features provided by
TTAs is encryption. As telecommunications - both wired and
wireless - has become a hot topic, the previously overlooked
encryption for achieving service security has also been brought
under closer examination. Current communication devices are
increasingly embedded systems with real-time service
requirements. Therefore, it is important to find as efficient
encryption implementations as possible. Most encryption
algorithms include operations (e.g., bitwise permutations) that are
not efficiently supported in traditional processor hardware.
Therefore, those have to be implemented with several basic
operations, which is often tricky and inefficient. In addition to
special hardware, utilizing parallelism can improve encryption
performance.

This paper studies three encryption algorithms, Improved Wired
Equivalent Privacy (IWEP), RC4, and Triple Data Encryption
Standard (3DES), for TTA implementations. In order to exploit
ILP as much as possible while maintaining the architecture general
and highly applicable, customization using only basic operations is
studied.

IMEC/DESICS
Kapeldreef 75, B-3001 Leuven, Belgium
henk.corporaal @imec.be

The paper is organized as follows. The first section briefly
describes the processor architecture and the software framework
for the TTA development. Then, the studied encryption algorithms
are introduced. Next, the realized implementations and
performance results on TTAs are presented. The results are
compared to those on Pentium III and Texas Instruments
TMS320C6201 processors. Finally, conclusions are given and
future work is discussed in the concluding section.

2. TRANSPORT TRIGGERED
ARCHITECTURE

The main difference of TTAs compared to traditional. operation
triggered processor architectures is the way the operations are
executed. Instead of triggering data transports, in TTAs operations
occur as a side effect of data transports. i.e.. the execution begins
when data is written to operand registers. This design implies that
only one instruction, move, is needed for TTA programming.
Therefore, the architecture is also called the MOVE architeciure.
Figure 1 depicts the basic TTA processor structure. [2]

-i

Central Processing Unit

=

S
[3
g 5 , o
7} — 2 3
= . . = =
= Instruction Instruction —» S 3 §
2 Fetch Unit Decode Unit f—» § j—{ =
Q = -
= —» =]
£]
@ S Q
2 2
= L

=

i

Figure 1. TTA architecture.

The main part of the central processing unit (CPU) is organized as
a set of functional units (FUs), special function units (SFUs), and
register units (RUs). The data transfers between these units are
done through an interconnection network that consists of the
desired number of buses. RUs contain the processor’s general-
purpose registers, and FUs implement the different arithmetic
operations needed in program execution. In Figure 1, FU2 operates
as a load-store unit (LSU) handling the data transfers between the
data memory and register file. The architecture is very flexible
because the number of FUs, RUs, RU ports, buses, and bus
connections can be changed unlimitedly. The MOVE compiler
supports all these changes. [2]

IV-726

0-7803-6685-9/01/$10.0002001 IEEE

As stated, a TTA processor is programmed (in the lowest level)
using only one type of operation, move. An instruction can consist
of either one or more move operations, depending on the
interconnection network. If only one move can be executed at a
time, only one move can be included in an instruction. By adding
buses and connections, more moves can be executed in parallel
(provided that there is parallelism in the application) and thus the
execution time is reduced. The source and destination of a move
can be any register in RU and any FU (or SFU) input or output. [2]

In addition to the flexible basic architecture, the MOVE framework
allows the designer to add application specific operations into the
instruction set [4]. The new operations are implemented by SFUs.
This is a very efficient way to improve performance since quite
complicated operations in traditional processors may be trivial in
application specific hardware.

The user software tools for MOVE development include a compiler
to translate high-level programming language (i.e. C/C++) into
sequential move code, a scheduler to schedule the sequential code
and produce parallel code, and a simulator to verify and evaluate
both the sequential and parallel codes. Because of the flexibility,
finding out the best configuration for the application by hand is a
very time-consuming and error-prone task. Therefore, a design
space explorer is also provided. The explorer can be used to test
different MOVE configurations for the application. Finally,
synthesizable Very high-speed integrated circuit Hardware
Description Language (VHDL) can be automatically generated for
the chosen configuration using the MOVE Processor Generator
(MPG) [1].

3. ENCRYPTION ALGORITHMS

This section describes the three encryption algorithms studied for
TTA implementations. The ciphers are Improved Wired Equivalent
Privacy (IWEP), RC4, and Triple-DES (3DES). The algorithms
were chosen because hardware and software implementations for
them were already realized earlier [5]. The implementations have
also given ideas what the SFUs that will be developed in future
should contain. Furthermore, different implementation methods,
including TTA implementations, are studied in order to evaluate
the algorithms® suitability for the terminals of a proprietary,
multimedia-capable Wireless Local Area Network (WLAN) called
TUTWLAN {10].

