
An Energy-Aware Architectural Exploration Tool for ARM-Based SOCs

Dan Crisu, Sorin Cotofana, and Stamatis Vassiliadis
Computer Engineering Laboratory
Electrical Engineering Department

Delft University of Technology
2628 CD Delft, The Netherlands

Phone: +31 (0)15 2783 644 Fax: +31 (0)15 2784 898
Email: {dan, sorin, stamatis}@ce.et.tudelft.nl

Abstract— In recent years, power consumption has be-
come a critical concern for many VLSI systems. Whereas
several case studies demonstrate that technology-, layout-,
and gate-level techniques offer power savings of a factor of
two or less, architecture and system-level optimization can
often result in orders of magnitude lower power consump-
tion. Therefore, the energy-efficient design of portable,
battery-powered systems demands an early assessment,
i.e., at the algorithmic and architectural levels, of the
power consumption of the applications they target. Ad-
dressing this issue, we developed an energy-aware architec-
tural design exploration and analysis tool for ARM based
system-on-chip designs. The tool integrates the behavior
and energy models of several user-defined, custom process-
ing units as an extension to the cycle-accurate instruction-
level simulator for the ARM low-power processor family,
called the ARMulator. The models we implemented take
into account the particular class, e.g., datapath, memory,
control, or interconnect, as well as the architectural com-
plexity of the hardware unit involved and the signal ac-
tivity triggered by the specific algorithm executed on the
ARM processor. Our tool can estimate at the architec-
tural level of detail the overall energy consumption or can
report the energy breakdown among different units. Pre-
liminary experiments indicated that the estimation accu-
racy is within 25% of what can be accomplished after a
circuit-level simulation on the laid-out chip.

Keywords— ARM CPU core; system-on-chip; ARMu-
lator; energy-aware architectural exploration; battery-
powered system.

I. Introduction

With the advent of mobile platforms for computing
and communications, system designers and integra-
tors were confronted with a massive shortage of tools
that enable early energy consumption estimation for
such systems. CAD tool support for embedded system
design is still limited and it addresses mainly func-
tional verification and performance estimation.

The intricacy involved by these new electronic ap-
pliances imposed a new design paradigm to cope with
the specific requirements, e.g., low cost with fast time

to market, and restrictions they have. Also, energy
consumption is a critical factor in system-level de-
sign of embedded portable appliances. A hardware-
software co-design framework must be employed to
proceed with the design from the software applica-
tions intended to run on these appliances to the fi-
nal specifications of the hardware that implements the
desired functionality given the above-mentioned con-
straints. Studies have demonstrated that circuit- and
gate-level techniques have less than a 2x impact on
power, while architecture- and algorithm-level strate-
gies offer savings of 10–100x or more [1]. Hence, the
greatest benefits are derived by trying to assess early
in the design process the merits of the potential imple-
mentation. Architecture optimization corresponds to
searching for the best design that optimize all objec-
tives. Since the optimization problem involves mul-
tiple criteria (power consumption, throughput, and
cost) to reach the global optimum a set of Pareto
points [2] in the design space have to be found. A
Pareto point corresponds to a global optimum in a
mono-dimensional design evaluation space and, sum-
ming over the entire design space, the trade-off curves
or surfaces are obtained. Ideally, when designing an
embedded system, a designer would like to explore a
number of architectural alternatives and test function-
ality, energy consumption, and performance without
the need to build a prototype first.

Usually, typical portable systems are built of com-
modity components and have a microprocessor-based
architecture. Full system evaluation is often done
on prototype boards resulting in long design times.
Power consumption estimation can be done only late
in the design process, after the prototype board was
built, resulting in slow power tuning turnarounds that
doesn’t meet the requirement of fast time to market.
On the other hand, using field programmable gate ar-
ray (FPGA) hardware emulators for functional debug-
ging, with a fast prototyping time, can neither give

327

accurate estimates of energy consumption nor of the
performance.

Among the tools preferred for early performance as-
sessment at the algorithmic and architectural level, in
the last decade, were the cycle-accurate instruction-
set simulators. Unfortunately, for power consumption
estimation this approach was seldom easy to follow.
There were only a few academic tools for power esti-
mation (all based on or integrated in the SimpleScalar
instruction set simulator toolset framework [3], [4],
[5]) and almost no commercial products.

