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Abstract
Short transparent memory test algorithms for semi-
conductor memories are presented along with an evalua-
tion of the space on silicon required for their built-in self-
test implementation. A modified version of the memory test
simulation package MAP+ has been developed and em-
ployed for test algorithms generation and simulation.

1. Introduction

The majority of the complex VLSI/ULSI/WSI circuits
and systems contain built-in Random -Access Memories
(RAM) with significant capacities [1-5]. Such memories
are among the most important parts of the complex Inte-
grated Circuits (IC). Besides, semiconductor memories
are the most wide spread type of the completed ICs pro-
duced by the industry. This leads to the increasing impor-
tance of fault-free operation of the memory components.
In achieving it, comprehensive and reliable electronic
testing (first of all, the functional testing [6,7]) has to be
performed.

An important issue in RAM testing is the ability to
provide it on-line or quasi on-line (without interruption) or
with minimal interruption of normal operation of the
whole system). This implies that the contents of memory-
under-test should not be affected as a result of the testing.

The traditional approach to satisfy this requirement
consists of saving the contents of the entire memory-
under-test in some intermediate data storage prior to the
testing. After testing is completed, the data are transferred
back to the memory. However, such an approach not al-
ways can be implemented to test memories of an embed-
ded type or the memories where high availability is
imperative. Spare data storage of the same capacity as the
main memory is often not available. Besides, a time delay
due to the save-restore procedure can be too long to be
acceptable. Moreover, testing of embedded memories is
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further complicated by the limited access to it from outside
of the system.

An efficient way to solve the problem is the use of
transparent tests [8-12], which preserve the initial contents
of the memory.

Among the different types of the algorithms used in
RAM testing, March algorithms have proved to be among
the most time/cost effective [6,7]. Design and evaluation
of Transparent March algorithms aimed at the Built-in
Self-Test (BIST) implementation for some specific types
of faults at bit-oriented memories are discussed in this
paper along with the modified version of the memory
simulation package.

2. Symbols and notation

The following symbols and notation are used:

o(l) denotes that a cell is in a logic state zero (one)

a denotes that a cell is in logic state a; i.e., either 0
orl,ae {01}

T(\L) denotes write /(0) operation to a cell containing
0(1)

$ denotes write a operation to a cell containing a

w, denotes write a (a€ {0,1}) operation to a mem-
ory cell

ra denotes read operation from a memory cell;
where a (a€ {0,1}) is expected

V(A) denotes a lower (higher) address of one cell in
comparison with another

T denotes the addressing order up

U denotes the addressing order down

ﬁ denotes the addressing order don’t care

A(B) denotes a March test phase, where A denotes an
addressing order (A € {ﬂ,ﬁ,ﬁ}), while B de-
notes the set of operation applied to the cell
(Be {ra,wa ,ra—,wa}).



3. Fault models

The following fault models [6,13] are used in this pa-
per.

Address decoder faults (AF). Four different subtypes
of AF can be distinguished. Each of them can not occur
alone but only in combination with at least one other sub-
type. They are:

AF(1)- no cells can be accessed with some address;

AF(2)- there is no address with which a particular cell
can be accessed;

AF(3)- multiple cells are accessed simultaneously with
some address;

AF(4)- a certain cell can be accessed with multiple

addresses.
Stuck-at fault (SAF): the logic value of a stuck-at cell
is always 0 (SAFO) or always / (SAF1).
Transition fault (TF): a cell fails to undergo 0->1

(TFT ), or I->0 (TFsL ) transition.

Coupling fault (CF) involves two (or more) cells: a
transition write operation to one cell (cell j) changes the
contents of another cell (cell #). Cell j is said to be the
coupling cell, whereas cell i is said to be the coupled cell.
A CF that involves two cells is called a 2-coupling fault
(2-CF). Such a fault is a special case of the more general
k-coupling fault (k-CF). The k-CF fault is related to the
same two cells as the 2-CF while, in addition, the fault
only takes place when another k-2 cells are in a certain
state. Several types of CFs can be distinguished.

Inversion coupling fault (CFin) is defined as follows:

an T or a4 transition in the coupling cell causes an in-
version in the coupled cell. There are two CFin subtypes:

<T:T> and<l;T>.

Idempotent coupling fault (CFid) is caused by an T

or a4 write operation in the coupling cell forcing a cer-
tain value (0 or /) in the coupled cell. There are four CFid
subtypes: <T; 0>, <~L; 0>, <T; 1>, <~L; I>. The coupled
cell can have a lower address than the coupling cell (it is
indicated as V), or of a higher address (A). Conse-
quently, the complete notation for the coupling fault is as

follows: @ <S;F>, where @ - coupling direction (A,V),
S - the fault sensitisation operation (T,»L), and F - the
value which is set into the coupled cell (0,],$).

