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Abstract

Stereo matching algorithm extracts the depth information by matching the correspond-
ing positions on stereoscopic scenes and then computing the disparity maps. This thesis
will focus on implementing a stereo matching computational flow on FPGA. In the pro-
posed stereo matching computation flow, a dynamic programming algorithm is used to
enforce the quality of the disparity map. In addition, a simple raw matching cost updat-
ing technique is used to strengthen the temporal consistency of disparity map sequences.
In the stereo matching hardware design, a hardware-friendly dynamic programming pro-
cessor unit is proposed, by taking advantage of the Potts model smoothness function,
which penalizes disparity changes with a constant penalty. We also present a novel
idea for disparity sequences compression by using run-length coding algorithm. The
idea is further applied to the memory architecture design for the refinement stage of
the stereo matching engine. Finally, the stereo matching engine design is integrated
into IMEC 3D TV SoC for depth intensity adjustment. Several peripheral components,
are developed in this project, include color space converters, video IO adaptors, and
a dedicated memory hierarchy. They all support the stereo matching engine and the
view synthesis engine. The proposed SoC is finally verified on EP3SL150 FPGA. The
evaluation result shows that it can achieves 60 frames per second at a resolution of 1024
x 768 with an acceptable interpolated video quality.
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Introduction 1
This thesis presents the researches about stereo matching algorithms and hardware im-
plementation for a 3D TV System. The stereo matching algorithm refers to extracting
depth information from two stereoscopic camera sources. The depth information, dis-
parity value, is calculated from estimating the displacement of corresponding points on
both images. The computed disparity maps can be used in the IMEC proposed depth
adjustable 3D TV system for synthesizing intermediate points of views.

1.1 Motivation

Nowadays, 3D display technologies have become prevalent in many applications. For
example, the number of movies with 3D content is growing dramatically. Besides,
household entertainments such as 3D TV, 3D broadcast services and stereo cameras,
etc. are gradually entering the consumer market. It is foreseeable that 3D display
applications will become deeply embedded in our life in the future. Therefore, this
thesis research especially interests in depth information extraction technology.

Binocular vision through our eyes is the basic way that our brain percepts object
depth in real world. Because our eyes receive slightly different views, our brain can
analyze the disparities and fuse the 2D information to a 3D perception. Based on the
concept of binocular vision, stereoscopic video contents are generally used for 3D display.

Unfortunately, 3D contents are usually incompatible with different display platforms.
For example, the 3D contents for movie theaters are not always available for mobile
phones. Besides, it is frequently reported that audiences easily suffer from nausea, eye
strain or headache after watching 3D contents. One of the reasons of discomfort is
the focus mismatch of 3D objects [48]. Figure 1.1 is an example that shows different
scenarios that focus on the cube. In Scenario (1) Accommodation, the focus point of the
cube concentrates on a positive region because eye-sight is nearly parallel. When the
focus of object locates on a positive region, it provides best visual comfort to the viewer.
In Scenario (2) Convergence, the focus point of the cube is in front of a screen, which is
too close to the viewer’s face. Discomfort is felt because the viewer’s eye muscles are in
tension. In Scenario (3) Divergence, the focus point of the cube locates far behind the
screen because the focus objects are too far apart that causes eyes diverging.

Figure 1.2 is an example that illustrates the personal depth comfort regions in a
green zone. In general, the comfort zone depends on different viewers. For example, the
eye distance of adult is around 6.25 cm. However, the 3D contents are usually not always
applicable for children. Moreover, the comfort zone relates to screen size, view dis-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Focus position (1) Accommodation (2) Convergence (3) Divergence.

tance and display technology. It is definitely a great challenge for the 3D content vendors.

Figure 1.2: Depth perception according to visual comfort.

Addressing to the visual comfort, depth scaling [48] is a solution to the above-
mentioned problem. If the viewer observes from the in-between virtual view, heshe
will perceive less depth intensity of 3D content. Therefore, IMEC provides a depth
scaling solution based on this concept. The processing flow Figure 1.3 calculates the
standard stereoscopic video sources captured from left and right cameras and extracts
the disparity maps by Stereo Matching Engine. With the disparity maps and input
stereo images, View Synthesis Engine is able to generate the in-between virtual view.
Therefore, a viewer can choose an arbitrary 3D depth intensity through IMEC 3D TV
system.

We are motivated to develop the IMEC 3D TV system on SoC. The proposed system
contains Video Adaptors, Color Space Converters, Stereo Matching Engine, memory
hierarchy, and a Viewpoint Synthesis Engine. This thesis research and design works
mainly concentrate on constructing a stereoscopic processing architecture to support
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Figure 1.3: Depth adjustment processing flow with stereo matching and viewpoint syn-
thesis engine.

depth extraction for view synthesis in real-time performance. Currently, the SoC has
been verified on FPGA and readied for ASIC mapping.

1.2 Problem Definition

The stereo matching algorithms have been researched by the stereo matching community
for many years. The most difficult handling regions are occlusion, texture less, and
repetitive pattern. In the IMEC 3D TV system, generating quality disparity map is
required because it affects the accuracy of the synthesized virtual view. Previous study
has shown that humans are more sensitive to the edge area than the plain region. The
incorrect disparity map easily generates the so called ghost effect in the synthesized
view. Figure 1.4 demonstrates the synthesis error that is introduced from mismatching
disparity map.

Generally, the disparity sequences suffer from a temporal inconsistency problem.
Figure 1.5 demonstrates an example of inconsistent disparity map sequences. Because
most stereo matching algorithms only take individual frames into the computation
flow, there is a lack of links among the disparity map sequences. The disparity map
sequences are easily influenced by things like camera noise, disparity map mismatching,
occlusion region, luminance difference, etc. Unfortunately, a previous study [53] showed
that humans are most sensitive to the inconsistent pattern (temporal noise) that flickers
in 10 to 20 cycles per second. It also reports that temporal noise is even more obvious
than spatial noise.
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Figure 1.4: Ghost effect and inaccurate disparity map

Figure 1.5: disparity map sequence without temporal consistency

Hardware overhead is a problem when implementing a dyancmic programming al-
gorithm on FPGA/ASIC. In this thesis, we chose dynamic programming algorithm to
implement the global optimization function in stereo matching computation flow. Al-
though the quality of the disparity map shows outstanding performance in Middlebury
benchmark [43], tremendous hardware utilization is required for SoC implementation. If
we apply scanlin-based dynamic programming algorithm in stereo matching computa-
tion flow, it will require O(W ·D2

max) computational complexity and (W ·Dmax ·Dbit)
memory space for the computation. The term W represents the image width, and Dmax

represents the maximum disparity range. It is preferable to keep the memory on-chip
because off-chip memory introduces extra throughput and cost problems. Therefore,
algorithm selection for resource optimization is one of the goals in this thesis work.

1.3 Solution and Contribution

Two algorithms are applied on the design of the Stereo Matching Engine to improve the
quality of the disparity map. In order to achieve a high quality in the disparity map,
Dynamic programming algorithm [16] is introduced into stereo matching computation
flow for global optimization. The smoothness assumption with the Potts model reserves
the disparity discontinuity and also covers the texture-less region that can’t be handled in
a local algorithm. Then a left-and-right-check algorithm [16] and a cross-based algorithm
[49] are used for disparity map refinement. The stereo matching flow shows that the
above-average quality of the disparity map. According to Middlebury’s benchmark [43],
a 6.6% average pixel error rate is achieved based on the evaluation of four frequently
used test sets. In this thesis, a couple of algorithm improvement proposals are further
introduced into the stereo matching computation flow:



1.3. SOLUTION AND CONTRIBUTION 5

• A simple temporal consistency method is used to enhance the disparity map se-
quences by adjusting the matching raw cost based on the previous disparity map
and image (luminance) information. After integrating with dynamic programming
and refinement stage, the stability and quality of the disparity map sequence can
be greatly improved.

Furthermore, a hardware efficient stereo matching architecture with dynamic pro-
gramming algorithm is presented. In addition, a couple of memory optimization methods
are further proposed to improve the hardware resource requirement:

• We choose Potts model as the smoothness function for the dynamic program-
ming algorithm. By rewriting the energy minimize function, the computational
complexity can be reduced from O(W · D2

max) to O(W · Dmax) , and the mem-
ory consumption is reduced from (W · Dmax · Dbit) to (W · (Dmax + Dbit). The
term W represents the image width, and Dmax represents the maximum disparity
range. We also propose a hardware efficient memory architecture by using a single
2-Port BRAM with a sophisticated memory mapping mechanism instead of the
conventional ping-pong BRAM architecture. All in all, the on-chip memory can
be reduced 11 times without quality loss.

• Run-length coding algorithm is first proposed on disparity map data compression.
In this thesis, it is applied on reducing the on-chip memory consumption of post
processor. Our experiments shows that the compression rate can reach above 12
times with almost no loss of quality. In the proposed new memory architecture with
run-length coding encoder/decoder, it achieves a 4.75 times of memory reduction
rate. The high compression rate of run-length the disparity map by run-length
coding shows a promising solution for disparity map compression.

To construct IMEC 3D TV SoC, we design and implement extra peripheral compo-
nents to support Stereo Matching and View Synthesis Engines. Those components are
encapsulated in IMEC 3D TV SoC. More specifically, they are:

• A dedicated memory hierarchy is proposed and implemented to support frame
buffering for temporal consistency function. The memory hierarchy successfully
cooperates with stream processors by using pre-fetch and data burst techniques.

• Color space converters are designed to perform RGB-YCbCr and YCbCr-RGB
conversions for the SoC design. Two hardware efficient designs are compared and
evaluated from quality, hardware consumption, and flexibility aspects.

• Video signal adaptors are designed for input sequences synchronization, memory
data extraction, and output display signal generation based on VGA standards.

Finally, the system integration work is prototyped and evaluated on EP3SL150
FPGA. We integrate the designs including video adaptors, color space converters, stereo
matching engine, and memory hierarchy with a view synthesis engine provided by the
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research group from NCTU (National Chiao Tung University). So far, the 3D TV proto-
type is capable of processing up to XGA format (1024x768@60FPS 65MHz Pixel Rate)
of video streams in real-time performance. Users can adjust the depth intensity of 3D
contents through on-board buttons and can watch anaglyph or synthesized stereoscopic
video from 2D or 3D TV through IMEC 3D TV solution.

1.4 Overview of Chapters

The following chapters discuss this thesis works from algorithm selection to hardware
implementation. The design works cover from individual components to integrated
system.

In Chapter 2, the related background of stereo matching is introduced.

In Chapter 3, a depth extraction flow is presented. Based on the depth extraction
flow, we evaluate the performance and hardware complexity. Then, several techniques
and proposals are introduced to optimize the disparity map sequences quality and
hardware usage.

The proposals in Chapter 3 are evaluated in Chapter 4. The designs are estimated
based on three aspects: image/video quality, hardware utilization, and real-time
performance.

In Chapter 5, we apply the Stereo Matching Engine design on IMEC 3D TV SoC.
The overview of the system architecture will first be introduced. Then we will mention
about the supporting peripherals, including memory hierarchy, color space converters,
and video signal adaptors.

In Chapter 6, we evaluate the proposed IMEC 3D TV SoC design for EP3SL150
FPGA platform.

In the final chapter, the thesis work is summarized. In addition, several suggestions
for future work and relative applications will be mentioned.



Background on Stereo

Matching and Related Works 2
Stereo matching algorithm extracts the depth information from stereoscopic image pairs.
The depth information refers to the displacement of corresponding points on the other
image. In general, the displacement is quantified to the disparity value which is located
in a so-called disparity range. Finally, the disparity map is constructed from the full-
frame pixel number of disparity value. Figure 2.1 shows the disparity maps that are
rendered from stereoscopic image pairs and displayed in gray scale. With the disparity
map, it is possible to reconstruct a 3D scene by using triangulation method.

Figure 2.1: Example of disparity maps

There are two main classes of correspondence matching algorithms: feature-based
and correlation-based. A feature-based approach refers to searching correspondence by
matching sparse sets of image features. The image features are usually derived from
feature-identified methods such as edge detection. The other approach, correlation-
based, refers to searching for the best correlation pixel on the target image by matching
the homologous pixel within disparity range. The matching image intensities are usually
derived from a window of pixels. This thesis will only focus on a correlation-based
approach because of its robustness and simplicity for real-time hardware implementation.
In Section 2.1, the concept of Epipolar geometry is introduced as the background to a
correlation-based approach. Section 2.2 sums up the correlation-based stereo matching
algorithm for both local and global stereo matching approaches. In Section 2.3, we
conclude with some related researches about the stereo matching for sequences.

7
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2.1 Background of Epipolar Geometry and Image Rectifi-

cation

Image rectification is an important step to simplify the stereo matching space from two
dimensions to one dimension searching space. Because the stereo video is not always
taken from the well horizontally-aligned cameras, as Figure 2.2 shows, the mapping
work is based on the concept of Epipolar line geometry [15][2]. In the example, the
upper two images are not taken from two perfectly aligned cameras. The yellow Epipolar
lines of the left image are mapped to different positions on the right image. Therefore,
the work of image rectification [42][32][6] uses the given intrinsic and extrinsic camera
parameters which includes camera rotation, translation, and rotation information to
align the Epipolar lines of two projected points on the new image planes.

Figure 2.2: Stereo image pair rectification [29]

2.2 Background of Disparity Map Extraction Flow: Local

and Global Approaches

This section introduces the disparity map extracting work flow in general correlation-
based approaches. Referring to Scharstein and Szeliski’s taxonomy [13], a stereo algo-
rithm generally includes four steps that are briefly summarized in Figure 2.3.

Figure 2.3: Disparity map extraction flow

PS. Local disparity computation algorithm generally performs all of steps but
without global optimization in order to obtain accurate disparity map. Global disparity
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optimization algorithm sometimes ignore step 2 (cost aggregation) because the algorithm
itself covers enough neighborhood pixel information.

The local stereo matching algorithm performs the matching computation only within
a finite disparity range. In the matching cost computation step, the matching cost can be
calculated from window-based matching algorithms such as sum-of-squared-difference
(SSD), sum-of-absolute-difference (SAD), or census-transform (CT) [33], since the
matching cost reflects the accuracy of the disparity map. Cost aggregation, which sums
a region of matching cost, includes more information around its neighbor pixels. It is
generally used in local algorithms. After the matching costs are derived, the disparities
are computed by the winner-take-all (WTA) strategy [13]. The WTA strategy selects
the displacement position which possesses minimal matching cost value. The winner
displacement is regarded as the disparity value. Finally, disparity refinement techniques
such as consistency check and disparity voting are implemented to increase the accuracy
of disparity map. All in all, the local algorithm normally relies on enforcing the
matching cost computation and cost aggregation stages.

The global algorithm optimizes the WTA strategy with an energy function which in-
troduces a smoothness assumption. With the smoothness assumption, global optimiza-
tion can handle the texture-less regions that local algorithms can’t handle. However, it
requires more hardware resource than the local algorithm. The state-of-art global algo-
rithms which are based on energy minimization include graph cuts [5], belief propagation
[35], and dynamic programming [16]. In this thesis, we choose scanline-based dynamic
programming approach to implement the global optimization function.

2.2.1 Matching Cost Computation

The simplest matching cost computation is pixel-based matching cost. The pixel-based
matching techniques refer to the two most common methods: absolute difference (AD)
and squared difference (SD). Table 2.1 lists the definition of AD and SD [40]. However,
the raw matching cost generation only involves a single pixel of information on stereo
image pair. To enhance the pixel-based matching cost approach, area-based matching
cost approaches [23] are proposed to improve the problems that pixel-based approaches
have.

2.2.2 Matching Cost Aggregation

The cost aggregation step aggregates raw matching cost within a certain shape of the
neighborhood region in order to increase the matching accuracy. In area-based matching
cost approaches, the most commonly used techniques are Sum of Absolute Intensity
Difference (SAD), Sum of Square Difference (SSD), Normalized Cross Correlation
(NCC), Rank, and Census Transform. The functions are summarized in Table 2.2.
In recent years, the Census Transform approach has become popular in the stereo
matching community because of its robust performance. The previous research work
from Chang [7], Heiko [14], Bleyer [27] show Census Transform performs outstandingly
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Table 2.1: Definition of absolute difference and square difference
Matching
Cost Alg.