For several target general purpose processors a
number of techniques emerged in the last few years.
The processor energy consumption for an instruc-
tion trace was generally estimated by instruction-level
power analysis [6], [7]. This technique estimates the
energy consumed by a program by summing the en-
ergy consumed by the execution of each instruction.
Instruction-by-instruction energy costs, together with
non-ideal effects, are precharacterized once for each
target processor. A few research prototype tools that
estimate the energy consumption of processor core,
caches, and main memory have been proposed [8],
[9]. Memory energy consumption is estimated using
cost-per-access models. Processor execution traces are
used to drive memory models, thereby neglecting the
non-negligible impact of a non ideal memory system
on program execution. The main limitation of these
approaches is that the interaction between memory
system (or I/O peripherals) and processor is not mod-
eled. Cycle-accurate register-transfer level energy es-
timation was proposed in [4]. The tool integrates RT
level processor simulator with DineroIII cache simu-
lator and memory model. It was shown to be within
15% of HSPICE simulations.

The drawback of all the above methods to estimate
the power consumption is that they are based on cer-
tain architectural templates, i.e., general purpose pro-
cessors and can be hardly adapted to model system-
on-chip designs.

A new approach towards high-level power estima-
tion is presented in this paper in the context of AR-
Mulator [10], a cycle-accurate instruction-level simu-
lator for the ARM low-power processor family. More
in particular, we developed an energy-aware architec-
tural design exploration and analysis tool for ARM
based system-on-chip designs. The tool integrates the
behavior and energy models of several user-defined,
custom processing units as an extension to the AR-
Mulator. These models take into account the impact
of design complexity and signal activity on datapath,

memory, control, and interconnect power consump-
tion. So far we have implemented only the tool frame-
work and the power calculators for the datapath part.
Experiments carried on employing a toy coprocessor
design indicated that the accuracy of the results ob-
tained by behavioral simulation is within 25% of that
obtained using circuit simulators.

The rest of the paper is organized as follows. We
discuss for background purposes the power models
in Section II. System model and the methodology
for cycle-accurate simulation of energy dissipation are
presented in Section III. In Section IV, to validate the
employed methodology we design down to the physical
layout a toy coprocessor for an ARM1020T CPU core
in order to run a number of realistic experiments. Fi-
nally, Section V presents the conclusions and describes
future work in the area.

II. Background

A comprehensive collection of techniques for ana-
lyzing the power consumption of chips at the architec-
ture or RT level of abstraction is presented in [1]. The
premise for the success of such methodology consists
in the existence of a library of hardware cells (various
operators for datapath part, gates for control logic,
and bit-cells, decoders, sense amplifiers for memory
cores) specified at the layout-level. Once such a li-
brary exists, it can be precharacterized resulting in a
table of effective capacitive coefficients for every ele-
ment in the library. Then using only this tables and
the activity statistics derived during the architectural-
level simulation the power consumption can be esti-
mated easily. This precharacterization has to be done
only once and only the effective capacitive coefficients
table are needed for power estimation. The prechar-
acterization results are valid only for a specific library
of hardware cells and a given IC technology.

The power is analyzed separately for the four main
classes of chip components: datapath, memory, con-
trol, and interconnect. For the first two classes, a
model called the Dual Bit Type (or DBT) model is de-
veloped and it demonstrated good results, with power
estimates typically within 10-15% of results from
switch-level simulations. The DBT model achieves
its high accuracy by carefully modeling both physical
capacitance and circuit activity. The key concept be-
hind the technique is to model the activity of the most
significant (sign) bits and least significant bits sepa-
rately. The DBT model applies only to parts of the
chip that manipulate data. A separate model is intro-
duced to handle power estimation for control logic and

328

P(0 1)

UWNsign

BP1 BP0

0.00

0.10

0.20

0.30

0.40

0.50

0.25

-0.40

-0.20

-0.60
-0.80

-0.90

-0.99

+0.20

+0.40

+0.60
+0.80

+0.90

+0.99

0.00

0246810121416

MSB LSB
Bit

ρ

t

ρ = −0.9

t

ρ = +0.9

b)a)

DBT

Model

Fig. 1. a) Activity for positively and negatively correlated waveforms. b)Bit transition activity for data streams with
varying temporal correlation.

signals. This model is called the Activity-Based Con-
trol (ABC) model. The method relies on the obser-
vation that although the implementation style of the
controller (e.g., ROM, PLA, random logic, etc.) can
heavily impact the power consumption, it is still pos-
sible to identify a number of fundamental parameters
that influence the power consumption regardless of the
implementation method. In a chip, datapath, mem-
ory, and control blocks are joined together by an inter-
connect network. The wires comprising the network
have capacitance associated with them and, therefore,
driving data and control signals across this network
consumes power. The precise amount of power con-
sumed depends on the activity of the signals being
transferred, as well as the physical capacitance of the
wires. The DBT and ABC models provide the ac-
tivity information for control and data buses, but the
physical capacitance depends on the average length of
the wires in each part of the design hierarchy.