Read Fault (RF): is caused by reading the contents of
a particular cell. Two RF fault models are discussed here:
Read Disturb Fault (RDF) and Deceptive Read Disturb
Fault (DRDF) [14,15].

Read Disturb Fault (RDF): the contents of a memory

cell is inverted during a read operation; i.e., r4 is resulted
in r;, and the contents of the cell is changed to a . There

are two subtypes of this fault: when an initial state of the
memory cell was O and became 1 after the read operation
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(RDFT ), and when the initial state was 1 and became 0 as

a result of reading (RDF ~L ).
Deceptive Read Disturb Fault (DRDF): the contents
of the memory cell is inverted as a result of read operation,

i.e., rg is resulted in r,, and the contents of the cell is
changed to @ . As the faulty transition happens after the
reading, it is not detected by the initial r, operation, as it
produces the correct result a. Once again, there are two

fault model subtypes there: DRDF Tand RDF | .

4. Transparent March tests

Traditionally [6,7], March tests are characterised as
follows. They consist of a sequence of March Phases (or
March Elements). Each phase is a set of operations that
are applied to a memory cell. After the phase application is
completed for a cell, the algorithm proceeds to the next
cell where the procedure is repeated, and so on.

The way the process moves from one cell to the next
is determined by the address order which can be increasing
or decreasing. The operations applied to a cell are wy, wy,
ro, and r I8

March tests are based on functional fault models [6,7).
For this reason they provide generally the best fault cover-
ageftest time ratio among memory test algorithms. For
example, the MATS++ test [6] includes just three phases:
My, M; and M,. The first phase is memory initialisation
(writing a background), while the other two phases are sets
of read and write operations aimed at detecting faults of
the targeted types.

{B(wo); T(xe, w1); U(ry, o, 10)}
M, M, M,

The test is only of 6N complexity. At the same time it
detects all AFs, SAFs and unlinked TFs, as well as some
CFs.

Transparent March algorithms are a very attractive
solution to testing when preserving the memory-under-
test's contents is imperative. The condition is that at the
end of the test session data in the memory should be same
as it was prior to testing. It has been shown in the literature
[9-11] that it is possible to convert any traditional March
test into its transparent version. In general, the conversion
procedure includes the following steps:

* Remove the initialisation phase (writing background)
from the test
= Change all ry (r) operations to the r, ( r7 ) operations

»  Change all wp (w;) operations to the w, (wgz) op-

erations.

It is important to mention that the conversion into the
transparent type does not lead to any decrease in fault
coverage of the algorithm.

An example below presents the result of the
MATS++ test algorithm converted into its transparent



version. Removing initialisation phase, and substituting
initial read and write operations with new ones results in
the following two phase transparent March test:

{ﬂ (ra’wﬁ);u(rﬁ’wavra)}
M, M,

Transparent tests are particularly suitable for Built-In
Self-Test (BIST) implementation. BIST can be employed
for both manufacturing and in-service testing. In the latter
case, the testing can be done periodically between the
cycles of memory system operations, while a small area of
the memory (e.g., 3x3 or 4x4 bit — sliding window) is
tested at every particular cycle. This would also reduce the
hardware overhead required to calculate and to store the
data related to the fault-free and actual operation of the
memory, as well as to compare the data after the testing
cycle is completed.

5. Minimal complexity transparent tests with
Read Fault Coverage

Periodic transparent testing allows utilisation of sim-
ple March algorithms for testing RAMs where the contents
are randomly changed during system operation. For exam-
ple, the minimal complexity March 3N test [12]
{ﬂ (ra,wa—),II(r‘—, )} provides asymptotically maximal (i.e.,
100%) fault coverage with respect to AFs, SAFs, TFs, and
covers the majority of CFs and some PSFs when the mem-
ory contents are randomly changing, and when the number
of the test executions is increasing unlimitedly. The test
consists of two phases: the stuck-at faults and address
decoder faults are sensitised in the first phase, while they
are detected in the second phase of the test. The same is
true for the transition faults (if the faulty cell has an initial

state 0 (/) for TET (TF).

A single execution of the March 3N test is sufficient
to detect all stuck-at faults and address decoder faults,
while double execution of the algorithm detects transition
faults. The coupling fault coverage is increased with the
number of the test runs for different memory contents
(backgrounds). It can be shown [8] that the ratio between
the number of coupling faults detected by the single exe-
cution of the March 3N algorithm and the total number of
possible coupling faults is Tx] /T =1/3. Total fault cover-

age for an arbitrary number n of the test executions is
Ty, IT = (4(1-0.75")+8(1-0.5")) /12 .