IWEP was developed at Tampere University of Technology (TUT).
It was designed considering hardware implementations for the
encryption of time-critical data in TUTWLAN system. Despite its
name the cipher is considerably different from Wired Equivalent
Privacy (WEP) algorithm included into IEEE 802.11 standard for
WLANSs [6]. The WEP standard utilizes RC4 stream cipher while
IWEP is a simple block cipher encrypting 64-bit blocks of data by
mixing them with a 64-bit key. {7]

RC4 is a commercial product used in many applications requiring a
strong encryption. This cipher was developed by RSA Data
Security, Inc. RC4 operates plaintext a single byte at a time. The
idea of the algorithm is to produce an 8-bit pseudo random number
series initialized by the given key. An encrypted output is then
exclusive-OR (XOR) between the random bytes and the input data
bytes. More detailed information on this algorithm can be found in
[81.

3DES is probably the most widely used encryption algorithm. It is
commonly regarded as a strong, but also rather weighty algorithm.
Therefore, as the real-time and other performance requirements are
becoming more demanding, an alternative for this algorithm is
being sought. 3DES was designed to encrypt 64-bit blocks of data
under the control of three unrelated 56-bit keys. It consists of three
rounds of DES algorithm used in “encrypt-decrypt-encrypt” order.
As the Rijndael encryption algorithm was recently selected for
Advanced Encryption Standard (AES), the successor of DES, it is
also likely to replace 3DES in new products. An exact description
of 3DES can be found in [3] and [8].

4. TTA IMPLEMENTATIONS

This section describes the TTA design space exploration and the
achieved results for the presented ciphers. In this case only the
basic operations were used, so no SFUs were added to the
architectures. Here “basic” means common Reduced Instruction
Set Computer (RISC) operations like add and store. This choice
was made to enable proper comparison to off-the-shelve
architectures and to keep the configurations as generally applicable
as possible. The examinations concentrated on the critical
functions of the ciphers. Functions such as initializations and key
setup procedures were left outside the study.

The same initial TTA configuration was used in explorations in
order to see how differently it changes for each algorithm. Before
the initial architecture was created, the algorithms were examined
in order to be able to include enough resources for all of them. The
initial configuration is very large: eight LSUs, eight Arithmetic
Logic Units (ALUs), twenty 32-bit-wide buses (fully connected),
four immediate units (IUs), two integer register units (IRUs) both
containing 64 registers and eight input and output ports, and one
Boolean register unit (BRU) with eight input ports. The ALUs are
able to perform addition, subtraction, comparison, shift, and logic
operations. :

In order to enable comparison with other processor architectures,
the throughputs for the same source codes on Intel Pentium IH
(PIII) and on Texas Instruments TMS320C6201 digital signal
processor [12] are also presented. PIII is a contemporary processor
used mainly in personal computers. However, when considering
embedded systems, it is too expensive and too power-hungry to be
utilized in them. Conversely, ‘C6201 is one of the most powerful
fixed-point signal processors based on Very Large Instruction
Word (VLIW) architecture. The structure of ‘C6201 is quite close
to TTAs because it also has several processing units connected
with a communication network. On the other hand, the architecture
is fixed and therefore does not provide the flexibility of TTAs.

The following results present the throughputs in megabytes (MB)
at 200-MHz clock speed. This clock rate was chosen because it is
realistically attainable using automatically synthesized standard
cell implementation (i.e. no large VLSI development team
required). In addition, the used ‘C6201 test board runs at the same
speed [12].

One advantage of TTAs is that the performance-cost ratio is always
very good, which has been proved in earlier studies [2]. As the
following results show. even a simple configuration can be
efficient. Therefore, one should notice that in order to emphasize
this virtue, the presented results are for the configurations with the

1vV-727

best execution time-cost ratio., not for the configurations with the
shortest execution time.

All ciphers were written in C and the same code was compiled for
all processors. IWEP was implemented at TUT, the RC4 source
code follows the code presented in [9], and 3DES source was
obtained from Phil Karn of Qualcomm Incorporated’. It is fair to
mention that since the codes are portable, they do not take
advantage of the special intrinsic instructions of ‘C6201 and
therefore the results on this processor could be improved.