Description Definition

AD

Absolute difference approach ag-
gregates the color(luminance) dif-
ference of reference pixels and tar-
get candidate pixels.

f(u, v, d) = |Iref (x, y)− Itar(x+ d, y)|

SD

Square difference approach squares
and aggregates the difference of
reference pixels and target candi-
date pixels.

f(u, v, d) = (Iref (x, y)−Itar(x+d, y))2

against other approaches in both local and global stereo matching algorithms. The
advantage of census-transform is that it only includes the information about the
luminance relationship of the central pixel and neighboring pixels. Since no luminance
difference value is involved in cost generation, it is robust to the luminance and gamma
variations of stereo sources.

In the case of Census Transform matching cost function, the raw matching cost
is generated from the hamming distance of the reference pixel and the target pixel
of stereo image pairs. 2.4 is an example that shows the distance (raw cost) of two
census series. The hamming distance of 01001001 and 00001111 is 3 because 3 bits are
unmatched. The higher the raw matching cost represents the lower similarity between
reference pixel and candidate matching pixel.

Figure 2.4: Census transform and hamming distance to generate raw matching cost

In advance, Figure 2.5 shows different cost aggregation region strategies, from coarse
to fine [50]: fixed window, multiple window, adaptive shape, and adaptive weight. The
fixed window approach is the simplest method. Although it possesses low computation
complexity, it performs badly on boundary, slant surface, and repetitive pattern
regions. The multiple windows approach [29] enhances the fixed window. A number of
sub-windows are predefined to make the support region, which is not only constrained
to rectangular shape. Another approach is the adaptive shape method. It partitions
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Table 2.2: Definition of area-based matching cost functions
Matching
Cost Alg

Description Definition f(u, v, d)

SAD

Sum of Absolute Difference
sums up the absolute differ-
ences in the corresponding re-
gion of pixels. (such as square
window)

∑

(x,y)∈B(u,v) |Iref (x, y)− Itar(x+ d, y)|

SSD

Sum of Square Difference
squares and aggregates the
differences in the correspond-
ing region of pixels. (such as
square window).

∑

(x,y)∈B(u,v)(Iref (x, y)− Itar(x+ d, y))2

NCC

Normalized Cross Correla-
tion. The cross correlation is
normalized by the mean value
in the block. Higher NCC
stands better match.

∑
(x,y)∈B(u,v)(Iref (x,y)−µtar(x+d,y))·(Itar(x+d,y)−µtar(u+d,v)))

2
√∑

x,y∈B(u,v)(Iref (x,y)−µtar(x+d,y))2 ·(Itar(x+d,y)−µtar(x+d,v))

Rank

Rank transform calculates the
number of neighbor pixels
which have the value lager
than the central pixel. The
matching cost is calculated
from the absolute difference of
the two ranks.

∑

(x,y)∈B(u,v) |Rankref (x, y)−Ranktar(x+ d, y)|

Rank(u, v) =
∑

(i,j)(u,v) L(i, j)

L(i, j) =

{

0 , I(i, j) > I(u, v)

1 , I(i, j) ≥ I(u, v)

Census

Census Transform encodes
the comparison result of cen-
tral pixel and neighbor pix-
els (window) into a bit string.
The matching cost is calcu-
lated from the hamming dis-
tance of census bit string of
corresponding matching can-
didate.

f(u, v, d) =
∑

(x,y)∈B(u,v) Hamming(Censusref (x, y)−
Censustar(x+ d, y))

Census(u, v) = Bitstring(i,j)∈R(u,v)(I(i, j) ≥
I(u, v))

the image in regions with similar color intensity and aggregates costs within the similar
segmentation. Cross-based approach [49] is one example of adaptive shape methods
thas is proposed by Zhang. The last but the most accurate one is adaptive weight
[22] [17]. It assumes that the nearest pixels with similar intensity to the central pixel
share the same disparity value. Based on the assumption, the weight of the intensity
difference to the central pixel is gradient based on distance. By using adaptive weight
method, it helps achieve highest matching performance comparing to other methods.
However, the computational complexity is obviously higher than others.

2.2.3 Disparity Computation and Optimization with Dynamic Pro-

gramming Algorithm

There are two categories of disparity computation approaches: local stereo matching
and global optimization method. Both approaches have pros and cons on computational
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Figure 2.5: Categories matching cost aggregation approaches from coarse to fine.

resource and matching quality.

[Local Stereo Matching] The local stereo matching method computes the disparity
value by selecting the disparity candidate which possesses the minimum raw cost value.
This method is so-called local winner-take-all (WTA) strategy [13]. It selects the corre-
sponding point (disparity) that has minimum raw cost. The raw costs are generated from
the reference pixel and the matching target corresponding candidate pixels on the other
image, using the matching cost generation/aggregation methods that were mentioned
in the previous section. Then the disparity value is chosen from the disparity candidate
that possesses the minimum raw cost. The distance between the reference pixel and
the selected target pixel is regarded as a disparity value. Figure 2.6 is an example
that illustrates matching one pixel from right image to the left image on an Epipolar line.

Figure 2.6: Example of matching corresponding pixel

[Global Optimization]

Energy Function

The global optimization algorithm computes the disparity with energy function
which introduces the smoothness assumption for global optimization. An additional
constraint is added to supports smoothness by penalizing changes of neighboring dispar-
ities. Therefore, the smoothness constraints can be treated as an energy minimization
problem. The energy function is typically defined as 2.1.
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E(d) = Edata(d) + Esmooth(d) (2.1)

where d ∈ [0, Dmax − 1]

Edata(d) =
∑

j∈N

C(j, d) (2.2)

where C( ) is matching cost function

Esmooth(d) =
∑

j∈N,d′∈[0,Dmax−1]

λ · S(d, d′) (2.3)

where S( ) is smoothness function. λ is a scaling coefficient, which adapts to the luminance

variation of adjacent pixels. It provides sharper depth discontinuity when encountering edge

regions.

The first term represents the sum of matching costs for each disparity. The
second term is a smoothness function, which generates a penalty value to smoothness
assumption based on the disparity distance in adjacent pixels. λ is a scaling parameter
which adapts to the luminance variation of adjacent pixels in order to provide sharper
disparity discontinuouity. The smoothness function models will be further introduced
in the next paragraph. The energy function is widely used in global optimization
approaches such as Dynamic Programming [16], Graph Cut [5], and Belief Propagation
[35]. In this thesis, we will focus on scanline dynamic programming algorithm because
of its hardware-friendly trait.

The second term, smoothness cost function, produces a penalty value based on
the distance of d and d’ pixels’ disparities. d and d’ are adjacent pixels. The idea is
to impose cost penalty on disparity variation in order to increase the smoothness of
disparity map. The higher penalty value reduces the chance of the disparity candidate
to be chosen in winner take all(WTA) step, and vice versa. Thus this increases the
chance that the disparity value of d pixel remains the same as d’ pixel. In the following,
we will conclude the most common used smoothness function models.

In the linear model, the higher distance between the disparities of pixel d and d’
generate a higher smoothness penalty. Figure 2.8 illustrates the gradient penalty costs
are added on different disparity positions. This leads the disparity to be changed gradu-
ally only within small steps. The linear model performs outstanding in slanted surfaces.
However, it performs badly in the disparity continuity regions (edge). Figure 2.9 is
an example shows the blurrd edge in the disparity discontinuity region. To solve the
weakness of the linear model, a truncated constant penalty value k is introduced to
improve the linear model. The penalties of high distance between the disparities of
d and d’ are limited to k in order to preserve discontinuous disparity regions (Figure 2.7).

Potts model preserves the discontinuous edges in disparity map by only imposing
cost penalty on disparity change. Figure 2.11 illustrates the cost penalties are added
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Table 2.3: Common used smoothness function models

Model Name Smoothness Function
Computational
Complexity

Linear Model S(d, d′) = |d− d′| O(D2)
Truncated Lin-
ear Model

S(d, d′) = min(|d− d′|, k)
where k is user-defined truncation constant

O(D2 +D)

Potts Model
S(d, d′) =

{

0 , if d = d′

C , if d 6= d′

where C is a constant introduces smoothness cost
penalties

O(D)

Modified Potts
Model

S(d, d′) =











0 , if d = d′

C1 , if |d− d′| = 1

C2 , if otherwise
where C1 and C2 introduce constant smoothness cost
penalties, and C1 is lower than C2

O(2D)

Second(Higher)
Order Model

S(p, q, r) = |dp − 2dq + dr|
where q and r are p’s left and right neighborhood
pixels

O(D3)

Truncated
Second Order
Model

S(p, q, r) = min(|dp − 2dq + dr|, k)
where k is user-defined truncation constant

O(D3 +D)

Figure 2.7: Example of smoothness cost penlties by truncated linear model

on the disparity dissimilar positions in energy function. Figure 2.10 is an example of

Figure 2.8: Example of smoothness cost penlties by linear model
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Figure 2.9: Linear Model Figure 2.10: Potts Model

a Potts model which performs superior in disparity discontinuous regions than linear
model. However, the Potts model performs poorly in reconstructing slanted surfaces.
To solve this weakness of Potts model, a modified Potts model introduces a lower cost
penalty to trivial dissimilarity of disparities. The modification not only allows the Potts
model to handle slight slanted surfaces but also permits disparity discontinuous regions.

Figure 2.11: Example of smoothness cost penlty by Potts model

The Second (higher) order model is proposed by Woodford [46], which improves the
disparity map in curvature surface regions. The second order model detects slanted
planes and assigns lower cost penalty to them. Besides, the truncated concept can
also be applied to this model. In recent researches, this possesses the state-of-the-art
disparity quality among the above mentioned models. However, the computation
complexity is relatively complex than the first order model.

Dynamic Programming

Dynamic programming (DP) solves the complex problem in a coarse-to-fine manner.
Since stereo matching problems can be formulated as searching the optimal disparity
values within 2D image or 1D (i.e. along image row) through minimizing the energy
function E(D), dynamic programming is proposed to solve the stereo matching problem.
However, 2D image energy minimization problem is much more complicated than 1D
energy minimization problem [41] [4] Therefore, dynamic programming in stereo
matching commonly refers to the 1D scanline energy minimization problem.
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After the cost aggregation step, each pixel position has Dmax (maximum disparity
range) number of matching cost C(j, d), where the term j represents the position on
the image row (scanline) and d is defined within the disparity range. Then the DP
algorithm can be computed in two steps, forward pass and backward pass, to find the
optimal disparity solution for each scanline.

1. Forward Pass

Figure 2.12: Example of forward pass function

The forward pass procedure seeks optimal backward disparity entries (path) along
a scanline by selecting the minimum matching cost energy with smoothness as-
sumption. Figure 2.12 illustrates the forward pass procedure as an example. As
we mentioned before, most global optimization methods can be regarded as energy
minimization problems. In the formula of forward pass Equation 2.4, the second
term can be represented as an energy function which includes aggregation, match-
ing cost and smoothness penalty terms. Therefore, the second term searches for
the minimum sum of aggregation, matching cost and smoothness penalty for each
disparity candidate of pixel along the scanline. In each iteration, the winner of
minimum aggregation cost energy (second term) will be summed with matching
cost (first term) as an aggregation cost again for the next iteration of the calcu-
lation. When executing a forward pass step, the dynamic programming tree path
information is stored in Backward Path array Equation 2.5 for a later backward
pass. It is worthy of note that the minimum selection path is the information that
the backward pass step is searching for but not the aggregation cost.

Cagg(j, d) = Craw(j, d) +minj∈scanline W,d′∈[0,Dmax−1]{Cagg(j − 1, d′) + S(d, d′)} (2.4)

where d ∈ [0, Dmax − 1]

Cagg(j, d) is a matching cost aggregation array

Craw(j, d) is raw cost array

S( ) is smoothness cost function

Backward Path(j, d) = arg mind′∈[0,Dmax−1](Cagg(j − 1, d′) + S(d, d′)) (2.5)
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where d ∈ [0, Dmax − 1]

2. Backward Pass

Figure 2.13: Example of backward pass procedure

The backward pass step tracks the backward pass paths in order to obtain an
optimal solution over the scanline. In the beginning of the backward pass step,
the initial disparity entry of the last point is decided by the minimum winner of
disparity matching cost candidates as Equation 2.6. Afterward, the backward
path searching Equation 2.7 follows the backward paths from the last pixel of the
scanline back to start-up pixel. Finally, the final backward pass path is regarded as
the optimal disparity solution over the scanline. Figure 2.13 shows the backward
pass procedure as an example.

Initially, the entry point at the end of the line (W −1, d(W −1)) is computed from:

d(W − 1) = arg mind∈[0,D]Cagg(W − 1, d) (2.6)

where W-1 represents the last pixel of image scanline

Then we traverse backwards from j = W − 1 to j = 0 along the paths that were
built in the forward pass stage iteratively:

d(j − 1) = Backward Path(j, d(j)) (2.7)

2.2.4 Disparity Map Refinement

This section surveys three common used disparity map refinement algorithms [49]
including Left-Right Consistency Check, Cross-based Disparity Voting, and median
filter for design references.

1. Occlusion handling - Left-Right Consistency Check Occlusion issue is
introduced from the lack of correspondence matching position in stereo image
pairs. Figure 2.14 illustrates that the marked regions are unmatchable on the
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stereo image pairs. There is no corresponding position on the other scene because
the cover of foreground object. The same scenario happens on both scenes. In
general, occlusion regions usually adhere to object boundaries.

Figure 2.14: Example of occlusion problem

Left-Right consistency check is a commonly used technique to detect the occlusion
regions of disparity map. Equation 2.8 checks whether the disparity value on
left disparity map shares the same disparity value with the corresponding pixel
position of the right disparity map. The same scenario happens on checking
the right disparity map, Equation 2.9 checks whether the disparity value on
right disparity map shares the same disparity value with the corresponding pixel
position on the left disparity map. If their difference is larger than a threshold,
we can regard the disparity pixel is inconsistent.

Consistency check of left disparity map

{

Good Disparity , if |dright′(x− dleft(x, y), y)− dleft(x, y)| ≤ Threshold

Occlusion , if |dright′(x− dleft(x, y), y)− dleft(x, y)| > Threshold
(2.8)

Consistency check of right disparity map

{

Good Disparity , if |dleft′(x+ dright(x, y), y)− dright(x, y)| ≤ Threshold

Occlusion , if |dleft′(x+ dright(x, y), y)− dright(x, y)| > Threshold
(2.9)

Since the occlusion regions can be detected by L-R consistency check method, the
simplest solution to fix them is to replace the occlusion regions by the nearest
good disparity pixels. Taking the left occlusion map as an example, the occlusion
part can be replaced by the nearest good disparity value from the left side. On the
contrary, the right occlusion map can be replaced by the nearest good disparity
from the right side. Figure 2.15 demonstrates that the occlusion regions can
be replaced by the nearest good disparity values from a different direction in
left and right scenes. Another solution is to replace the occlusion region by the
good disparity value from the same segment. In the next item, disparity voting
technique will be introduced, which are based on the idea of image segmentation.

2. Disparity Voting A disparity voting technique is applied based on the seg-
mentation region method. It is assumed that the segmentation with similar
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Figure 2.15: Simple occlusion handling method

color intensity shares the same disparity value. Therefore, the disparity voting
stage counts the disparity values within the support region to the central pixel
into a histogram and then chose the winner as a disparity value. Figure 2.16
demonstrates an example of 2D support region voting for disparity map refinement.

Figure 2.16: 2D disparity voting

In this thesis, we apply the cross-based algorithm that was proposed by Zhang
[49] to construct the support segment region. The cross-arms information is used
again to include the voting members by masking. The number of disparity values
within the support region are counted into a histogram. The disparity value has
maximum population within the support region is regarded as the voting result.
In Lu’s proposed design [51], he simplified the 2D voting into two-pass 1D voting
in order to reduce the computational complexity Figure 2.17. The maximum
computational complexity can be reduced from O(N2) to O(N), where N is the
maximum double lengths of the cross-arm.