The DBT model accounts for two classes of input
bits (this is the reason why it is called the Dual Bit
Type model) and is presented in Figure 1. The DBT
model reflects the distinct behaviors of both the LSB’s
and the MSB’s of a data word. The LSB’s are mod-
eled as uniform white noise (UWN), while the MSB’s
account for the sign extension (if any) in the chosen

data representation. In Figure 1.b the bit transition
activity for several different two’s complement data
streams are shown. In particular, each curve corre-
sponds to a Gaussian process with a different tempo-
ral correlation:

ρ =
cov(Xt−1, Xt)

σ2
(1)

where Xt−1 and Xt are successive samples of the pro-
cess and σ2 is the variance. The position of the model
breakpoints (BP1 and BP0) depends on how many
bits are required to represent the numbers in the data
stream; the unused bits are devoted to sign. The
analytical expressions for the breakpoint positions of
a stationary data stream as a function of word-level
statistics such as mean (µ), variance (σ2), and corre-
lation (ρ) are:

BP1 = log2(|µ|+ 3σ) (2)

BP0 = log2 σ + ∆BP0 (3)

∆BP0 = log2

(√
1− ρ2 + |ρ|/8

)
(4)

Altering the distribution of the process merely intro-
duces a negligible error in the model.

Since the sign bit activity is so different from the
UWN bit activity, the capacitance model should ac-
count for both types of bits. Hence there should also

329

S U SS UU

+ -

- +

--

UU

UU

UU

UU
M

SB

L
SB

b) Transition template c) Transition ID’sa) Data template

+ +

Fig. 2. Templates for identifying data bit types.

be capacitive coefficients for different sign bit tran-
sitions beside the capacitive coefficient for the UWN
bits. Different templates can be associated with any
data stream. The templates classifies bits in the data
stream as either U or S for UWN and sign bits, re-
spectively. The templates are presented in Figure 2.

For the transition template the SS indicates a tran-
sition from one sign value to another (possibly equal)
value. Similarly, UU suggests that the UWN bits all
transition from their current random values to some
new random values. A transition template does not
imply any particular sign value, however, a transition
ID can be used to denote a specific sign transition.

These formal representations serve two purposes in
our case. First, they help us to build the structure and
the content of the effective capacitance coefficient ta-
ble for every module existent in a library of hardware
cells. This process actually needs to be done only once
per library. Second, they will help us to estimate the
power consumption of a module based on the tran-
sition activity seen on its input terminals given its
associate effective capacitance coefficient table.

III. Proposed Design Exploration
Framework

In this section we present our approach to estimate
at the architectural level the power consumption of a
coprocessor or peripheral unit coupled with an ARM
CPU core on a system-on-chip.

A. System Model

Figure 3 gives an overview of the power analysis
strategy that we propose.

We use this strategy for the design of peripheral
units that augment or complement ARM CPU core
functionality. The instruction set architecture of the
ARM family of processors offers room for extensions
to be added by providing the so called coprocessor

instructions. Referring to the Figure 3, the inputs
from the user are a description of a candidate archi-
tecture for the desired peripheral unit given in be-
havioral or structural VHDL and the set of data and
the application program for which a power analysis is
desired. The provided program is then compiled us-
ing the ARM native compiler. Usually, the code will
embed, beside ARM native instructions, specific pe-
ripheral unit instructions. These specific instructions,
when executed on the ARMulator (the ARM instruc-
tion set simulator), will be recognized as non-native or
coprocessor instructions and they will trigger callback
functions, installed using the ARMulator API (ap-
plication programming interface), so specific actions
(e.g., new data or commands are fed to the hard-
ware description simulated in VHDL) can be taken.
Moreover, every clock cycle, the ARMulator will sent
signals to the VHDL simulator to advance the state
of the simulated hardware description one more clock
cycle. In this simple way the simulated hardware de-
scription will process its own data in lockstep with
the ARM processor pipeline. Every clock cycle the
activity on internal relevant signals is also collected
and sent to the power analysis units. Rather than
attempting to find a single power model for the en-
tire chip, we take the approach of identifying four ba-
sic classes of components: datapath, memory, control,
and interconnect. The total power consumption of the
coprocessor or peripheral unit per program executed
on the ARM processor is estimated.