4.1 TTA Design Spaée Exploration

Figure 2 depicts the exploration process for IWEP. The design
space exploration proceeds the following way. First, the explorer is
used for finding the fully-connected architecture with best
performance-cost ratio. In the figure the chosen architecture is
marked with a circle in the graph on the left. After that, different
connection combinations are tested until the fastest configuration is
found. This architecture is marked in the graph on the right. One
could think that a fully-connected network results the shortest
execution time. However, after removing sparsely used connections
and taking advance of software bypassing, the bus load decreases
implying shorter clock cycle and, since the cycle count remains the
same, faster execution [1]. The figure shows that for this algorithm
the best cost-performance architecture is also almost the fastest and
cheapest before connectivity explorations. The same design space
exploration was applied to the other two algorithms.

Execution Time
Execution Time

Cost Removed Connections

Figure 2. Design space exploration for IWEP.

Figure 3 shows the selected TTA configuration for IWEP after the
design space exploration. The figure also presents the bus
utilizations in percentage during execution. The architecture
corresponds to what was expected. Two LSUs are still included in
the final configuration, which means that the architecture takes
advantage of instruction level parallelism. LSUs handle only byte-
wide data, which eases memory port design. However, because the
configuration with the best time-cost ratio was chosen, not all
possible operations are executed in parallel. After the resource

! The source code for 3DES is available at

http://people.qualcomm.com/karn/code/des (visited January 22, 2001).

reduction, more expensive configurations with more ALUs were
also available. However, in this case they were not chosen for
connectivity exploration.

LSU f| LSU | ALU IRU IRU U

44 Y iu Y A4 ui Ad iu "wy ¥
73%

35%
73%
84%
27%
58%

Figure 3. TTA configuration for IWEP.

As it was expected, parallelism was not applicable to the RC4
cipher. Every operation is dependent on the results of the previous
ones. Figure 4 depicts the hardware configuration for this
algorithm. Because only one ALU is included in the architecture,
only one arithmetic operation can be executed at a time.

LSU || ALU || IRU IRU BRU U 10

24 Y Aa Y { y A tw‘ Y 4 Y \ 4
46%

21%
46%
32%
85%

Figure 4. TTA configuration for RC4.

It was also difficult to find parallelism in the 3DES design, as the
configuration given by the explorer in Figure 5 illustrates. In this
reasonable speed-cost configuration only one ALU and LSU are
needed. The number of required buses is also small, the smallest
for the three ciphers. Therefore, the architecture is also the
cheapest.

LSU || ALU IRU IRU || BRU U

68%
86%
74%
39%

Figure 5. TTA configuration for 3DES.

4.2 TTA Results

Table | presents measurements for the TTA configurations of each
algorithm. The TTA results are calculated according to the
statistics given by the scheduler.

For IWEP the results as well as the compiler generated ‘C6201
assembly show that the execution is done in parallel. Since on
average two moves are needed for one RISC instruction, up to two
instructions are executed simultaneously. As shown, even this
basic implementation without any SFUs is faster on TTAs than on
PIIH and almost equal to the ‘C6201 processor.

Iv-728

Table 1. Encryption implementation results.

. Moves per Throughput (MB/s)
Cipher . .
instruction TTA PIII ‘C6201
IWEP 3.29 8.08 6.20 8.16
RC4 2.12 7.10 6.20 5.71
3DES 2.77 0.64 0.80 0.54

The table shows that on average only one RISC instruction is
performed at a time in RC4 execution. Still, even though the
execution is sequential, the cipher is faster on TTAs than on the
compared processors due to software bypassing

As it can be seen, parallelism is a little better utilized in 3DES
implementation than in RC4 implementation. However, the
throughput on PIII processor is better than on TTA. This is because
on PIII and *C6201 the inner loop of the source code was fully
unrolled. On the contrary, in order to keep the code reasonably
small to enable faster scheduling, the loop was not unrolled in TTA
implementation. Thus, the scheduler was not able to schedule over
successive iterations. By choosing a faster and more expensive
configuration, TTA would be closer to PIIl despite of the
difference in the source. As stated, 3DES is commonly regarded as
a heavy cipher, and therefore the throughput should still remain on
much lower level than that of IWEP or RC4.