Figure 2.17: Two-pass 1D disparity voting
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3. Median Filter Median filter is wildly used in image processing applications to
eliminate the so-called pepper and salt noises. It is implemented as a N × N
window. Median filter selects the median value within the window pixels to form
the final result of central pixel. It helps alleviate speckle and impulsive noises.

2.3 Temporal Consistency for Disparity Sequence

Previous researches [10][26][8] have proposed using energy minimization approach to
enhance the temporal consistency of disparity map sequences. The general idea is to
update the matching cost based on the information of motion detection. A disparity
map generation reference software, DERS (Depth Map Reference Software), that comes
from MPEG community also achieves temporal consistency by updating the cost function
for Graph Cut stereo matching algorithm. The DERS defines the motion regions with
pixel blocks by using mean absolute difference (MAD) method with threshold value. In
the static regions, the data cost corresponding to the disparity value of the previous
frame is scaled down. The result shows that the stability of disparity map sequences is
enforced.



Stereo Matching Algorithm

Implementation and

Optimization on Hardware 3
This thesis proposes a SoC architecture for stereo matching computation in Figure 3.1.
The arechitecture includes three parts: pre-processor, dynamic programming, and
post-processor. In the design of pre-processor, the matching costs are generated
from census transform and vertical aggregation functions. In the disparity matching
processor, dynamic programming algorithm is chosen for disparity map computation
and optimization step. Finally, the post-processor refines the disparity maps by L-R
consistency check function, cross-based disparity voting, and median filter. Beyond
the stereo matching engine, a external memory hierarchy is designed to support frame
bufferring function for enhancing the temporal consistency of disparity map sequences.
In this thesis, we will focus on the gray regions include Dynamic Programming and
Vertical Voting functions. The peripheral components include video adaptors, color
space converters, and memory hierarchy will be proposed in Chapter 5 to support the
stereo matching engine .

Figure 3.1: System architecture of stereo matching engine

Two proposals are implemented on Dynamic Programming and Vertical Voting
functions to improve the hardware utilization. Because dynamic programming algorithm

21
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requires tremendous memory resources for storing the backward path information,
this thesis will propose a hardware efficient architecture in Section 3.1. In addition,
an unconventional on-chip memory architecture with run-length encoder/decoder will
be proposes in Section 3.2 to reduce the on-chip memory consumption of the Vertical
Voting Processor.

Temporal inconsistency is an issue in disparity map sequences. The flickering noises
are caused from the lack of links between disparity maps in the stereo matching algo-
rithm. Any reasons such as camera noise, depth mismatching, occlusion problem, etc.
could cause disparity map sequences be inconsist. Therefore, Section 3.3 introduces
temporal consistency algorithm into the stereo matching computation flow in order to
increase the video stability.

3.1 Hardware Efficient Dynamic Programming Processor

This section proposes a hardware-friendly dynamic programming architecture. As in
the synthesis results that have been mentioned in the beginning of this chapter, dynamic
programming approach requires tremendous a memory space to store the scan line length
of backward path information. Therefore, this section will implement a path data sim-
plification idea that is inspired by Zhang Ke by taking the advantage of Potts model
smoothness function. Finally, a dynamic programming architecture with Potts model
smoothness function design will be presented in the last subsection.

3.1.1 Dynamic Programming Algorithm and Architecture Co-design

First, the parallelism of dynamic programming algorithm is explored for hardware im-
plementation. Equation 3.1 shows the conventional minimum energy searching method
of dynamic programming with Potts model smoothness function. The computational
complexity is O(W ·D2

max) and the memory consumption is (W ·Dmax ·Dbit). The term
W represents the image width, and Dmax represents the maximum disparity range. To
make the hardware design be more efficient, we simply rewrite the minimum energy
searching functions in Equation 3.2.

Cagg(j, d) = Craw(j, d) +mind′∈[0,Dmax−1]{Cagg(j − 1, d′) + S(d, d′)}

Backward Path(j, d) = arg mind′∈[0,D−1]{Cagg(j − 1, d′) + S(d, d′)}
(3.1)

where the smoothness function S(d, d′) =

{

0 , if d = d′

C , if otherwise
is potts model

d and d′ are adjacent disparity arrays ∈ [0, Dmax − 1]

j represents the pixel position of a scanline

C is constant for smoothness cost penalty
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CminAssum = mind′∈[0,Dmax−1]{Cagg(j − 1, d′)}+ C

Cagg(j, d) = Craw(j, d) +min{CminAssum, Cagg(j − 1, d′)}

Backward Path(j, d) = arg min{CminAssum, Cagg(j − 1, d′)}

(3.2)

The minimum aggregated cost is computed firstly and summed up with a smoothness
cost penalty to form a minimum aggregate cost assumption CminAssum. Then the term,
CminAssum, will be compared with the original aggregation cost array Cagg(j − 1, d′).
The compared results represent the encoded backward path information which will be
stored into on-chip Block RAM. It is noteworthy that only the path information, the
selection information of minimum aggregation cost, is needed for the backward step but
not the minimum cost itself. If the aggregate cost is less than CminAssum, the backward
path will point to the same disparity position. If CminAssum is less than the aggregate
cost value Cagg, the backward path will point to the corresponding disparity value of
CminAssum. After rewriting the forward pass equation, the computational complexity
can be reduced from O(W ·D2

max) to O(W ·Dmax). The term W represents the width
of image, and Dmax represents the maximum disparity range.

3.1.2 Dynamic Programming - On-chip Memory Optimization - Back-

ward Path Data Compression

The backward path information can be further simplified in order to reduce the
on-chip memory requirement. In Equation 3.2, the memory requirement for storing the
backward path can be formulated in Equation 3.3.

BRAM for backward path(bit) = (W − 1)×Dmax ×Dbit (3.3)

where W represents scanline length

Dmax is maximum disparity range

Dbit is the bit numbers of backward pass path information

To reduce the memory consumption, the backward path can be represented in
Equation 3.4. Thanks to the characteristic of the Potts model, the backward path only
has two decisions in the dynamic programming tree: to retain the same disparity or
jump to the path which has the minimum sum of aggregation cost CminAssum. After
applying the proposed backward path reduction idea, the memory requirement for
storing backward path is formulated in Equation 3.5. The memory stores the decision
of the backward path in 1 bit and the path with minimum aggregation cost assumption.
It uses 1 bit to store the backward path decisions, jump (1) or not jump (0) to the
disparity assumption with minimum aggregation cost, instead of using full Dbit physical
path. Equation 3.5 shows the memory requirement after the simplification. The Dbit

term contains the maximum disparity range number of 1 bit encoded paths, and D
bit is the path with the minimum aggregation cost assumption. Finally, the memory
consumption complexity is reduced from (W ·Dmax ·Dbit) to (W · (Dmax +Dbit)). The
term W represents the image width, and Dmax represents the maximum disparity range.
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Backward Path(j, d) =

{

1 , if CminAssum ≤ Cagg(j − 1, d)

0 , if CminAssum > Cagg(j − 1, d)

Backward MinC Path(j) = arg mind∈[0,D−1]{Cagg(j − 1, d)}

(3.4)

where j ∈ [0, Image Width− 1]

D represents maximum disparity range

BRAM for backward path (bit) = (W − 1)× (Dmax +Dbit) (3.5)

where W represents scanline width

Dmax is maximum disparity range

Dbit is the bit numberof backward path information

Figure 3.2 is an example shows each backward path information is encoded in one
bit. The red dot represents the path with minimum aggregation cost assumption.

Figure 3.2: Forward pass with backward path encoding

In the backward pass step, the backward path information will be decoded as
the Equation 3.6. When the path decision is 0, the backward entry retains the same
disparity. When the path decision is 1, the backward entry will point to the path with
the minimum aggregation cost assumption. Finally, Figure 3.3 is an example that shows
how to decode the backward path data and traverse the procedure work.

d(j − 1) =

{

Backward MinC Path(j) , if Backward Path(j, d) = 1

d(j) , if Backward Path(j, d) = 0
(3.6)

where j represents image scanline pixels

3.1.3 Dynamic Programming - On-chip Memory Data Mapping

This thesis proposes using only one scanline length of 2-Port Block RAM (BRAM) to
store the backward path data for the Dynamic Programming architecture. 2-Port RAM
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Figure 3.3: Example of backward pass with decoded path data

allows that writing and reading commands can operate concurrently. As Figure 3.4
shows, the forward pass loop writes the new incoming backward path data into BRAM;
meanwhile, the backward pass loop reads the backward path data that was generated
for the previous scanline from BRAM. So the Dynamic Programming processor can keep
processing the matching cost inputs and generating disparity output simultaneously in
pipeline architecture. In order to avoid data conflict problem, a relatively sophisticated
address generation mechanism is proposed here. The memory reading address (backward
pass) is generated in a back and forth order, and the memory writing address (forward
pass) will follow the reading address in 1 cycle of delay. Figure 3.5 is an example of
memory address access pattern for 1024 data length of line buffer. By applying the 2-
Port-RAM and a sophisticated address generator, the Dynamic Programming processor
is able to achieve pipeline processing and utilize the on-chip memory efficiently.

Figure 3.4: DP operation sequence

3.1.4 Dynamic Programming Processor - Hardware Architecture

Finally, a hardware efficient Dynamic Programming architecture is proposed in Figure 3.6
and Figure 3.7. In the proposed hardware architecture, Equation 3.4 is applied to con-
struct the forward pass function, which generates encoded backward path information.
This design expands the maximum parallelism. Both the forward pass and backward
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Figure 3.5: Example of 2-port RAM access patterns

Figure 3.6: Forward Pass HW design

Figure 3.7: Backward Pass HW design

pass computations should complete in 1 clock cycle. The forward pass function processes
one set of matching cost array for one pixel at one time. In the meanwhile, the back-
ward pass function back tracks the path information that was stored in 2-port RAM and
generates disparity output for one pixel.
concurrently

3.2 Run-Length Coding Algorithm and Disparity Map Se-

quence

In this section, we first propose using a run-length coding algorithm to compress
disparity map data. Then we apply this idea to reducing the on-chip memory utilization
of Vertical Voting processor in our stereo matching engine.

From our observation, the output sequence of disparity map often shows a long
repetitive patterns. Figure 3.8 is an example of disparity sequence that is captured from
the output of Dynamic Programming processor. Therefore, it inspired us to encode
the disparity sequence to format [repeat count, disparity value]. This encoding
technique is so called run-length coding (RLC)[30]. The pseudo-code of run-length
encoder and decoder are presented in Equation 1 and Equation 2 separately.

In this thesis, we creatively apply run-length coding algorithm to the Vertical
Disparity Voting processor [51] architecture to reduce the on-chip memory resource.
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Figure 3.8: Disparity output from dynamic programming function.
The depth/disparity value can be represented in run-length coding format [Repeat count, Disparity

value]: [12, 13], [0, 5], [7, 9], [6, 14], [18, 7], [1, 2], [0, 3], [0, 2], [7, 0], [31, 5], [15, 5].

Algorithm 1 Run-Length Coding: encoder

while (1) do
if (disp 6= next input disp)or(count > max run length) then
output disp← disp
output count← count
disp← next input disp
count← 0

else
count← count+ 1

end if
end while

Figure 3.9 shows the original memory architecture of the Vertical Disparity Voting
processor. It takes 30 scanline lengths of 2-Port RAM (line buffer) to buffer the
output sequence of disparity map in a circular memory architecture. This memory
architecture is commonly used in stream processors to include both horizontal and
vertical dimensions of pixel data by using data-reuse technique. However, the 30 line
buffers will consume tremendous on-chip memory resources. Hence, we propose a new
memory architecture with run-length coding mechanism in Figure 3.10.

Different from the circular memory architecture, the proposed memory architecture
only writes the encoded run-length disparity sequence into one line buffer at a time;
meanwhile, the encoded run-length data are fetched out in parallel in order to access

Algorithm 2 Run-length coding: decoder

while (1) do
if (count 6= 0) then
output disp← disp
count← count− 1

else
output disp← next input disp
disp← next input disp
count← next input count

end if
end while
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Figure 3.9: Circular memory architecture for Vertical Diaprity Voting processor

Figure 3.10: Proposed memory reduction architecture with run-length coding

vertical disparity pixels for computation. The MUX array is used to map the disparity
pixels to a corresponding vertical positions. Although the proposed memory architecture
is more sophisticated than the original circular memory architecture, the length of the
line buffers can be reduced dramatically in several magnitudes.

Unfortunately, the run-length coding algorithm does’t generate fixed-length ouputs.
The length of encoded sequence changes depend on the complexity of the disparity
map. In the other words, the length of line buffers should be long enough to store
the compressed disparity sequence. If the length of the compressed disparity sequence
exceeds the length of line buffer, the run-length encoder will discard them. Besides,
the decoder is designed to repeat the last valid disparity pixel when encountering an
incomplete run-length sequence. It shows a tradeoff between the length of line buffers
(on-chip memory resource) and pixel error rate. In the next Chapter, we will further
evaluate the optimal settings based on different complexities of disparity map sequences.
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3.3 Temporal Consistency for Disparity Sequence

To solve the inconsistent disparity video problem that was mentioned in Chapter 1, this
section applied a simple cost adjustment method based on Absolute Difference (AD)
algorithm to enforce the temporal consistency of disparity sequence. The temporal
consistency method encourages the static background to select the same disparity value
again; contrarily, it encourages motion regions to explore new disparity result. In our
proposed algorithm, the matching cost is adjusted based on the luminance variation
of the pixel in 2 frames. If the pixel luminance in the previous frame shares a similar
luminance value in current frame, the disparity value in the previous frame is expected
to be selected again. Equation 3.7 shows the matching raw cost adjustment function.
The corresponding raw matching cost to the disparity value will be scaled down when
the absolute difference of pixel luminances between previous and current frames is less
than a defined threshold value.

Craw =

{

Craw(j, d)× α , when (|Y(x,y,t) − Y(x,y,t−1)| < Threshold)and(d = d(x, y, t))

Craw(j, d) , otherwise
(3.7)

where j ∈ [1, Scanline width]

α represents a scaling down coefficient, Y(x,y,t) is the luminance value of the pixel in current

frame; Y(x,y,t−1) is the luminance value of the pixel in previous frame.

Figure 3.11 demonstrates that the corresponding matching cost is modified depend-
ing on the luminance variation of pixels in 2 frames.

Because the temporal consistency function requires the pixel luminance and disparity
information from current and previous frames, the system architecture of the stereo
matching engine has to construct a memory hierarchy for buffering history disparity
map and luminance image. The design of the memory hierarchy will be introduced in
the next chapter.
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Figure 3.11: Example of temporal consistency algorithm in dynamic programming



Evaluation of the proposed

Stereo Matching Hardware 4
This chapter summaries the experimental results of the stereo matching architecture for
last chapter. The proposed algorithms and hardware architectures are co-evaluated from
two points of view:

• Quality of disparity map and disparity sequences

• Hardware utilization and scalibility

• Computational performance

In the beginning of the last chapter, we proposed a stereo matching computational
flow. In Section 4.1, we measure the quality of disparity maps that are generated from
the Stereo Matching Engine with dynamic programming algorithm. In Section 4.2, we
measure the temporal quality of disparity map sequences that are generated from the
Stereo Matching Engine with temporal consistency function. Then, in Section 4.3, we
estimate the hardware usage of the proposed Dynamic Programming Processor design.
Afterward, in Section 4.4, the trade-off between compression rate (length of line buffers)
and pixel error rate are explored based on the proposed on-chip memory architecture with
run-length coding for Vertical Voting Processor. Section 4.5 evaluates the hardware usage
of the entire stereo matching design. Finally, the critical path of the Stereo Matching
Engine design is evaluated in Section 4.6.

4.1 Global Stereo Matching with Dynamic Programming

- Disparity Map Evaluation

The evaluation disparity maps are generated from the hardware model of the stereo
matching algorithm. Since the corresponding hardware RTL designs are implemented
in VHDL, we can also generate test disparity maps or video sequences by using RTL
simulation tools such as Modelsim and Candence Simulator.