The central elements of our architectural design ex-
ploration framework are:
- ARMulator, the cycle-accurate instruction set sim-
ulator for the ARM family of low-power processors;
- VHDL simulator, capable of saving the state of the
simulated hardware description whenever it receives
this command, also it is capable to reinitialize the
hardware description with the previous saved state

330

System coprocessor

Caches

+

ARM Processor Core Model

Peripheral Extension Module

ARMulator

ARM Instruction-level Simulator
(ARMulator)

(VHDL Structural & Behavioral)

Peripheral Unit Description

Activity

Analysis

Power analysis

Datapath

Power analysis

Memory

Power analysis

Control

Power analysis

Interconnect

Data

Instructions

Power Models

& Coefficient Tables

(precharacterized,
hardware library dependent)

VHDL Simulator

Wrapper Module

ARM binary code Estimator
Power

Fig. 3. System-on-chip simulator architecture.

before it processes the new stimuli sent by the ARM
CPU core simulated on the ARMulator;
- Wrapper Module, that handles the communication
between ARMulator (using ARMulator API) and the
VHDL simulator; it is also responsible of passing cor-
rect formatted data between ARMulator, the VHDL
simulator, and the activity analysis module;
- Precharacterized Power models and Effective Ca-
pacitance Coefficient Tables Module, that contain for
a library of hardware cells all the technology depen-
dent information required by the power analysis mod-
ules to compute the power consumption; the tables
are derived only once for a given library of hardware
cells (more detailed explanations are given in Subsec-
tion III-B);
- Activity Analysis Module, that feeds the Power
Analysis modules (power calculators) with statistics
about signal activity inside the simulated hardware
description;
- Power Analysis Modules, that estimate the power
consumption in the datapath, control, memory, and
interconnect based on statistics received from the Ac-
tivity Analysis Module and lookups in the effective
capacitance coefficient tables;
- Power Estimator Module, that adds the estimates

of power consumption of datapath, control, memory,
and interconnect and offers the total figure of power
consumption of the coprocessor or peripheral unit per
program executed on the ARM processor;

The approach we have taken provide all the benefits
of a co-design framework, moreover, it is also capable
of power estimation:
- permits experimental partitioning schemes between
features that must be provided by software and fea-
tures that will be mapped in hardware;
- allows changing of the organization and order of ex-
ecution of the algorithmic blocks to investigate and
verify potential new architectures;
- provides methods of performance monitoring (in
terms of throughput, and power consumption);
- accelerates the implementation of new algorithms
and provides an environment in which to test them
both individually and as part of an entire pipeline;
- allows tweaking the bit width precision and seeing
potential impacts on result accuracy and performance
factors.

B. Power Models of Datapath

In this subsection, we will describe the methodology
of modeling power consumption of the datapath at

331

SS UU SS UU

L
SB

M
SB

M
SB

L
SB

SS / SS / SS

U
U

 / U
U

L
SB

IN1

IN2

OUT

N
S

N
U

OUT

IN2IN1

SS UU

OUT

N
U

L
SB

M
SB

M
SB

L
SB

SS / SS / SS

L
SB

IN1

IN2

OUT

N
S

IN2IN1

SS UU

U
U

 / U
U

U
U

 / SS
N

US

a) Aligned breakpoints b) Misaligned breakpoints

ModuleModule

Fig. 4. Transition templates for two-input modules.

the architecture level. We followed the methodology
presented in [1].

Having the library of hardware cells at the layout-
level and a circuit-accurate simulator we will prechar-
acterize first the library. During the precharacteriza-
tion stage of the library of hardware cells a black-box
model of the capacitance switched in each module for
various types of inputs is produced. If desired, these
capacitance estimates can be converted to an equiv-
alent energy, E = CV 2, or power, P = CV 2f . The
black-box capacitance models can be parameterized,
i.e., taking into account the size or complexity of the
module. The model accurately accounts for activity
as well as physical capacitance. As a result, the effect
of the input statistics on module power consumption
is reflected in the estimates.