5. CONCLUSIONS AND FUTURE WORK

Because of flexibility., TTAs are extremely suitable for application
specific processor design. With careful pre-examination of the
source code and help of the software development framework, it is
easy to design efficient architectures for different applications.
Apart from fixed architectures, in which applications has to be
adjusted to the hardware in order to get the best results, in TTAs
the hardware can be automatically adjusted to the application. This
makes it easier for a designer to achieve better performance,
without serious debugging and optimization of the source codes.

Since the results for the architectures are given by the scheduler
software, they are all estimates of real hardware implementations.
The hardware estimation model that the scheduler uses is created
by the designer. Therefore, it is up to his/her skills how close the
model is to the real world. For example, in this study the LSU
latency was estimated to be two clock cycles and caches were not
taken into account.

The presented results show that even with the basic operations
TTAs can be faster than other processors of the same clock
frequency. In the future, by adding special function units, the
results should improve and the throughputs are expected to be
close to the full-hardware implementations presented in [5].
Furthermore, the framework also provides automatic loop
unrolling, software pipelining, and function inlining, which were
not utilized within this study. When applied, these all should
improve the efficiency because most encryption algorithms, like
3DES and RC4, contain an inner loop. Moreover, when using
block ciphers like IWEP and 3DES. the outer loop can also be
made parallel and several blocks of data can be encrypted
simultaneously. This should increase the performance, and the

limit for the number of parailel encryptions will only be set by the
cost of the hardware.

RC4’s RISC-oriented design does not provide a reasonable
possibility for SFU implementation. In [5] it was verified to be no
faster in FPGA implementation than when running on a processor.
On the contrary, the TTAs were found very suitable for encryption
algorithms like IWEP and 3DES. They both contain operations that
are much faster in dedicated hardware than in software. Therefore,
this study gives encouragement for further development for these
ciphers by adding SFUs and making the outer loop parallel. A
follow-up paper will concentrate on the specialization of the TTAs
more to the application domain by tuning also the functionality. In
addition, it would also be interesting to see how the recently
selected AES algorithm performs on TTAs.

6. REFERENCES

[1] Corporaal H., and Hoogerbrugge J., “Cosynthesis with the
MOVE Framework,” CESA'96 IMACS Multiconference,
Lille, France, 1996, pages 184-189.

[2] Corporaal H., Microprocessor Architectures from VLIW to
TTA, John Wiley & Sons Ltd., West Sussex, England, 1998.

[3] FIPS PUB 46-7, Data Encryption Standard, Federal
Information Processing Standards Publication, National
Institute of Standards and Technology (NIST), USA, 1999.

[4] Hoogerbrugge J., Code Generation for Transport Triggered

_ Architectures, PhD Thesis, Delft University of Technology,
Delft, The Netherlands, 1996.

[5] Himildinen P., Hinnikdinen M., Himilidinen T., and Saarinen
J.. “Hardware Implementation of the Improved WEP and RC4
Encryption Algorithms for Wireless Terminals,” X European
Signal Processing Conference (EUSIPCO 2000), Tampere,
Finland, 2000, pages 2289-2292.

[6] IEEE Std 802.11. Wireless LAN Medium Access Control
(MAC) and Physical Laver (PHY) Specifications. LAN MAN
Standards Committee of the IEEE Computer Society, USA,
1999.

[7] Salli K., Hiimiliinen T., Knuutila J., and Saarinen J.,
“Security Design for A New Wireless Local Area Network
TUTWLAN?", 9" IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC'98),
Boston, USA, 1998, pages 1540-1544.

[8] Schneier B., Applied Cryptography: Protocols, Algorithms
and Source Code in C, 2nd ed., John Wiley & Sons, Inc.,
USA, 1996.

[9] Schneier, B., and Whiting D., “Fast Software Encryption:
Designing Encryption for Optimal Software Speed on the
Intel Pentium Processor,” Fast Software Encryption
Workshop 1997 (FSE4), Haifa, Israel, 1997, pages 242-259,

[10] Tikkanen K., Hinnikiinen M., Himilgdinen T., and Saarinen
J., “Advanced Prototype Platform for a Wireless Multimedia
Local Area Network,” X European Signal Processing

. Conference (EUSIPCO 2000), Tampere, Finland, 2000, pages
2309-2312.

[11] TMS320C6000 DSP Platform Technical Documentation,
Texas Instruments, Inc., USA, 2000.

[12] TMS320C62xx CPU and Instruction Set Reference Guide,
Texas Instruments, Inc., USA, 1997.

IV-729