Two evaluation models [13], Root-Mean-Squared Error(RMS) Equation 4.1 and Bad
Matching Pixel(B) Equation 4.2, are usually chosen to compute the matching quality
of disparity maps. The generated disparity maps are compared with the ground truth
disparity maps. The ground truth disparity maps are regarded as precise disparity maps,
which are produced from structured light system. In this thesis, we use an academic
evaluation benchmark tool, Middlebury Stereo Evaluation Benchmark [43], which is
provided by Middlebury University. It applies Bad Matching Pixel evaluation model on
disparity map quality estimation. In the Middlebury Stereo Evaluation website, three
error metrics are supported: unconcluded, complete image and disparity discontinuity

31
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regions. Therefore, it is possible to compute the percentage of bad matching pixels
regardless of non-occlusion regions or border regions. This provides a designer with
more flexibility to focus on improving specific region.

1. Root-Mean-Squared Error

RMS = (
1

N

∑

(x,y)

|dC(x, y)− dT (x, y)|
2 )

1
2 (4.1)

where N is the total number of pixels.

dC(x, y) is computed disparity map and dT (x, y) is ground truth map.

2. Percentage of Bad Matching Pixels

B =
1

N

∑

(x,y)

|dC(x, y)− dT (x, y)| > λd (4.2)

where λd is the disparity error threshold. Normally, it is set to 1.

Four commonly used academic stereoscopic images (including Tsukuba, Venus,
Teddy, and Cones [44]) are evaluated with ground truth disparity maps. The Middle-
bury’s stereo evaluation benchmark compares the average disparity map quality of the
four test sets with others’ stereo matching algorithms.

4.1.1 Parameter Exploration for Dynamic Programming Processor

There are two parameters have great effects on the performance of Dynamic Pro-
gramming Processor. One is the threshold for the absolute difference of adjacent pixel
luminances. If the absolute difference is larger than the threshold, the continuous
boundary is assumed on the disparity map. The other parameter is the smoothness
cost penalty from Potts model smoothness function. If the adjacent pixel is regarded
as a discontinuous boundary, the smoothness cost penalty will be scaled down in order
to provide the minimum energy selection function with more flexibility to select other
backward path. By contrast, the smoothness penalty will be kept high in order to
preserve the smoothness (select the same backward path again). In the following, we
will explore the optimal settings of the threshold (thc) and the smoothness cost penalty
C.

The evaluation starts from exploring the threshold. Then use the optimal fixed
threshold to explore the smoothness penalty. We do it iteratively until we get the optimal
result. Finally, the evaluation results Figure 4.1 show thc = 15 and C = 5 are the optimal
combination based on the average error rate of four test sets. The optimal error rate
achieves a 6.6% pixel error rate in average on Middlebury’s testbench Figure 4.2. The
disparity map results are showed in Figure 4.3.
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Figure 4.1: Parameter exploration for Dynamic Programming

Figure 4.2: Evaluation results from Middleburry’s benchmark

Figure 4.3: Ground truth disparity maps and test disparity maps
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4.1.2 Comparison of Local and Global Stereo Matching Approaches

In this subsection, we estimate the quality improvement of the disparity maps with the
help of dynamic programming algorithm. Without global optimization stage, the stereo
algorithm can be regarded as a local approach because it only uses WTA strategy for
matching computation.

Referring to Zhang’s work [52], we improve the winner-take-all stereo matching
method with Dynamic Programming algorithm. Zhang’s work achieves a 8.2% average
error rate on Middlebury’s Benchmark. After applying Dynamic Programming algorithm
in the stereo matching computational flow, the average error rate decreases to 6.6%.

4.2 Temporal Quality Evaluation for Disparity Map Se-

quences

In this section, the temporal quality of disparity map sequences is assessed through two
methods: empirical and VSRS. The main problem of temporal quality evaluation for
disparity map sequences is the lack of ground truth disparity video source. Therefore,
we first adapt empirical observation because it is the most straightforward way to eval-
uate the temporal quality of a disparity map sequences. The other evaluation method
measures the synthesis quality through View Synthesis Reference Software (VSRS) [36],
which is proposed by MPEG-FTV Group. VSRS requires both left and right disparity
maps that are extracted from multiple or stereoscopic cameras to generate the virtual
central view. The virtual central video sequences are then compared with the true central
video sequences in terms of PSNR. MPEG-FTV Group also provides a model, Temporal
PSPNR [53], to measure the temporal quality of the synthesized view. PSPNR model
classifies an image into two regions: static and motion regions. It converts the noise
perception sensitivity that is influenced by motion into a probability model. In the
motion regions, three types of noise are differentiated: plain, edge, and texture. There-
fore, we will use VSRS and PSPNR measurement tool 2.0 [53] that are supported by
MPEG-FTV community to measure the temporal consistency performance of our stereo
matching algorithm.

4.2.1 Parameter Exploration for Temporal Consistency

We explore the parameter α, which scales down the matching cost. The scaling
parameter not only influences the consistency effects of disparity map sequences but also
affects the disparity map quality because global algorithm is used. Therefore, we try to
explore the optimal configuration for α. Figure 4.4 illustrates that α = 0.9 achieves the
optimal PSNR and TPSPNR in the 100 frames in Book Arrival test sequences.

4.2.2 Evaluation of Temporal Consistency Function

The following captured disparity map sequences Figure 4.5 demonstrate the stability
of disparity sequence after temporal consistency function is introduced into the stereo
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Figure 4.4: Exploration of matching cost scaling parameter α with Book Arrival test set

matching algorithm. The flickering and mismatching disparity regions are reduced
obviously.

Since there is no standard ground truth video source that can be used to measure
the consistency of disparity map sequences, one solution is measuring the quality of syn-
thesized virtual sequences. To measure the influence of temporal consistency function to
the stereo matching algorithm, the PSNR and Temporal PSNR of synthesized virtual se-
quences are summarized in Figure 4.6 based on 100 frames of Book Arrival test sequences.

4.3 Hardware Resource Estimation of Dynamic Program-

ming Processor

In the last chapter, we proposed a hardware friendly dynamic programming architecture
for Stereo Matching Engine. Hence, the hardware utilization of the Dynamic Program-
ming Processor will be estimated in this section. The RTL circuit gate count is measured
by a Cadence RTL compiler with OSU academic TSMC 0.25 library.

4.3.1 Hardware Resource Estimation

Figure 4.7 shows the cell area of RTL circuit. We measure the gate count in different
disparity range scenarios. It shows that the cell area increases linearly when the
disparity range rises.

The on-chip memory consumption (BRAM) is evaluated in Figure 4.8. We also ex-
plore the scalability under different disparity ranges. It shows the memory consumption
increases linearly when the disparity range rises. We further compare the improvement
of on-chip memory utilization before applying 2-Port RAM and the path simplification
method. In disparity 64 scenario, the BRAM requirement of the Dynamic Programming
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Newspaper video sequence

Depth map sequence without temporal consistency

Depth map sequence with temporal consistency

Book Arrival video sequence

Depth map sequence without temporal consistency

Depth map sequence with temporal consistency

Figure 4.5: Temporal consistency empirical evaluation

Processor with path simplification design only takes one eleventh of 2-Port RAM.
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Figure 4.6: PSNR improvement of temporal consistency

Figure 4.7: RTL circuit gate count synthesis for Dynamic Programming Processor

4.4 Evaluation of the Memory Architecture with Run-

length Coding for Vertical Voting Processor

In last Chapter, we propose an on-chip memory architecture with run-length en-
coder/decoder to reduce the memory usage of the Vertical Voting Processor. However,

Figure 4.8: On-chip memory utilization estimation of Dynamic Programming Processor
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run-length coding is a variable length coding algorithm because the compression rate
various depending on the complexity of disparity sequences. Since the proposed memory
architecture uses fixed length line buffers (BRAM) to store the compressed disparity
scanline pixels, the length of line buffer should be long enough; otherwise, part of the
encoded disparity data will be discarded. Besides, we explore the range of run-length
counter because it relates to the compression efficiency and the BRAM utilization.
Thus, we propose a procedure to explore the trade-off between compression rate, bad
pixel rate, range of run-length counter, and hardware efficiency for different complexities
of disparity sequences.

To measure the error rate that is caused of the truncated length of line buffers and
different complexities of disparity sequences, we evaluate the decoded disparity map with
raw disparity map. Then, the percentage of bad pixels is computed from Equation 4.2.

4.4.1 Parameter Exploration for the Memory Architecture with Run-

length Coding

Figure 4.9 explores the bad pixel rate under different compression rates (truncated
length line buffer). Several common used stereoscopic test sets including Tsukuba,
Venus, Teddy, Cones [44], and Outdoor are chosen in the evaluation. First, we extrat
the disparity maps that are directly output from the proposed Dynamic Programming
Processor to be the control group. These disparity maps will be compared with
the disparity maps that are generated from the proposed memory architecture with
run-length coding function in bad pixel error rate.

Figure 4.9: Exploration of truncated line buffer length and pixel error rate

Figure 4.10 shows the disparity maps that are derived from different compression
rates by using the proposed memory architecture with run-length encoder/decoder. The
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disparity map, Outdoor, is able to tolerate more than a twenty times of compression
rate without losing quality. This is because of the high simplicity of the disparity map.
In contrast, the disparity map, Cones, can only achive a twelve times of compression
rate without losing quality because of the high complexity of the Cones’ disparity map.
Since the compression rate varies in different disparity map complexities, it should be
adjusted based on applications.

Figure 4.10: Disparity results by using the proposed memory architecture with RLC

Tsukuba Tsukuba 1:1 Tsukuba 1:15 Tsukuba 1:20 Tsukuba 1:30

Venus Venus 1:1 Venus 1:15 Venus 1:20 Venus 1:30

Teddy Teddy 1:1 Teddy 1:15 Teddy 1:20 Teddy 1:30

Cones Cones 1:1 Cones 1:15 Cones 1:20 Cones 1:30

Outdoor Outdoor 1:1 Outdoor 1:25 Outdoor 1:30

The range of the run length counter is another parameter that should be taken into
consideration when applying run-length coding. Figure 4.11 and Figure 4.12 illustrate
the evaluation results on Outdoor and Cones’ disparity maps when applying different
ranges of run length counter and compression rates. From the observation, the low range
run-length counter can only achieve a low compression rate without quality degradation
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because it requires longer length of line buffers to store repetitive disparity sequences.
In contrast, the higher range of run-length counter could achieve higher compression
rate without quality degradation.

Figure 4.11: Explore the range of run length counter (Outdoor)

Figure 4.12: Explore the range of run length counter (Cones)

In the case of the Cones’ disparity map, the compression rates, without losing
quality, stop increasing after a certain range of run-length counter. In order to
achieve better hardware efficiency, the range of run length counter should be chosen
optimally. The optimal compression rate is explored based on pixel error rate criteria.
Table 4.1 estimates the memory consumptions in different truncated lengths of line
buffer (compression rate) and different ranges of run length counters. Equation 4.3
illustrates the memory consumption formula for the proposed memory architecture
with run-length encoder/decoder. Taking the Cones’ disparity map for example, a 32
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run-length counter and 64 truncated length line buffer are the optimal configurations to
achieve both optimal on-chip memory consumption and lossless pixel error rate.

BRAM size = line buffer length×(bit number of run length counter+bit number of disparity value)
(4.3)

Table 4.1: Hardware resource comparison of run length counter and compression rate
Range of Run Length Counter 4 (2 bit) 8 (3 bit) 16 (4 bit) 32 (5 bit) 64 (6 bit) 128 (7 bit) 256 (8 bit)
512 Line Buffer Length(50%) 4096 4608 5120 5632 6144 6656 7168
256 Line Buffer Length(25%) 2048 2304 2560 2816 3072 3328 3584
128 Line Buffer Length(12.5%) 1024 1152 1280 1408 1536 1664 1792
64 Line Buffer Length(6.25%) 512 576 640 704 768 832 896
Assuming the disparity value range is 64 (6 bit) and the full scanline length is 1024

4.4.2 Hardware Resource Estimation and Comparison

Finally, we evaluate the hardware usage of the proposed memory architecture for
the Vertical Voting Processor. Although the BRAM (line buffer) requirements are
reduced by using the proposed memory architecture with run-length coding, extra
logic gate counts are burdened from extra circuits, including run-length encoder,
run-length decoders, MUX array, and control circuit. Table 4.2 lists the resource
usage of two memory architecture designs for Vertical Voting Processor. One of the
memory architectures uses 30 full line buffers in a circular memory architecture, while
the other memory architecture applies the run-length coding algorithm which contains
31 truncated line buffers with extra logic counts (1 run-length encoder, 31 runlength
decoders, MUX array, and control logics). We assume the range of run length counter
is 32(5bit) and the truncated length of line buffers is 128(1:8). The design is measured
by Cadence RTL compiler with OSU TSMC 0.25um library. Comparing the proposed
memory and circular memory architectures, the BRAM consumption is reduced by 4.75
times but with 10.5k extra gate overhead.

Table 4.2: On-chip memory architecture resource utilization analysis
Mem Architecture NO. of Line Buffer Line buffer Length Total BRAM (bit) RTL Gate Count(NAND)

Circular 30 1024 245760 0
Proposed 31 64(1:8) 51584 10.5 K

Assuming the scanline length of disparity map is 1024, and one disparity pixel is represented in 8 bits

4.5 Hardware Resource Estimation of Stereo Matching En-

gine on FPGA

We further estimate the improvement of the resource overhead problem in the stereo
matching engine Table 4.3. On the one hand, the logic gate count of dynamic pro-
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gramming function is reduced 1.72 times by rewriting the forward pass equation. On
the other hand, the on-chip memory consumption of dynamic programming function is
improved 11.4 times by simplifying the backward path information and using 2-Port
RAM. Furthermore, the block RAM of vertical voting function is reduced 4.75 times
when applying a run-length coding technique on disparity data compression. Inevitably,
the run-length encoder, decoder and Mux circuit introduce an extra logic gate penalty to
the vertical voting process unit 1.44 times. Finally, the hardware optimization proposals
achieve 2.53 times of improvement to the overall on-chip memory consumption and
remain almost the same logic gate count in this thesis work.

Table 4.3: Hardware resource analysis of optimized stereo matching engine
Stereo Matching Engine Yig [47] Proposal

Processor units (x2) LC Comb. LC Reg.
Block Mem

(Bit)
LC Comb. LC Reg.

Block Mem
(Bit)

CT + SRB 2916 1451 498704 2916 1451 498704

Bypass FIFO 24 24 131072 24 24 131072

Raw Cost Scatter 6065 3991 2672 6065 3991 2672

Dynamic Programming 16717 4452 1630208 9300 2212 143360

Disparity Output Logic 9 38 0 9 38 0

Consistency Check 622 1429 0 622 1429 0

Horizontal Voting 10782 9168 624 10782 9168 624

Vertical Voting 10602 8704 491520 15288 10036 103168

SR FIFO for Voting 0 0 294912 0 0 294912

Median Filter 448 389 32768 448 389 32768

Sum 49376 29703 3049712 45454 28738 1207280

4.6 Performance Analysis of Stereo Matching Engine on

FPGA

From the report of Synplify Premier, the critical path is located on the forward passing
function of Dynamic Programming Processor in Stereo Matcher Engine, in which
72.4MHz frequency is estimated. Therefore, the SoC is capable of handling up to
the standard XGA (1024x768@ 60FPS 65MHz) video format. It is believed that new
generations of FPGA or ASIC can easily handle higher resolutions of standard video
based on our design.

To compare the computational performance with others’ designs, MDE/s (Million
Disparity Evaluation per second) is commonly used to measure the matching performance
despite the implementation platform. The formula of the MDE is listed in Equation 4.4.
Table 4.4 simply compares the computational performance of our design with others’
works.