The DBT method accurately accounts for different
types of input statistics by having a separate coeffi-
cient for each possible transition of both the UWN
and the sign bits. For example, consider a bit-sliced
subtractor as shown in Figure 4. The number of co-
efficients that are required will depend on how many
inputs the module has. A two-input module, on the
other hand, must be characterized for transitions on
more than one data stream. For this case, the LSB re-
gion sees random (UWN) transitions on both inputs.
The transition ID for this region of the module is writ-
ten UU/UU. The effective capacitance of the mod-
ule in this region will be described by the coefficient
CUU/UU . In the sign region, the module transition
template has three components (SS/SS/SS) rather
than two that might be expected. This is because

the output sign can affect the capacitance switched
in the module, and for some modules the sign of the
inputs does not completely determine the output sign
(in the case of the subtractor, subtracting two positive
numbers could produce either a positive or a negative
result). If the transition template for the module only
includes inputs, then a particular transition might be
classified as ++/++. This makes it appear as though
the module undergoes no activity even though it is
possible that the output does make a sign transition.
Specifying the output sign (e.g. ++/++/+-) avoids
this ambiguity. For this reason, the transition tem-
plate for the sign region of a two-input module should
contain an entry for the output, as well as the in-
puts. Considering all combinations for the transition
ID’s leads to the capacitance table presented in Ta-
ble I. The table is valid only for a particular width
of the datapath. The procedure for the generation
of the effective capacitive coefficients table has two
steps. During the pattern generation step, input pat-
terns for various UWN, sign, and control transitions
are generated for the module being characterized. In
the next step, circuit simulation employing HSPICE
circuit simulator is used to measure the capacitance
switched for these input activity patterns. For more
details on the generation process of the effective ca-
pacitive coefficients table the reader is referred to [1].

Intuitively, the total power consumed by a module
should be a function of its complexity, i.e., size. This
reflects the fact that larger modules contain more cir-
cuitry and, therefore, more physical capacitance. Un-
der the DBT model, we can specify arbitrary capaci-

332

.

--/-+/++C

++/+-/++C ++/+-/+-C ++/+-/-+C ++/+-/--C

++/++/--C++/++/-+C++/++/+-C++/++/++C

--/--/++C --/--/+-C

--/-+/+-C

--/--/-+C

--/-+/-+C

--/--/--C

--/-+/--C

UU/++C

+-/UUC

UU/+-C

-+/UUC

UU/-+C

--/UUC

UU/--C

C++/UU

UU/UUC

Capacitive Coefficients
Transition
Templates

SS/SS/SS

UU/UU

UU/SS

SS/UU

Misaligned

breakpoints

only

1

64

8

TABLE I
Capacitive coefficients for two-input modules.

tance models for each module in the datapath library.
For example, consider modeling the capacitance of a
ripple-carry subtractor. The amount of circuitry and
physical capacitance an instance of this subtractor will
contain is determined by its word length, N . In partic-
ular, an N -bit subtractor can be realized by N one-bit
full-subtractor cells. The total module effective capac-
itance function should, therefore, receive an argument
proportional to the word length as shown here:

CT = f (activity statistics, CeffN) (5)

where Ceff is the average capacitive coefficients per
bit table, f represents the total module effective ca-
pacitance function, and CT represents the total mod-
ule effective capacitance. The average capacitive coef-
ficients per bit table is obtained after a process of data
fitting (using least-squares approximation method)
employing the effective capacitive coefficients tables
generated for several sample width of the datapath
(e.g., 4 bits, 8 bits, 16 bits, 32 bits). The average
capacitive coefficients per bit table will be generated
for the subtractor during the precharacterization stage
and stored for the time when the estimate of the power
consumption is needed. Many modules besides the
subtractor also follow a simple linear model for the
argument of the total module effective capacitance
function. For example, ripple-carry adders, compara-
tors, buffers, multiplexers, and Boolean logic elements
all obey Equation (5). The DBT method is not re-
stricted to linear capacitance models and can model
non-linear modules like array multipliers and logarith-
mic shifters. The total module effective capacitance

function f is actually the power model of the module
under consideration and receives the activity statistics
seen on the module terminals, the complexity param-
eters of that module (e.g., N), and a pointer to the
average capacitive coefficients per bit table for that
module. The reader is again referred to [1] for more
details. The total module effective capacitance CT

represents the effective capacitance switched by that
module every clock cycle during the execution of an
application program on the ARM processor.

We have to mention that, up to date, the prechar-
acterization of the library is done in a manual way. In
the future, we intend to develop an automatic process
of precharacterization. We believe that a command
language with a dedicated grammar for the precharac-
terization process can be a possible solution. Within
this approach every leaf cell in the library of hard-
ware cells will be accompanied by a description file
with specific commands for the precharacterization
program.

IV. Experimental Results

To verify the power consumption prediction accu-
racy of the architectural space exploration tool we de-
signed, we need to provide the following experimental
setup: a precharacterized library of hardware cells,
the description in VHDL of the peripheral or copro-
cessor to be simulated, and the binary code of the
program to be simulated on the ARMulator contain-
ing calls to the coprocessor.

We precharacterized parts of a datapath library of
cells (including a ripple-carry subtractor) designed in

333

Transition
Templates

Capacitive Coefficients (fF/bit)

UU / UU

UU / SS

SS / UU

SS/SS 0

0 0

46.1

35

34 51 50 17.26

0 28.3 41 29.5

0 28.3 41 3.15 42 0 18.61 0 52 25.7 0.50 0 0 0

0 35.4 52.1 0 56 0 0 49 27 0 00 16 38 36 16

00 69 60 0 0 43 0 7.65 32.73 49 10 0 19.3 0

0 0 0 2.4 0 54.9 72 0 0.15 47 0.75 25 22.8 2.8

TABLE II
Average capacitive coefficients per bit for the ripple-carry subtractor

UMC 0.18µm Logic 1.8V/3.3V 1P6M GENERICII
CMOS technology. We extracted from the layout the
circuit of the subtractor in three variants of the dat-
apath width: for 4 bits, 8 bits, and 16 bits. After
using the method presented in Subsection III-B we ob-
tained the average capacitive coefficients per bit table
presented in Table II.

We modeled in VHDL a toy coprocessor for an
ARM1020T CPU core. It was designed starting from
the datasheet of AMD’s Am2901 four-bit bipolar mi-
croprocessor slice. The coprocessor has a datapath
width of 8 bits. The organization of the toy coproces-
sor is presented in Figure 5. The coprocessor consists
of a 16-word by 8-bit two-port register file, an ALU
and the associated shifting, decoding and multiplex-
ing circuitry. The 9-bit microinstruction word is or-
ganized in three groups of three bits each and selects
the ALU source operands, the ALU function, and the
ALU destination register. The ALU provides various
status flag outputs. The ALU is capable of perform-
ing three binary arithmetic (R+S, S−R, R−S) and
five logic functions (R OR S, R AND S, R AND S,
R XOR S, R XNOR S).

To generate the application programs we analyzed
real trace data for environmental control realized with
well known microcontrollers (Intel 8051 and compat-
ible). We extracted the recurrent patterns of con-
trol and data in these instruction flows and generated
three instruction flows A, B, and C, along with the
data using biased noise generators. We used biased
noise generators because in the case of our toy copro-
cessor there is no already developed software available.
We executed these instruction flows on the ARM pro-
cessor family ISA and, using the framework described
in Subsection III-A, we obtained power consumption

estimates for the subtractor. They are presented in
the second column of Table III.

In order to find the relative error of these estima-
tions for the ripple-carry subtractor we have to com-
pare the results obtained employing our design ex-
ploration tool with the power consumption estimated
accurately with the HSPICE circuit simulator on ex-
actly the same excitation patterns for the ripple-carry
subtractor. For this purpose we designed down to the
layout-level the toy coprocessor1 using the library of
hardware cells. The layout of the toy coprocessor is
presented in Figure 6.

The simulation results on the extracted netlist of
the ripple-carry subtractor are presented in the third
column of Table III. We have to mention here that
the circuit-level simulation of the subtractor took sev-
eral hours for the three instruction traces executed
on the ARM processor. This clearly indicate that a
circuit-level simulation of the whole coprocessor, to
obtain the power consumption directly, for an instruc-
tion trace executed on the ARM processor is compu-
tationally unfeasible. The relative error between the
power estimated and the power consumption obtained
by circuit-accurate simulation is presented in the last
column of Table III. The power prediction accuracy
is good, well within 25% of a direct circuit simulation
with HSPICE.