MDE/s = frame width × frame height × Dmax × FPS (4.4)
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Table 4.4: comparison of state-of-art stereo matching implementations
Algorithm Platform Disparity Frame Rate MDE/s
Jin et al. 2010[21] FPGA Virtex-4 64 640X480 @ 230 4521
Our Method FPGA Stratix III 64 1024X768 @ 60 3019
John el al. 2006 [45] Tyzx DeepSea II 52 512x480 @ 200 2600
Jacobi et al. 2010 [20] FPGA Virtex II 64 176x144 @ 52 1420
Masrani [28] FPGAs Transmogri er-4 64 480 x 640 @ 30 330
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IMEC 3D Depth Intensity

Adjustable System with Stereo

Matching on FPGA 5
In this chapter, we apply the proposed Stereo Matching Engine to IMEC 3D TV system
to support depth intensity adjustment. The depth adjustment method is based on
synthesizing the interpolated virtual view from the stereoscopic cameras. Watching
from the original left view and the interpolated virtual view, the viewer can perceive
less 3D effects. To generate an interpolated view, both left and right disparity maps and
image sources are required for View Synthesis Engine. Hence, we apply the proposed
Stereo Matching Engine to IMEC 3D TV system for depth extraction. To support the
completely system design, peripheral components include Video Adaptors, Color Space
Converters, and memory hierarchy are designed.

The overview of system architecture is presented in Section 5.1. Afterward, the
individual function units will be introduced in the following sections. We firstly provide
a brief background of View Synthesis Engine in Section 5.2. Then we presents the design
of Color Space Converter in Section 5.3. In Section 5.5, we further propose a customized
memory hierarchy to support frame buffering for the temporal consistency function.

5.1 System Architecture Overview

Figure 5.1 reveals IMEC 3D TV System. The input stereoscopic sequences are processed
in a pipeline manner through stream processors. The throughput is expected to match
the input pixel clock in order to achieve real-time performance. The system is composed
of five parts: Video Adaptors, Color Space Converters, Stereo Matching Engine, mem-
ory hierarchy, and View Synthesis Engine. Anaglyph processor is an option to adapt
conventional 2D display technology. In this thesis works, we design and implement most
of components by ourselves, which includes Video Adaptors, Color Space Converters,
Stereo Matching Engine, and DDR Scheduler. The View Synthesis Engine is provided
by NCTU and IMEC-Taiwan. And we utilize DDR2 High Performance Controller [12]
to speed up the development.

5.1.1 Function Definition

The function of each component are briefly summarized in Table 5.1. More detail infor-
mation will be introduced in the following sections.

5.1.2 Clock Domain Design

As shown in Figure 5.1 and Table 5.1, the proposed system architecture contains three
clock domains: pixel clock, DDR local interface clock, and DDR clock.

45
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Figure 5.1: Dual DVI receivers scenario

In the Dual Port DVI inputs scenario, the pixel clock domain is synchronized with
input pixel rate. Taking standard XGA video format (1024X768@60FPS 65MHz) for
example, the pixel clock rate synchronizes with the input pixel clock rate in 65MHz.
In order to achieve real-time processing, pipeline architecture is applied throughout
complete system. However, the design of each processor unit must abide by the
limitation of critical path.

The proposed Scatter-Gather(SG) DMA components of DDR Scheduler run under
both pixel clock and DDR local interface clock domains. The YCbCr422 and disparity
map streams are gathered in the Dual-Port RAM of SG-DMA device under pixel
clock rate and will be delivered to DDR controller in DDR local interface clock rate.
Vice versa for the data reading operations. Therefore, the Dual-Port RAM plays an
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Table 5.1: Function definition in SoC
Block Function Description Clock Domain
Video Input Adaptor Synchronizes stereo video sources by utilizing

FIFO. The other task is to filter out the incom-
plete input pixels and output complete valid
frame pixels

clk pixel

RGB to YCbCr422 Converts RGB 444 to YCbCr 422 format clk pixel
Stereo Matching Engine
(Dynamic Programming)

Extracts left and right disparity maps with the
help of Dynamic Programming function

clk pixel

DDR Scheduler It includes multiple Scatter-Gather DMAs and
an arbiter for frame buffering

clk pixel/clk local

DDR2 HPC DDR2 high performance controller IP from Al-
tera.

clk local/clk ddr

VS Adaptor Fetches image and disparity map streams for
View Synthesis Engine based on standard
video timing

clk pixel

View Synthesis View Synthesis Engine generates the in-
between virtual view from stereoscopic video
sources (YCbCr 422 format) and dispairty
maps

clk pixel

YCbCr422 to RGB Converts YCbCr 422 back to RGB444 format clk pixel
Anaglyph Generates anaglyph video for 2D TV clk pixel
Video Out Adapter Generates video timing signals (hsync/vsync)

and outputs 3D content
clk pixel

important role as a clock domain bridge.

The DDR2 HPC controller [12] provides two clock rate modes for external interface:
full clock rate and half clock rate. Full data rate mode captures the signal in both
clock edges, whereas half rate mode captures the signal at the positive edge of clock
but requires double data width. The half-rate solution allows the bus works in double
bandwidth for a given number of data pins when the external logic is frequency limited.
Generally, the half clock rate mode is chosen because it provides lower clock rate
limitation to user interface but remain the same throughput as full clock rate mode. In
the proposed system Figure 5.1, the external interface of DDR2 controller is working
under 150 MHz and DDR is working under 300 MHz.

5.1.3 System On-chip Interconnection

Avalon Stream Interface (Avalong ST) protocol [11] is applied on the video processing
data path because it handles the stream computational flow properly. The interface
is illustrated in Figure 5.2, which contains DATA, VALID, RREADY, SOP, and EOP
signals. The pin width of data signal is user-defined so it provides great flexibility for
designers. The READY signal generates back pressure to Data Source block when Data
Sink block is unable to accept any incoming data. The back pressure stops the pipeline
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output from Data Source block. As a result, the Data Source block will also generate
pressure (READY = 0) back to its superior block. Finally, the SOP (start of packet)
and EOP (end of packet) signals are reserved to indicate the start and end points of a
frame.

Figure 5.2: Avalon Interface

For the interface between stream processing units and DDR controller, a multi-port
front end memory controller, DDR Scheduler, is proposed instead of using conventional
standard bus protocol such as Wishbone, OCP, ARM, ARM and AHB. The dedicated
DDR Scheduler is able to operate off-chip memory access stand alone without additional
processor core. Multiple components include SG-DMA devices, Mux, and Arbiter are
integrated in side of DDR Scheduler to enhance memory efficiency. Since it is mainly
designed for stream processing application, the interface adapts Avalon ST protocol.
Furthermore, the interface between the DDR Scheduler and DDR2 high performance
controller is configured to DDR local interface [12].

5.2 Background of View Synthesis Engine

The view point synthesis engine is co-designed by NCTU and IMEC-Taiwan. It is
capable of generating virtual interpolated views from stereoscopic image and depth
map sequences. The view synthesis flow mainly contains three stages: depth maps
forward wrapping, texture reverse wrapping, and blending/hole-filling stages. Figure 5.3
illustrates the high level architecture of View Synthesis Engine.

In the depth maps forward wrapping stage, two virtual depth views are generated
separately from left and right depth maps. In texture reverse warping stage, the new
virtual views are produced from mapping the texture of original image based on the
virtual depth view information. In the last stage, the new generated virtual view is
refined with blending and hole filling functions.
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Figure 5.3: High level architecture of View Synthesis Engine

5.3 Video Adaptor Design and Implementation

Video Input Adaptor outputs synchronized left and right sequence streams, and it
guarantees the output pixels start from the first pixel of a frame. Since the DVI sources
are not synchronized all the time, the Video Input Adaptor is designed to coordinate
left and right DVI input streams with FIFO. The other task of Video Input Adaptor is
to filter the incomplete pixel signals of a frame in the intial stage. Figure 5.4 illustrates
the standard VGA signal format. In the initial stage, the state machine of Video Input
Adaptor waits for the positive edge of v sync signal in order to confirm the beginning
pixel of a frame. Afterward, the following valid pixel data are regarded as valid frame
pixels for output.

Figure 5.4: Standard VGA signal format
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View Synthesis Adaptor (VS Adaptor) is designed to fetch out both stereo disparity
map and image sequences (YCbCr422) from DDR Scheduler for View Synthesis
Engine. The data fetching timing is generated based on the valid pixel signal of
standard VGA format. Because the pre-fetch mechanism of DDR Scheduler, VS Adap-
tor can acquire the disparity and YCbCr422 pixel streams in the first cycle without delay.

Finally, the Video Output Adaptor exports the synthesized sterescopic sequences in
standard VGA timing to DVO port for display.

5.4 Color Space Convertor Design and Implementation

YCbCr image format has been utilized in many popular video applications such as
MPEG1-4, H.261-4, and JPEG etc. In the 3D depth intensity adjustable system, Stereo
Matching Engine takes the luminance information of pixel for depth extraction, and
Viewpoint Synthesis Engine also processes YCbCr formats stereoscopic sequences. Since
the input sequences from DVI are RGB format, the Color Space Converters are required.

In Sub-section 5.4.1, we provides the background of color space conversion. Before
proposing the hardware design, the background of floating point to integer mathematic
approaches will be introduced in Sub-section 5.4.2. In Sub-section 5.4.3, the hardware
designs of color space converter will be presented.

5.4.1 Background of Color Space Conversion

The YCbCr model defines a color space that contains one luminance (Y) and two
chrominance (Cr and Cb) elements [39]. More specifically, Y represents perceptual
brightness, and Cr and Cb represent blue-luminance and red-luminance differences.
Figure 5.5 illustrates YCbCr information that are extracted from RGB format image. In
reality, human eye is more sensitive to the luminance variation of an image, whereas it is
poor to differentiate subtle color variasion. Therefore, the chrominance information, Cr
and Cb, could be down-sampled. Hence, YCbCr color format is broadly used in industry.

Figure 5.5: Example of RGB and YCbCr Format

YCbCr color space was defined in ITU-R 601 [18] and ITU-R 709 [19] standards for
worldwide digital component video format. In the scaled YCbCr color space format, Y
is in the range of 16 to 235, and Cb and Cr are in the range of 16 to 240.
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YCbCr format can be converted from RGB source. There are two commonly used
standards for color space conversion: ITU-R BT. 601 and ITU-R BT. 709. ITU-R
BT.601 [18] defines its coefficient vector for Standard TV, whereas ITU-R BT.709 [19]
possesses different coefficient vector for High-Definition TV. Equation 5.1 is an example
that demonstrates RGB to ITU-R 601 full-range YCbCr format. Equation 5.2 is that
inversion vector to convert the YCbCr signal back to RGB format.

1. RGB to Full Range YCbCr Format





Y
Cb
Cr



 =





0.299 0.587 0.114
−0.169 −0.331 0.5
0.5 −0.419 −0.081









R
G
B



 (5.1)

2. Full Range YCbCr to RGB Format





R
G
B



 =





1 0 0.114
1 −0.343 −0.711
1 1.765 0









Y
Cb
Cr



 (5.2)

In YCbCr format, A:B:C notation is used to describe the sample factor of Cb and
Cr (chrominance) components relative to Y (luminance) component. The first digit
indicates the sub-sampling factor of luminance component on vertical domains. The
second digit specifies the sub-sampling factor of Cb and Cr components on horizontal
domains. The third digit represents the sub-sampling factor of Cb and Cr on vertical
domains. Table 5.2 lists common used YCbCr formats in A:B:C notation.

Unfortunately, down-sampling and up-sampling chrominance components introduce
the artificial colour information which doesn’t exist in the original image; therefore the
image quality will be slightly different after the conversion. In here, we compare three
common used interpolation methods for chrominance up-sampling: nearest neighbor in-
terpolation, bicubic interpolation, and fractal interpolation. Firstly, the nearest neighbor
interpolation approach duplicates the information of adjacent pixels. This method is the
most hardware efficiency option. However, this tends to make the chrominance channel
looks blocky, and accentuates the jaggedness. Secondly, bicubic interpolation is more
sophisticated and produces smoother edges than bilinear interpolation. It calculates the
missing gap position by interpolating four adjacent pixels with weight. Finally, the frac-
tal interpolation [34] is broadly used for enlarging object as retaining the shape. The
result is more cleaner, sharper edges, less halos and blurring around the edges than bicu-
bic interpolation would do. In this thesis work, we will only adopt the nearest neighbor
interpolation method to implement the up-sampling function.
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Table 5.2: Common used YCbCr formats based on A:B:C notation

5.4.2 Background of Floating Point to Integer Mathematic Approaches

Fixed-point approach is preferable than floating-point when implementing digital system
because of computation simplicity. Fixed-point approximation is a common technique
to operate floating point calculation in integer format. The floating-point variables are
firstly scaled up and rounded to integers. So the following calculations can be fully
operated under numerical mathematics. After the numerical calculations, the result will
be rounded and scaled down.

Recalling the RGB-YCbCr conversion Equation 5.1 (ITU-R 601 Full Range Format),
RGB signals are fixed point variable and the coefficient matrix are also represented in
floating point. The floating point coefficients are good candidate to implement integer
approximation. Thus, the RGB-YCbCr conversion equations can be rewritten as the
following two equations where the original floating-point coefficients are scaled up to
constant numbers by multiplying 256. After the numerical calculation, the final sum
of each channel will be divided by 256. In digital system, the divide operand can be
achieved by bit shifting technique.

RGB to YCbCr Conversion Range

Y = clip(rounding(77 ∗R+ 150 ∗G+ 29 ∗B) >> 8 + 0) Y = [0− 255]
Cb = clip(rounding(−43 ∗R− 85 ∗G+ 128 ∗B) >> 8 + 128) Cb = [0− 255]
Cr = clip(rounding(128 ∗R− 107 ∗G− 21 ∗B) >> 8 + 128) Cr = [0− 255]

where the clip function returns 255 when the sum excesses 255; it returns 0 when the sum less

than 0. In equation Y, 0 is for the base range; in equation Cb and Cr, 128 is to ensure the final
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integer values are positive.

YCbCr to RGB Conversion Range

CB = Cb− 128
CR = Cr − 128
R = rounding and clip((128 ∗ Y + 358 ∗ CR) R = [0− 255]
G = rounding and clip((128 ∗ Y − 88 ∗ CB + 182 ∗ CR) G = [0− 255]
B = rounding and clip((128 ∗ Y + 452 ∗ CB) B = [0− 255]

When applying integer approximation, rounding is an important factor which
affects the computational precision. The commonly used rounding methods are round
towards zero and round half up. Round towards zero (truncate or round away from
infinity) method directly truncates the fraction part and keeps the integer portion. In
contrarily, round half up method rounds towards n̈earest neighborünless both neighbors
are equidistant, in which case round up. For example, 11.5 will be rounded to 12. This
is the rounding mode that is typically taught in schools. In next chapter, we will further
compare the above mentioned rounding methods to the quality losses during color space
conversions.

5.4.3 Hardware Architecture Design and Implementations

Figure 5.6 illustrates the computation flow of the color space conversion in the 3D
Depth Intensity Adjustable System. The incoming pixel sequences in RGB format will
be converted into YCbCr color space in the beginning. The luminance component
Y will support Stereo Matching Engine. Simultaneously, the YCbCr streams will be
further down-sampling to YCbCr 422 format and stored in DDR2. In the last stage of
the IMEC 3D TV System, the YCbCr 422 format streams will be converted back to
RGB format for display.

Figure 5.6: Color space conversion flow

Equation 5.4.2 is rewritten in Equation 5.4.3 which turns the round half up function
into calculation. Then the hardware structure is showed in Figure 5.7.

Since the proposed RGB-YCbCr hardware structure requires nine multipliers, we
further consider the design of constant multiplier in two approaches to reduce the
hardware utilization and latency.
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HW:RGB to YCbCr Conversion Range

Y = clip((77 ∗R+ 150 ∗G+ 29 ∗B + 128) >> 8) Y = [0− 255]
Cb = clip((−43 ∗R− 85 ∗G+ 128 ∗B + 32768) >> 8) Cb = [0− 255]
Cr = clip((128 ∗R− 107 ∗G− 21 ∗B + 32768) >> 8) Cr = [0− 255]

Figure 5.7: RGB to YCbCr Processor Unit

Firstly, constant multiplier can be simply illustrated as shift and add/sub scenario.
Since the constant is fixed, it is possible to implement one constant multiplier by several
shifts and add/sub operands in parallel. For example, constant 77 is the sum of 64, 8,
4, and 1. To multiply R and number 64, 8 and 4 are able to be computed with bit shift
technique in digital system. Therefore, we can apply the shift and add/sub scenario
on all constant multipliers in RGB-YCbCr processor unit as Figure 5.8. The main
advantage of shift and add/sub architecture is the low hardware utilization.