V. Conclusions

A new approach towards high-level power estima-
tion is presented in this paper in the context of ARMu-

1Actually for this simple case of the subtractor the layout
for the whole coprocessor is not needed but we thought at the
future extension of our power models for the memory, control,
and interconnect part when we can reuse the design.

334

8 7 6 5 4 3 2 1 0

DESTINATION
FUNCTION

ALU
CONTROL SOURCE

ALU

MICROINSTRUCTION DECODE

’B’ DATA IN

’A’ ADDRESS

’B’ ADDRESS

(16 addresable register)

’A’

OUT
DATA DATA

OUT

’B’

’0’
LOGIC

B O QD A

R S

R S

A F

Y

Y

F Q’

SGN
ZERO
OVR
CARRY

DATA OUT REGISTER

OUTPUT DATA SELECTOR

8-FUNCTION ALU

FLAGS
REGISTER

ALU DATA SOURCE SELECTOR

Q REGISTER

REGISTER FILE

RAM SHIFT

Q SHIFT

DIRECT DATA IN

REGISTER

’B’ (READ/WRITE)

REGISTER
ADDRESS

REGISTER
ADDRESS

’A’ (READ)

CLOCK

INSTRUCTION REGISTER

Datapath

Register file

Control

Legend

y

FLAGS

Fig. 5. Toy Coprocessor Block Diagram.

lator, a cycle-accurate instruction-level simulator for
the ARM low-power processor family. More in par-
ticular, we developed an energy-aware architectural

design exploration and analysis tool for ARM based
system-on-chip designs. The tool integrates the be-
havior and energy models of several user-defined, cus-

335

Power Consumption
(estimated)

Power Consumption
(simulated)Instruction Trace

Relative Error
(%)

B

A

C

0.77 mW

1.02 mW

0.63 mW

0.91 mW

0.61 mW

0.84 mW 21

-15

3

TABLE III
Power consumption results for the ripple-carry subtractor.

Fig. 6. Toy coprocessor layout. From left to right and up to down: register file, control, and datapath

tom processing units as an extension to the ARMu-
lator. The models we implemented take into account
the particular class, e.g., datapath, memory, control,
or interconnect, as well as the architectural complex-
ity of the hardware unit involved and the signal ac-
tivity triggered by the specific algorithm executed on
the ARM processor. Our tool can estimate at the ar-
chitectural level of detail the overall energy consump-
tion or can report the energy breakdown among dif-
ferent units. Preliminary experiments indicated that
the estimation accuracy is within 25% of what can be
accomplished after a circuit-level simulation on the
laid-out chip.

Our endeavor to accurately predict power consump-
tion within the ARM-based system-on-chip designs is
an ongoing work. Our simulation framework has still

have to be extended to take into account the power
consumption in the control, memory and interconnect
part of a hardware implementation. Also, an auto-
matic process of hardware library precharacterization
must to be developed to assure a fast transition from
one technology to another, from one library of hard-
ware cells to another. These issues will be addressed
in future papers.

References

[1] Paul Landman, “High-Level Power Estimation,” in Inter-
national Symposium on Low Power Electronics and Design,
Monterey CA, 1996, pp. 29–35.

[2] G. De Micheli, Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

[3] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Tech. Rep. Nr. 1342, University of Wisconsin-
Madison Computer Sciences Department, June 1997.

336

[4] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. KIM,
and W. Ye, “Energy-Driven Integrated Hardware-Software
Optimizations Using SimplePower,” ISCA 2000, 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and Op-
timizations,” in Proceedings of the 27th International Sym-
posium on Computer Architecture, Vancouver, BC, June
2000, pp. 83–94.

[6] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction
Level Power Analysis and Optimization of Software,” Jour-
nal of VLSI Signal Processing Systems, vol. 13, no. 2–3, pp.
223–238, 1996.

[7] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: A first step toward software power
minimization,” IEEE Transactions on VLSI Systems, vol.
2, pp. 437–445, Dec. 1994.

[8] Y. Li and J. Henkel, “A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW Sys-
tems,” in Proceedings of Design Automation Conference,
1998, pp. 188–193.

[9] B. Kapoor, “Low Power Memory Architectures for Video
Applications,” in Proceedings of 8th Great Lakes Sympo-
sium on VLSI, 1998, pp. 2–7.

[10] ARM Limited, ARM Developer Suite version 1.1, 1999.

337