Figure 5.8: Constant multiplier implementation (77) with Shift and Add/Sub architec-
ture

Unfortunately, the constant multiplier in the first proposed design is fixed and
lack of flexibility. The convertion vector (coefficients) will be unchangeable once
the standard is predefined. Therefore, we introduces look up table (LUT) approach
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into the design of constant multiplier. One approach is utilized full look up table
to store the complete product results of color value and fixed point coefficient but
it takes tremendous on-chip memory. To reduce the on-chip memory requirement,
the solution is to improve Shift-and-add Multiplication method [3] with two look up
table [24]. Figure 5.9 shows the 8 bit multiplicand can be separated to upper 4 bit
nibble and lower 4 bit nibble and perform multiple operations with 4x8 LUTs. Hence,
each look up table only has 4 bit address which points to 16 entries. Figure 5.10
illustrates the LUT configuration for constant 77. Finally, we sum up the two products
with a 12 bit adder. The sum of adder is assigned to upper 12 bits of final prod-
uct result. The full hardware architecture of constant multiplier is implemented in
Figure 5.11. Although this approach takes a extra hardware utilization than the first ap-
proach, it keeps the flexibility to cope with different standards in run-time configuration.

Figure 5.9: upper 4 bit nibble and lower 4 bit nibble multiplication

Figure 5.10: 16 Entries of Look Up Table for multiplying constant 77

Figure 5.11: 8x8 Constant multiplier with 4x8 LUTs

5.5 Memory Hierarchy Design and Implementation

Although FPGA/ASIC is capable of achieving high computational power with the help
of parallelism, the on-chip memory is still relatively limited because of cost concern.
Off-chip memory is a solution for the case of great memory consumption. Therefore,
this section proposes a memory hierarchy to support the 3D Depth Intensity Adjustable
System implementation.
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Sub-section 5.5.1 firstly analyzes the off-chip bandwidth and critical latency require-
ments for the 3D Depth Intensity Adjustment System. In Section 5.5.2, a memory
hierarchy design which includes SG-DMA, Arbiter, and DDR controller is proposed to
support stream processor units.

5.5.1 Memory Architecture Analysis for Stream Processing

In this thesis work, we utilize DDR2 SDRAM as off-chip memory. The DDR2 SDRAM
bandwidth can be formulas as Equation 5.3 [1].

Bandwidth = SDRAM Bus Width× 2 Clock Edges× Frequency of Operation× Efficiency

(5.3)

When the DDR SDRAM component has 64 bit bus width working under 300 MHz,
the maximum available bandwidth achieves 64×2×300MHz×100% = 38.4Gbps in the-
ory. However, the bus efficiency is alternative depending on the factors include command
latency, refresh period, and access addresses. To increase the memory access efficiency,
we summarize the suggestions from Altera[1] as following:

1. Accessing continuous addresses is preferable than random addresses. This related
to data mapping.

2. Series of write or read commands is preferable than interlaced write/read opera-
tions.

3. Accessing different row introduces extra latencies because active command has to
be executed again.

4. Well-controlled refresh timing contributes to better efficiency.

In the proposed memory hierarchy architecture Figure 5.12, seven Scatter-Gather
DMA devices access to the DDR controller: two data writing SG-DMA and five
data reading SG-DMA devices. The required throughput can be calculated based on
Equation 5.4. Table 5.3 is an example shows the total throughput when processing
XGA video format (1024x768 @60FPS). The sum of required throughput is 8.305G bps
which consumes 22% of total bandwidth.

Throughput = Frame Rate× Frame Width× Frame Height× Pixel Format× Channel Number

(5.4)

5.5.2 Memory Architecture Design for Stream Processing

In the IMEC 3D TV SoC, off-chip memory is required to implement frame buffering.
Since temporal disparity consistency mechanism is presented to strengthen the consis-
tency between disparity maps, the disparity value and luminance value of the pixel from
previous and current frames are required the calculation. Furthermore, the disparity
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Figure 5.12: Proposed Memory Hierarchy

Table 5.3: System memory breakdown
Memory Access Components Throughput (G bps) Critical Latency

IMG WR 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

TC PRV DEPTH RD 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

TC PRV IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

TC CUR IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

DEPTH WR 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

IMG RD 60× 1024× 768× 16× 2 = 1.51 Internal buffer length ×8

DEPTH RD 60× 1024× 768× 8× 2 = 0.755 Internal buffer length ×16

Total 8.305

map and image information are needed again in View Point Synthesis Processor unit.
Therefore, we propose a memory hierarchy with customized Scatter-Gather DMAs,
Arbiter, DDR controller, and off-chip SDRAM (DDR2) to support the SoC. The
memory hierarchy is designed to access multiple frame buffers simultaneously without
delay.

Data locality has to be analyzed first. The goal is to keep the frequently used
data on chip in order to reduce the off-chip bus overhead. Slide window technique is
a solution which is broadly used in our stream processor unit designs such as median
filter, support region builder, and disparity voting units. The processing data includes
horizontal and vertical direction of image pixels. The line buffers(2-Port BRAM) in
the on-chip memory architecture are used to store and propagate stream data in a
circular manner. This architecture is able to serve the pixels include vertical domain.
Figure 5.13 is an example that shows the on-chip memory architecture for 5x5 slide
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window application [31]. As the demonstration in Figure 5.14, each scanline data will
be reused 4 times when the slide window shifts to next row.

Figure 5.13: 5x5 slide window operation

Figure 5.14: Example of data reuse: the weaved texture region represents the data reuse
zone in slide window application

When large storage space is required and impossible to keep them locality, off-chip
memory structure will be needed. Figure 5.15 shows the proposed memory hierarchy
for frame buffering in this thesis work. This memory hierarchy contains four parts:
Scatter-Gather DMAs (SG-DMA), Arbiter, memory controller, and off-chip memory.

Dual-Port block RAM plays an important role in the proposed memory hierarchy.
On the one hand, the transfer latency between function units and off-chip memory
can be hid by a series of burst operations with the help of Dual-Port RAM. On the
other hand, the Dual-Port RAM is able to deal with the data crossing tasks. To
achieve higher off-chip memory bandwidth, the off-chip memory controller usually
works in a higher frequency. Memory can execute both write and read operations in
different clock domains. In addition, the Dual-Port RAM can be regarded as buffer
for data packing and reordering, which makes the off-chip memory bandwidth be efficient.

To construct the memory hierarchy for IMEC 3D TV system, latency constraints
have to be explored. In order to achieve real-time performance, stream data are
computed throughout processor units in pipeline architecture. Any pending will
produce back pressure through the system. It means the frame buffer should be able to
store input stream continuously. In the other hand, frame buffers are designed to serve
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Figure 5.15: Proposed memory hierarchy for frame buffering

stream data in the first cycle with zero latency whenever the function unit asserts data
request signal. In order to achieve the latency constraint, line buffers (Dual-Port RAM)
and pre-fetch technique are used to hide the latency.

SG-DMA Design

Figure 5.16 shows a SG-DMA design to handle data writing task for frame buffer
function. It contains three parts: Write to lb control unit, Dual port line buffer, and
Write to DDR control unit. This structure passes input data crossing two different
clock domains. The Write to lb control unit concatenates consecutive input pixels
to the data width that fits for burst and stores it in the Dual port line buffer in
pixel clock domain (CLK1). The data width of the Dual port line buffer is set to
the product of DDR burst length and DDR data width. Figure 5.17 shows how the
image pixels(YCbCr 4:2:2) and disparity map pixels be concatenated. In the YCbCr
422 scenario, each address space of Dual port line buffer contains 8 sets of YCbCr
422 stereoscopic pixels. In the disparity map pixel scenario, each address space of
Dual port line buffer contains 16 sets of disparity stereoscopic pixels. When any one
of Dual port line buffers is full, Write to DDR control unit launches bus request signal
to Arbiter. The Write to DDR control unit works in the way as a dependent DMA
controller. After the writing authority is confirmed by Arbiter, the Write to DDR
control unit will start to transfer the data from Dual port line buffer to DDR controller
in a higher clock rate (CLK2) to gain more off-chip memory bandwidth. All in all, the
proposed SG-DMA writing mechanism guarantees that the input data can be stored
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into off-chip memory continuously without pending.

Figure 5.16: SG-DMA architecture for write function

Figure 5.17: Example of data concatenation

Figure 5.18 shows a SG-DMA design to handle data pre-fetch task for frame buffer
function. It contains three parts: Read Line Buffer control unit, Dual port line buffer,
and Read from DDR control unit. This structure pre-fetches frame data from DDR
then outputs in stream whenever processing unit requests. Firstly, Read from DDR
control unit will preload one scan line of concatenated stream data from DDR to
the Dual port line buffer after the first scan line data have been bursted into off-chip
memory. When external function unit requires the stream data from frame buffer, the
Read from lb control unit will unpack the concatenated data from Dual port line buffer
and outputs the data stream pixel by pixel. In the meaning while, the Read from DDR
control unit will monitor the condition of Dual port line buffer devices. If any one of
Dual port line buffer devices is empty, the Read from DDR control unit will send a
pre-fetch request to the Arbiter in order to get the access authority of off-chip memory.
The proposed SG-DMA reading mechanism guarantees that the requested external
function units will never suffer from data starving.
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Figure 5.18: SG-DMA architecture for read function

The access addresses to off-chip memory are generated from the address generator
which is placed in both Write to DDR control unit Figure 5.16 and Read from DDR
control unit Figure 5.18. The address generator cooperates with a state machine. It
makes the SG-DMA components capable of working independently without the control
of CPU. In the proposed SoC, we choose DDR2 to implement the off-chip memory.
The address of DDR2 includes row address, bank address, column address and chip
select signals. Each row is divided into banks, and each bank is composed of columns.
Currently one dimension linear address and two dimensions block-based address are the
most commonly-used address generation patterns in video processing applications [25].
In one dimensional address generator scenario, the 1-D address generator automatically
generates addresses linearly by giving the offset address and access length. The 2-D
address generator is designed for block based processing units such as MPEG 2 motion
estimation and DCT. Group writing or reading in consecutive addresses is prefferable
because the operations such as accessing different row or interlaced commands intro-
duces additional latencies. Fortunately, 1-D address generator has already fulfilled the
requirement of frame buffer function in this thesis work. In order to make multiple
frame buffers working simultaneously, each frame buffer is assigned to an offset address
(index address) and an address range (data length) in off-chip memory. Therefore, the
address generator in each SG-DMA component (WR/RD) can generate the physical
address by summing up the offset address and a counter. Of course the range of the
counter is defined based on the frame size and data width. The detail of memory
allocation will be further introduced in the next section.

Arbiter

Arbiter is designed to manage the access schedule of SG-DMA devices to off-chip
memory. More specifically, the Arbiter decides which SG-DMA device be served first.
The most commonly used scheduling policies are round-robin, first in first serve and
fixed priority mechanisms. Round-robin policy repeatedly checks all memory bus
requirements and provides even opportunity to all request devices. However, there is an
uncertainty to predict and guarantee the waiting latency for the latency sensitive device.
In contrarily, fixed priority policy assigns priority to each off-chip memory bus request
device based on its latency and bandwidth constraints. However, the lower priority
devices are easily suffered from data starving when the devices with higher priority
occupy the channel all the time. [25] In the proposed Arbiter design, both priority and
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round-robin policies are implemented in RTL code.

Memory Hierarchy Interconnection

1. Interface between SG-DMAs and Arbiter

In order to reduce the system complexity, SG-DMA devices and DDR controller
are connected directly through an Arbiter. We abandon the conventional standard
bus design such as AMBA, Avalon, Wishbone, etc. Instead, the Arbiter not only
responses of managing access schedule but also in charge of switching the channel
(DDR Local Interface) between multiple SG-DMA devices and DDR controller
5.19 with MUX.

Figure 5.19: The interface between SG-DMA and Arbiter

The interface between SG-DMA devices and Arbiter abides by Virtual Component
Interface (VCI) protocol. The Virtual Component Interface is an interface rather
than a bus. The design follows request-response protocol, contents and coding
for the transfer of requests and responses. Flexibility and adaptive are the main
advantages of using VCI protocol. To deal with the interface between SG-DMA
devices and Arbiter, a handshaking procedure is illustrated in Figure 5.20.

Figure 5.20: Handshaking protocol between SG-DMA and Arbiter

(a) SG-DMA asserts request signal for the access authority of DDR local Interface
channel

(b) When the channel is available, arbiter assigns memory access acknowledg-
ment to the SG-DMA request device. After the SG-DMA possesses the chan-
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nel authority, it starts to transmit memory read/write commands to DDR
controller.

(c) After SG-DMA finishes memory read/write operations, the request signal will
be retracted.

(d) Arbiter releases the acknowledgement and ready to cope with next request.

2. Interface between stream processors and SG-DMA

The interface between stream processors and SG-DMA devices abides by Avalon
ST protocol [11] in Figure 5.21. The main advantage of using this structure is the
Ready signal indicates back pressure to the source unit. When the Sink unit is
readied to accept data, the Ready signal is asserted. Otherwise the Ready signal
will be de-asserted to pause the data sending from its source port. When the
SG-DMA is configured for writing off-chip memory, it is defined as a data sink
device and the external stream processor is defined as a data source device. In
contrarily, SG-DMA is defined as a data source device and the external stream
processor is defined as data sink device when the SG-DMA is configured for
reading off-chip memory .

Figure 5.21: Avalon stream interface between processing unit and SG-DMA

Memory Allocation

The memory allocation in the off-chip memory (DDR2 SDRAM) contains two parts:
stereo image frame buffer and disparity map buffer. The memory spaces for theose two
frame buffers are calculated in the following:

1. Image (L/R) frame buffer

The memory space for image frame buffer can be calculated in Equation 5.5. Taking
standard XGA video for example, it requires 2× 2× 1024× 768× 16 = 50331648
bits memory space.
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Image(L/R) Frame Buffer Space = 2(current and previous frame)×

2(stereo left and right channels)× Frame Width× Frame Height

×16bit(Y CbCr422 Pixel Format)

(5.5)

Assuming that the data width of SDRAM is 64 bits, we can concatenate two sets
of left and right YCbCr 422 pixel pairs into one memory address. Therefore, the
required memory space is calculated in Equation 5.6. Taking standard XGA video
for example, a range of 2 × 2 × 1024 × 768 × 16/64 = 786432 physical memory
addresses are needed for buffering two frames.

Image Frame Buffer Address Range = 2(current and previous frame)

×2(stereo left and right channels)× Frame WidthxFrame

Heightx16bit(Y CbCr422 Pixel Format)/64(DDR2 data width)

(5.6)

2. Disparity map (L/R) frame buffer

The memory space for disparity map frame buffer can be calculated in 5.7. Taking
standard XGA video for example, it requires 2 × 2 × 1024 × 768 × 8 = 25165824
bits memory space.

Disparity Map(L/R) Frame Buffer Space = 2(current and previous frame)

×2(stereo left and right channels)× Frame Width× Frame Height

×8bits(0− 255 disparity range)
(5.7)

Assuming that the data width of SDRAM is 64 bit, we concatenate four sets of
disparity pixel pairs that from left and right channels into one memory address.
Therefore, the required memory address space can be calculated as Equation 5.8.
Taking standard XGA video for example, a range of 2× 2× 1024× 768× 8/64 =
393216 physical memory addresses are needed for buffering two frames.

Disparity Frame Buffer Address Range = 2(current and previous frame)

×2(stereo left and right channels)× Frame Width× Frame Height

×8bits(0− 255 disparity range)/64(DDR2 data width)
(5.8)

Figure 5.22 is an example that shows the address generating patterns.
To generate the physical access address for a frame buffer, the offset address is

accumulated with the burst size to gain the efficiency. If the burst size is 4 and the
data width is 64 bit, DDR controller will bursts 256 bits into 4 addresses from/to
SDRAM in one single reading/writing command. Then the accumulated result can
be further mapped on SDRAM address. In general, SDRAM address includes chip
select, row, bank, and column addresses. It is prefferable to perform group writing or
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reading commands consecutively but avoiding row changes in order to achieve higher
off-chip memory bus efficiency. On the one hand, row switching should be avoid, which
introduces extra latencies. On the other hand, it is possible to refresh other banks when
accessing one bank in the same row.

Figure 5.22: Example of address generation pattern
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IMEC 3D TV SoC Evaluation

and Experimental Result 6
In Section 6.1, the design of color space converter is firstly explored and evaluated indi-
vidually. Then we will evaluate the IMEC 3D TV system SoC architecture at the system
level. Section 6.2 will measure the quality of interpolated virtual view with true inter-
polated camera source in PSNR. In addition, we further analyze the temporal quality
of the interpolated video sequences in TPSNR. Then the hardware usage of individual
components are estimated in Section 6.3. In Section 6.4, the real-time performance of the
system is assessed based on the critical path of the entire SoC system and the bandwidth
of off-chip memory.

6.1 Color Space Converter Design Evaluation

This part evaluates the Color Space Converter designs in their quality, hardware resource,
and latency aspects.

6.1.1 Quality Evaluation

This sub-section evaluates the quality degradation during color space conversions. After
the RGB-YCbCr-RGB color space conversions, some color information will lose because
of the round-off errors of floating point to integer. If the integer approach adopts a lower
scaling resolution to implement floating math calculation, the result will be far from
the floating point math approach. In addition, video quality degrades when applying
down-sampling and up-sampling conversions. Although the luminance component is
kept, parts of the chroma (Cb and Cr) information are discarded during down-sampling.

Table 6.2 illustrates the evaluation statistic of different RGB-YCbCr-RGB ap-
proaches in PSNR. The PSNR is measured by comparing original input image and
inverted output image. The higher PSNR means the less loss of color information. In
general, the PSNR is required to be more than 30db-40db so that the human eye will
not easily notice the degradation of image quality. This table exams eight approaches
based on ITU-R 601 and ITU-R 709. As well, five test images are chosen and shown
on Table 6.1. We chose the frequently-used test picture, Lena, for image processing
evaluation. The rest of four images (Tsukuba, Venus, Teddy, and Cones [44]) are
the test sets from stereo matching society. Of course theose pictures are not the only
candidates for PSNR measurement. The test set can be expanded to video so that the
PSNR can be computed in average value.

The result of Table 6.2 shows that the accuracy of all kind of YCbCr 4:4:4 approaches
without chroma sampling. The difference between the original image and the image

67
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Table 6.1: Test sets

Lena Tsukuba Venus Teddy Cones

after conversion is hardly noticeable. It also shows that the wider range of pixel (0-255)
achieves slightly higher accuracy than the lower range of pixel (16-235-240). Finally,
it is found that chroma sampling (YCbCr 4:2:2 and YCbCr 4:2:0) conversion causes
tremendous quality degradation to test images. The more chroma samples that are
excluded during sub sampling, the more color information is lost, and the lower the
quality of the final converted image.

Table 6.2: PSNR evaluation for different color space conversion standards
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU601 8bit 0-255 floating maths 52.994 52.891 52.633 52.833 52.783
YCbCr 422 ITU601 8bit 0-255 floating maths 47.016 40.783 35.689 34.511 32.906
YCbCr 420 ITU601 8bit 0-255 floating maths 46.204 38.076 33.541 32.205 31.184
YCbCr 444 ITU601 8bit 0-255 integer maths (8bit) 52.000 52.793 52.393 52.650 53.569
YCbCr 422 ITU601 8bit 0-255 integer maths (8bit) 46.739 40.777 35.682 34.508 32.906
YCbCr 420 ITU601 8bit 0-255 integer maths (8bit) 45.988 38.073 33.538 32.205 31.183
YCbCr 444 ITU601 8bit 16-235-240 floating maths 50.002 49.918 49.950 49.884 49.875
YCbCr 422 ITU601 8bit 16-235-240 floating maths 46.044 40.550 35.623 34.446 32.854
YCbCr 420 ITU601 8bit 16-235-240 floating maths 45.370 37.960 33.503 32.164 31.146
YCbCr 444 ITU601 8bit 16-235-240 integer (8bit) 51.735 52.014 51.429 51.727 51.599
YCbCr 422 ITU601 8bit 16-235-240 integer (8bit) 46.665 40.727 35.656 34.493 32.893
YCbCr 420 ITU601 8bit 16-235-240 integer (8bit) 45.913 38.053 33.518 32.194 31.176
YCbCr 444 ITU709 8bit 0-255 floating maths 53.042 53.170 53.083 53.040 53.055
YCbCr 422 ITU709 8bit 0-255 floating maths 46.679 40.442 35.303 34.039 32.362
YCbCr 420 ITU709 8bit 0-255 floating maths 45.872 37.753 33.122 31.719 30.657
YCbCr 444 ITU709 8bit 0-255 floating maths 52.064 52.965 51.685 52.473 52.279
YCbCr 422 ITU709 8bit 0-255 floating maths 46.442 40.419 35.289 34.035 32.353
YCbCr 420 ITU709 8bit 0-255 floating maths 45.652 37.744 33.114 31.718 30.653
YCbCr 444 ITU709 8bit 16-235-240 floating maths 51.740 51.933 51.803 51.701 51.724
YCbCr 422 ITU709 8bit 16-235-240 floating maths 46.348 40.374 35.281 34.026 32.348
YCbCr 420 ITU709 8bit 16-235-240 floating maths 45.582 37.728 33.106 31.715 30.649
YCbCr 444 ITU709 8bit 16-235-240 integer (8bit) 49.372 50.775 50.485 49.307 49.776
YCbCr 422 ITU709 8bit 16-235-240 integer (8bit) 45.546 40.325 35.253 33.995 32.338
YCbCr 420 ITU709 8bit 16-235-240 integer (8bit) 44.900 37.707 33.091 31.705 30.638

Since floating point calculation is more difficult and complicated to implement
on hardware design, integer computation is preferred by scaling the floating point
coefficients to integers in color space transform. Table 6.3 evaluates several scaling
resolutions from four bit (256) to ten bit (1024). As a result of the lower scaling
resolution, it delivers a lower quality of output image. From the observations, the result
of PSNR in 6 bit (128) scaling up resolution approximates to the result of PSNR in the
floating point approach. Thus, from our experiment, it is possible to use less hardware
resources to achieve a quality result with the integer approach.

Two commonly used rounding approaches were mentioned: rounding towards zero
and rounding to the nearest neighbor. Therefore we measure those two rounding
methods in the software. Table 6.4 illustrates that the rounding to nearest method
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Table 6.3: scale resolutions of integer approximation from four bit (256) to ten bit (1024)
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU601 8bit 0-255 integer maths(4bit) 34.603 35.176 36.043 34.943 35.530
YCbCr 422 ITU601 8bit 0-255 integer maths(4bit) 34.418 34.146 32.893 31.764 31.099
YCbCr 420 ITU601 8bit 0-255 integer maths(4bit) 34.376 33.407 31.630 30.403 29.919
YCbCr 444 ITU601 8bit 0-255 integer maths(6bit) 51.360 52.849 51.241 50.489 50.083
YCbCr 422 ITU601 8bit 0-255 integer maths(6bit) 46.547 40.758 35.635 34.434 32.835
YCbCr 420 ITU601 8bit 0-255 integer maths(6bit) 45.781 38.059 33.495 32.145 31.129
YCbCr 444 ITU601 8bit 0-255 integer maths(8bit) 52.000 52.793 52.393 52.650 53.569
YCbCr 422 ITU601 8bit 0-255 integer maths(8bit) 46.739 40.777 35.682 34.508 32.906
YCbCr 420 ITU601 8bit 0-255 integer maths(8bit) 45.988 38.073 33.538 32.205 31.183
YCbCr 444 ITU601 8bit 0-255 integer maths(10bit) 53.015 52.880 52.668 52.842 52.787
YCbCr 422 ITU601 8bit 0-255 integer maths(10bit) 47.021 40.782 35.691 34.512 32.907
YCbCr 420 ITU601 8bit 0-255 integer maths(10bit) 46.208 38.075 33.543 32.206 31.185
YCbCr 444 ITU601 8bit 0-255 floating maths 52.994 52.891 52.633 52.833 52.783
YCbCr 422 ITU601 8bit 0-255 floating maths 47.016 40.783 35.689 34.511 32.906
YCbCr 420 ITU601 8bit 0-255 floating maths 46.204 38.076 33.541 32.205 31.184
YCbCr 444 ITU709 8bit 0-255 integer maths(4bit) 29.805 34.856 32.200 30.914 31.159
YCbCr 422 ITU709 8bit 0-255 integer maths(4bit) 29.750 33.775 30.593 29.223 28.722
YCbCr 420 ITU709 8bit 0-255 integer maths(4bit) 29.724 33.072 29.771 28.309 27.913
YCbCr 444 ITU709 8bit 0-255 integer maths(6bit) 39.324 44.407 42.774 41.366 41.844
YCbCr 422 ITU709 8bit 0-255 integer maths(6bit) 38.744 39.033 34.576 33.327 31.914
YCbCr 420 ITU709 8bit 0-255 integer maths(6bit) 38.625 37.005 32.638 31.276 30.340
YCbCr 444 ITU709 8bit 0-255 integer maths(8bit) 52.064 52.965 51.685 52.473 52.279
YCbCr 422 ITU709 8bit 0-255 integer maths(8bit) 46.442 40.419 35.289 34.035 32.353
YCbCr 420 ITU709 8bit 0-255 integer maths(8bit) 45.652 37.744 33.114 31.718 30.653
YCbCr 444 ITU709 8bit 0-255 integer maths(10bit) 52.929 53.140 53.048 53.033 53.042
YCbCr 422 ITU709 8bit 0-255 integer maths(10bit) 46.654 40.441 35.304 34.042 32.364
YCbCr 420 ITU709 8bit 0-255 integer maths(10bit) 45.855 37.753 33.123 31.722 30.661
YCbCr 444 ITU709 8bit 0-255 floating maths 53.042 53.170 53.083 53.040 53.055
YCbCr 422 ITU709 8bit 0-255 floating maths 46.679 40.442 35.303 34.039 32.362
YCbCr 420 ITU709 8bit 0-255 floating maths 45.872 37.753 33.122 31.719 30.657

keeps a higher PSNR than rounding to nearest method. From our observation, rounding
to the nearest method is strongly recommended to be implemented in the color space
converter, in order to keep the quality.

Table 6.4: Rounding approach evaluation
Color Format/Sample Rate/Data Range

/ Computation Approach
PSNR Lena
(512x512)

PSNR Tsukuba
(512x512)

PSNR Venus
(434x383)

PSNR Teddy
(450x375)

PSNR Cones
(450x375)

YCbCr 444 ITU709 0-255 8bit
floating maths with rounding to nearest

53.042 53.170 53.083 53.040 53.055

YCbCr 444 ITU709 0-255 8bit
floating maths with round towards zero

43.589 43.612 43.695 43.665 43.619

YCbCr 444 ITU709 0-255 8bit
integer maths (8bit) with rounding to nearest

52.064 52.965 51.685 52.473 52.279

YCbCr 444 ITU709 0-255 8bit
integer maths (8bit) with round towards zero

42.487 43.238 42.407 43.244 42.714

6.1.2 Hardware Utilization Evalution

In Table 6.5, we further calculate the requirements of look up table (LUT) for imple-
menting a 8x8 constant multiplier in different scale resolutions. In this table, constant
multipliers are implemented in the Full LUT and 2 LUT+ Adder structure that was
introduced in Chapter 4. From the observations, the size of LUT increases in linear
when the coefficient resolution increases. This table also shows that the 2 LUT Adder
structure takes much less hardware resource.

Finally, Table 6.6 evaluates the resource consumption of RGB-YCbCr color space
converters by using three different common constant multipliers (8x8) on Altera Quartus
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Table 6.5: Hardware resource comparison of Full LUT Size approach and 2 LUT Size +
Adder approach

Adder approach Full LUT Size 2 LUT+Adder
LUT Size

Improvement

Gate Count 4bit coefficient 256 entries x(8+4)=3072 2x16 entries x(4+4)=256 12

Gate Count 6bit coefficient 256 entries x(8+6)=3584 2x16 entries x(4+6)=320 11.2

Gate Count 8bit coefficient 256 entries x(8+8)=4096 2x16 entries x(4+8)=384 10.67

Gate Count 10bit coefficient 256 entries x(8+10)=4608 2x16 entries x(4+10)=448 10.29

Gate Count 12bit coefficient 256 entries x(8+12)=5120 2x16 entries x(4+12)=512 10

II9.1. A RGB-YCbCr444 converter requires 9 constant multipliers and 9 adders. From
the observation, Full LUT constant multiplier consumes a great amount of Block ROMs
size. 2LUT+Adder constant multiplier solution takes a little bit more combinational
resource than Full LUT approach but only requires one-tenth of the block ROM. Shift
and addsub approach takes the minimum hardware resource because it is composed of
wire-shift and adders. Obviously, the shift and addsub approach provides the lowest
cost solution for implementing the constant multiplier of color space converter. And the
2 LUT Adder approach not only consumes low Block ROM resources but also keeps the
flexibility to different convertion vectors.

Table 6.6: Hardware utilization analysis of RGB to YCbCr converter
Constant Multiplier approach Full LUT approach 2 LUT + Adder Shift and Add/sub approach
LC Combinational 157(9 adder) 256(18 adder) 354 (28 adder)
LC Registers 10 9 33
Block ROMs (bits) 36864 3456 0

The worst case propagation delay of RGB to YCbCr converter for both 2 LUT
Adder and ShiftAddsub approaches is further evaluated by the synthesizing tool, Sinplify
Premier, with stratix III library. The result shows the RGB-YCbCr converter with 2LUT
Adder constant multiplier has a 0.66 ns execution propagation delay because of the look
up table structure. This means the clock rate can achieve up to 979.8MHz. In the case
of RGB to YCbCr converter with Shift and Addsub constant multiplier, the propagation
delay is around 3.4ns. The clock rate can achieve 297 MHz.

6.2 Quality Evaluation

To assess the video quality for 3D TV system, the synthesized virtual video is calculated
with the true interpolated video in PSNR [38] [9]. The interpolated position is defined
to be located in the center of two stereo cameras as shown in Figure 6.1. Then the
quality of the synthesized virtual view from our system will be monitored in PSNR value.

We compare the synthesis sequences from IMEC 3D TV system design with the
synthesis sequences from Depth Estimation Reference Software (DERS) [37] and View
Synthesis Reference Software (VSRS) [36]. Both DERS and VSRS were contributed
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Figure 6.1: Interpolated video evaluation structure for our system

from the MPEG community. It is worth noting that DERS requires three camera views
to generate each disparity map. In our design, only two views are required.DERS applies
a Graph Cut stereo matching algorithm, a global optimization method. Compared
to our stereo matching algorithm, Dynamic Programming is chosen to implement the
global optimization function. In the disparity map refinement stage, DERS uses image
segmentation and plane fitting; whereas, we use cross-based support region disparity
voting. Besides, DERS also equips with a cost adjustment mechanism for temporal
consistency enhancement; the cost adjustment condition is based on block-based motion
detection. The motion detection mechanism applies Mean of Absolute Different (MAD)
algorithm on a 16x16 block. Contrarily, in our case, we apply Absolute Different (AD)
on single pixels in order to reduce the computation complexity. Figure 6.3 shows
the virtual view evaluation results for 100 frames of Book Arrival stereo sequences.
Obviously, the DERS solution achieves a higher video quality because the computational
complexity of the algorithm itself is much higher than ours.

Finally, several anaglyph outputs with different depth intensity from our proposed
system are captured and demonstrated in Figure 6.4.

6.3 Hardware Utilization Estimation

To estimate the hardware utilization of the 3D TV SoC design, we use Synplify Premier
and Stratix III library. Table 6.7 concludes the hardware utilization of each processor
unit on EP3SL150 FPGA. The default length of line buffers is set to 1024 in order
to handle up to XGA format VGA video. It shows that the stereo matching engine
consumes a large portion of the logic gates and block memory resources in the system.



72 CHAPTER 6. IMEC 3D TV SOC EVALUATION AND EXPERIMENTAL

RESULT

Figure 6.2: Interpolated video evaluation structure for DERS+VSRS

Figure 6.3: Quality evaluation for Book Arrival

Table 6.7: Hardware resource utilization summary on EP3SL150 FPGA
Processor Units LC Comb. LC Reg. Block Mem Bits
Video Input Adaptor 27 52 0
RGB → YUV422 (X 2) 708 66 0
Stereo Matching Engine-D64 (X 2) 46970 27921 1207280
DDR W/R Scheduler 2745 1163 393216
DDR2 HPC controller 2312 2560 5120
VS Adaptor 142 148 0
View Synthesis Enginse 4854 16989 598196
YUV422 → RGB (X 2) 524 176 0
Anaglyph 11 7 192
Video Out Adapter 126 87 0
Sum of Hardware Utilization 58419 49169 2204004
Available Hardware Resource 113600 113600 5630976
Hardware Utilization Rate 51.4% 43.3% 39.1%
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Figure 6.4: Anaglyph outputs for different depth intensity

6.4 Evaluation of Real-Time Performance

We evaluate the real-time performance of the proposed IMEC 3DTV SoC architecture
on FPGA. There are three clock domains in the proposed system: pixel clock, DDR
controller local clock, and DDR clock. Based on the clock frequency, the timing
constraints of our designs are checked because it definitely shows much real-time
performance this system can achieve.

In the pixel clock domain, the clock frequency is synchronized with the input pixel
clock. Since our processing units process the stream data in pipeline throughout the
system, the critical path of the design has to follow the timing constraint of the pixel
clock. From the report of Synplify Premier, the critical path lies to the Stereo Matcher
Engine, in which 72.4MHz frequency is estimated. Therefore, the SoC can process up
to standard XGA (1024x768@60FPS 65MHz under 65 MHz Pixel Rate) video format
on EP3SL150FPGA.

The memory hierarchy crosses both pixel and DDR controller local clock domains.
The report of Synplify Premier shows that the circuit works on pixel clock domain can
achieve a maximum of 275.4MHz, and the other part of the circuit that works on DDR
clock domain can achieve a maximum of 311.7MHz. Since the pixel clock rate is far
lower than the pixel clock rate in the proposed SoC, and the DDR controller local clock
domain is 150MHz in our default setting, this proves that the worst case latency is still
in the range of critical latency.

In what follows, we further evaluate the real-time performance of the customized
memory hierarchy design. We first evaluate the bandwidth requirement of stream
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processors based on different standard video input sources in Table 6.8. The interface
between DDR Scheduler and DDR controller are working at half the DDR clock
rate, which is 150MHz, and the DDR is working at 300MHz. The bandwidth usage
shows it is sufficient to support a stream processor in all kinds of standard VGA formats.

Table 6.8: Throughput estimation based on standard VGA video source
Format VGA SVGA XGA HD-720p Sbs Full HD-1080p
Frame Size 640X480 800X600 1024X768 1280x720 Side-by-side 1920x1080
Pixel Rate (MHz) 25.175 40 65 74.15 148.5 (half rate 74.25)
Frame per Second 60 60 60 60 60
Throughput (G bit/s) 3.26 5.07 8.3 9.73 10.95
Bandwidth Utilization (%) 10.5 16.3 26.7 31.3 35.2

However, the command efficiency is not guaranteed to support the critical latency
requirement of each SG-DMA device. Stream processors access frame buffers continu-
ously. If the critical latency of the SG-DMA is not fulfilled, stream processor will suffer
from data starvation or data congestion. Extra latencies might be contributed from
DDR refresh period, pre-charge time, command activate time, DDR controller latency,
or Arbiter latency. Figure 6.5 shows an example of the long latencies which includes
regions (1), (2), (3) and (4).

Figure 6.5: Example of latencies during burst reading

To ensure no critical latency constrains of SG-DMA devices are violated, a simulation
environment is built as Figure 6.6. The memory and controller models [12] are generated
from VHDL from Altera Quartus II 9.1. The device under test (DUT) includes multiple
SG-DMA components, Arbiter, DDR controller, and DDR model. To trigger the
operation of SG-DMA component, the data access patterns of stream processors are
generated based on standard video timing with pipeline delays. Finally, the worst case
latencies of SG-DMA devices are monitored on Simulation tool (Modelsim).

Since the design of SG-DMA devices uses long data burst technique, we try to
estimate the impacts of different burst lengths to the efficiency. Table 6.9 reveals
different burst length configurations to bus efficiency. In this experiment, the data
access pattern is based on the signal timing of XGA (1024x768@60FPS under 65 MHz
Pixel Rate). The DDR SDRAM model works at 300 MHz, and the local interface
of DDR controller works at 150 MHz with burst size 4. The result shows long burst
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Figure 6.6: Memory hierarchy evaluation environment

length facilitate the command efficiency because extra latencies are shared in one long
burst. In contrarily, short burst length dampens the command efficiency because extra
latencies are frequently introduced from command switching. The final result shows the
top three burst length configurations can pass the critical latency constrain in worst
case scenario.

Table 6.9: Burst length settings and critical latency analysis
Burst Length

(Line Buffer Length)
Command

number(cycle)
Commands + Worst
case latencies(cycle)

Command
Efficiency(%)

Critical
Latency(cycle)

Latency
Violation

Image Depth

256 128 1408 1573 89.5 2048 Pass

128 64 704 869 81 1024 Pass

64 32 352 507 69.4 512 Pass

32 16 176 341 51.6 256 Fail

16 8 88 249 35.3 128 Fail
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Conclusion and Future Works 7
This chapter summarizes the achievements of this thesis. In Section 7.1, the proposals
and experimental results are concluded. Then we summarise each chapter and present
the contributions in Section 7.2. Finally, future works and applications are provided as
suggestion in Section 7.3.

7.1 Conclusion

Two stereo matching algorithm improvements have been introduced and implemented
in this thesis. In order to generate high quality disparity map, dynamic programming
algorithm is introduced into the stereo matching computational flow. We select Potts
model as the smoothness function because it performs outstandingly in the disparity
discontinuous regions and low computational complexity. From the Middlebury’s
benchmark, the stereo matching algorithm achieves a 6.6% average pixel error rate. In
order to improve the temporal quality of disparity sequences, we adjust the matching
cost based on the history disparity map result and pixel-based motion information. The
final disparity map sequences is improved especially in the flickering issue.

In this thesis we provide two ideas to improve the hardware utilization of the
Stereo Matching Engine. By taking the advantage of Potts model smoothness function,
we proposed a hardware efficient architecture. We simplify the back track path
data by only recording the path decision information. Furthermore, we apply 2-Port
BRAM with a sophisticate memory address generation pattern to reduce the on-chip
memory requirement to half, compared to ping-pong memory architecture. The on-chip
memory requirement of Dynamic Programming Processor is reduced 11 times without
losing the quality in the case of 64 disparity range. As well, we creatively introduce
Run-length Coding (RLC) algorithm into the post-processor of stereo matching engine
in order to reduce memory consumption. This thesis found the disparity sequence
is a perfect candidate to implement RLC algorithm. The experiment shows that it
can achieve above 4.75 times of compression rate with nearly lossless quality. So
we further propose an on-chip memory architecture with RLC on Vertical Voting
Processor. Finally, the resource consumption of the Stereo Matching Engine is reduced
dramatically after applying memory compression techniques on dynamic programming
and post processor functions. The on-chip memory of the stereo matching engine is
optimized by 2.53 times. So far, the stereo matching engine only takes 40% of combi-
national logic, 25.3% of register and 21% of bit on-chip Block RAM on EP3SL150 FPGA.

In the system implementation work, we successfully implement the IMEC 3D TV SoC
on EP3SL150 FPGA and make the 3D intensity of stereoscopic contents be adjustable.
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The proposed system architecture is mainly composed of five parts: Video Adaptors,
Color Space Converters, Stereo Matching Engine, memory hierarchy, and View Synthesis
Engine. The Video Adaptor designs successfully synchronize input streams and output
complete video frame pixels in a standard timing sequence. Then we design the Color
Space Converters and provide two low cost constant multiplier configurations, based on
the requirement of flexibility. Furthermore, the proposed memory hierarchy successfully
supports the temporal consistency function of stereo matching and view point synthesis
blocks for frame buffering. The memory hierarchy hides the DDR access latency by
long burst with the help of 2-Port RAM. The total throughput achieves the required
8.035G bits with a 81% command efficiency. Finally, we integrate the above mentioned
works with Stereo Matching and View Synthesis Engines. The stereo video sources
and disparity streams are properly calculated to generate an accurate virtual view from
the Viewpoint Synthesis Engine. According to the report of quality evaluation, the
interpolated videos achieve average 34.7db PSNR and 50db TPSPNR in Book Arrival
test sequences which show an acceptable quality for 3D TV application. To display
3D video on screen, we insert an anaglyph IP into the proposed system to generate two
dimension video for conventional 3D monitor. Through the proposed system, an audience
is able to adjust the depth intensity of stereoscopic 3D contents by the on-board buttons
and watch the 3D video in true real-time.

7.2 Summary of Chapters and Contributions

Chapter 1 points out that 3D visual comfort is required by viewers. Due to the depth
comfort region, variously dependent on the viewer and display technology, adaptive 3D
contents is a challenge for the existing 3D content standards. Therefore, this thesis aims
to provide a SoC solution to support depth intensity adjustment. In this chapter, we
point out the spatial and temporal quality issues in generating synthesized 3D contents.
We also point out that the hardware overhead is introduced by applying dynamic
programming algorithm which performs global optimization in a stereo matching
computational flow.

Chapter 2 provides a background overview of the stereo matching algorithm. This
chapter first sum up the common stereo matching flows in both local and global stereo
matching approaches. Then the relevant researches for individual steps, including
matching cost generation, stereo matching computation, global optimization, and
refinements, are concluded. Since we are interesting in global optimization approach,
the background of dynamic programming approach is explained explicitly.

In Chapter 3, we introduce the dynamic programming algorithm into the stereo
matching computational flow. This thesis further propose a hardware efficient dynamic
programming architecture by taking the advantage of Potts model smoothness function.
A backtrack path data simplification method and a sophisticated 2-Port BRAM
access pattern were presented to reduce the on-chip memory requirement. However,
the on-chip memory consumptions of the preprocessor and the postprocessor in the
stereo matching engine are still large. Therefore, we propose an on-chip memory
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architecture with run-length coding algorithm to reduce the memory consumption of
the Vertical Voting Processor in disparity voting function. Finally, we insert matching
cost updating technique into the stereo matching algorithm in order to enhance the
temporal consistency of disparity sequences.

In Chapter 4, several proposals from Chapter 3 are evaluated. We first measure the
quality of test disparity maps. It achieves a 6.6% average pixel error rate in Middlebury’s
benchmark. Then we evaluate the hardware utilization and scalability of the Dynamic
Programming Processor. The hardware utilization of the proposed hardware efficient
Dynamic Programming Processor was estimated. The on-chip memory shows an 11
times of improvement without quality being lost in 64 disparity range scenario. Another
memory optimization proposal is in the Vertical Voting Processor. The proposed
memory architecture with run-length coding encoderdecoder is explored based on the
tradeoff of compression rate and pixel error rate. We developed an evaluation flow to
search for the optimal parameter settings. The proposed memory architecture shows
above a 12 times of improvement without quality being lost in 5 test sets. Finally, the
total on-chip memory utilization of the stereo matching engine is optimized by 2.53
times in the above-mentioned designs.

In Chapter 5, the 3D TV System SoC architecture is designed and implemented
on EP3SL150 FPGA. The SoC architecture includes Video Adaptors, Color Space
Converter, Stereo Matching Engine, memory hierarchy, and View Synthesis Engine. We
designed most of the components, except the viewpoint synthesis engine (support by
NCTU and IMEC-Taiwan) and DDR controller (IP from Altera). In the beginning, we
provided a system architecture overview from three aspects: function definition, clock
domain, and system on-chip interconnection. Then the individual component designs
are presented. First, the background of view synthesis algorithm is given. Then the
Video InputOutput Adaptors are proposed to synchronize and control the incoming
and display sequences based on standard VGA signal. Afterward, we present the
RGB-YCbCr Color Space Converter designs. Two hardware-friendly constant multiplier
configurations for the color space converter, Shift Addsub and 2LUT+Adder approaches,
are proposed. Finally, a customized memory hierarchy is constructed to support frame
buffering for stream processors. The memory architecture contains SG-DMA, Arbiter,
memory controller, and off-chip memory. The SG-DMA and Arbiter are integrated into
DDR Scheduler block, which can work alone without extra processor kernel and standard
on-chip bus to increase the efficiency. The proposed memory hierarchy is designed
to hide the data read-and-write latency by long data burst and data pre-fetch scheduling.

Chapter 6 evaluates the entire 3D TV SoC design from three aspects: quality, hard-
ware utilization, and real-time performance. With the support from memory hierarchy,
the temporal consistency function works on the stereo matching engine and generates
stable and accurate depth map video for viewpoint synthesis engine. The experiment
shows the interpolated view achieves an average 34.7db PSNR and 50 db TPSPNR in
Book Arrival test sequences. We analyzed the entired SoC design from hardware utiliza-
tion aspect. To analyse the real-time performance, we start from evaluating the memory
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hierarchy design in a worst case latency and detected the command efficiency under
different burst lengths, in the case of the SoC. The critical latency of each SG-DMA
device is monitored and verified on both simulation tool and FPGA. Finally, the critical
paths of stream processors are estimated by synthesis tool. The analysis shows that it
can process up to XGA standard video format (1024x768@60FPS 65MHz under 65 MHz
Pixel Rate) on EP3SL150 FPGA.

7.3 Future Work and Application Development

Regarding the current processing unit designs, there are several aspects can be improved.
The proposed idea will be introduced as follows.

1. Rendering better disparity mapvideo is a motivation to improve the Stereo
Matching Engine. The matching cost generation algorithm can be further
improved in order to achieve high quality disparity map. The global optimization
algorithm can also be improved since the scanline-based dynamic programming
algorithm is applied. In the scanline-based dynamic programming algorithm,
the global optimization is only restricted in single scanline and lack connection
between scanlines. In addition, the temporal consistency of disparity video can
be improved since the current system is only using pixel-based motion detection
mechanism. The pixel-based motion detection mechanism is still relativelly simple
and can be improved in advance.

In the resource utilization aspect, dynamic programming algorithm requires a large
memory space for storing the backward pass information. We have introduced a
specific compression method by using Potts model smoothness function in Chapter
4. However, it is unable to cover other smoothness function models such as linear
and second ordered models. Besides, the pre-processor and post-processor still
take a large among of onchip memory because of the cross-based disparity voting
algorithm. A hardware-friendly stereo matching algorithm with both hardware
efficiency and accuracy is expected.

2. The proposed memory hierarchy will integrate with extra processing units. For
example, H.264 codec can be extended into HD3DTV processing unit, and it will
consume a large amount of off-chip bandwidth. Thus, a critical latency-aware
arbiter and high efficient off-chip memory controller will be needed to achieve
quality of service (QoS).

3. Standard network on chip bus such as AHB, OCB, Wishbone etc. can be intro-
duced into the SoC system when the number of processing units are expended. For
example, a standard bus structure could be built to deal with the interconnections
between processing units and off-chip memory controllers.
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All in all, the technologies in the proposed IMEC 3D TV system SoC could be applied to
many applications such as object tracking, 3D reconstruction, navigation system, gesture
detection, 3D digital camera and eye-gazing view point interpolation, as potential exam-
ples. There is no doubt that 3D-related technologies will influence our lives profoundly
in the future soon to come.
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