Obviously, the effectiveness of any RAM test greatly
depends on the type of errors occurring in the memory.
Traditionally, transparent tests have been developed as-
suming that read operations do not cause errors into the
memory-under-test. Unfortunately, this assumption is not
true in many cases of real memories [14]. For this reason
an additional type of fault models (Read Faults) has been
included into consideration.
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March 3N test can be modified to increase its effi-
ciency in terms of read fault coverage. Faults of the RDF
subtype can be detected by performing a read operation
immediately after a write operation while comparing the
written-in and read-out data. Besides this, a read operation
immediately after a write operation would also cover er-
rors related to the SAF fault type. The read operation r;

throughout the memory is the last phase of the March 3N
algorithm. For a given cell this operation does not happen
immediately in time after the write operation (it starts only
after all the memory cells have completed the first phase).
However, it is still a correct detection step as there are not
any other manipulations of any memory cell contents be-
tween the write and read. Thus it can be seen that RDFs
are covered by the March 3N algorithm.

In order to detect faults of the DRDF subtype, two se-
quential read operations immediately following a write
operation are required (this is due to the fact that cell con-
tents is ‘flipped’ because of and after the read operation).
If the error occurs, the results of the two read operations
will differ, while the value of the first read opcrauon is
equal to that first written to the cell.

The corresponding modification of March 3N results
in a new algorithm of 4N complexity — let us call it March

{M (r.wz )8 (rz.72)}. The proposed algorithm pro-
vides the same fault coverage as March 3N. In addition it
covers half of RDFs (either RDF ~L or RDF T) and DRDFs

(either DRDF or DRDET). The algorithm can be fur-
ther enhanced to cover all RDFs/DRDFs by adding one
more read operation (SN complexity) - March RR:

0 Curraswz k8 72}

It can be seen that the above March 3N algorithm and
its modifications invert the memory contents. This is not
acceptable in many cases, because it would require an
even number of passes of the test, causing possibly too
much delay for the application. To solve the problem it
can be recommended to incorporate into the memory spe-
cial hardware that provides additional inversion during
reading and writing [17].

Alternatively, the following basic transparent March
algorithm of complexity 4N can be employed:
{ﬂ (rgowg wa 3 (r, )f This algorithm provides substan-

tially higher coverage than March 3N for the same number
of the test runs, in particular in terms of coupling faults.
All address decoder and inversion coupling faults are de-
tected by a single test execution. Besides, it can be shown
that a single execution detects half of the idempotent CFs
as well.

The ratio between the number of the CFs detected by
a single execution of the test and the overall number of
coupling faults is Ty /T =8/12=2/3, while for n runs it

isTy, /T = (4+8(1-0.5"))/12.



There is one drawback of the discussed March 4N test
compared with the March 3N. March 4N does not detect
all SAFs and some of TFs. For a case where such faults
are expected, another basic transparent test algorithm
(March 5N) can be emp]oyed:{ﬂ (ryswz. 7w, 3 (r, )}‘
This test has all advantages of March 4N, while in addi-
tion it can detect all SAFs and TFs during its first phase.
The presented March algorithms 4N and 5N can be
enhanced to cover RDFs and DRDFs in the same way as it
has been presented above for March 3N transparent test.

6. BIST generator implementation

In order to evaluate the feasibility of implementing
transparent March testing in a BIST environment, an
automatic test pattern generator for the transparent March
SN algorithm was designed for a static RAM fragment
(sliding window) of 4x4-bit size. Atmel-ES2 CMOS
0.7um 2-metal 1-poly technology was used. The assess-
ment of the feasibility of implementing this design comes
about by calculating the percentage of silicon area the
generator occupies in relation to the memory that it is de-
signed to test. Fig. 1 shows comparison between silicon
areas occupied by March 5N BIST generator and the ma-
trix of memory cells. )

However the above data have to be adjusted by taking
into account an array efficiency parameter. Array effi-
ciency is the percentage that a memory array occupies on
an entire silicon space of a memory chip [17]. The pa-
rameter has different values depending of memory capac-
ity, implementation technology, and architecture. Fig. 2
presents adjusted data where typical values [17] of the
array efficiency were used.

It can be seen that for a small-capacity memory, the
test circuitry occupies a substantial part of the silicon
space. At the same time the portion is decreasing as the
memory size increases. This supports the fact that BIST is
feasible for larger memories. It must be stated that the
above evaluation did not include the area that is required
for the BIST analyser circuitry. It is expected this circuitry
will consume approximately the same silicon area as the
test generator for 4x4 bit memory (depending on the type
of the analyser implemented, i.e., bit-by-bit comparison,
signature compression, or other), thus giving the following
results (Table 1).

Memory Capacity Space on Silicon
1K bit 42 Yo
32K bit 0.6 %
1M bit 0.02 Y%
1G bit 0.00003 %

Table 1. BIST circuitry area for 5N transpar-
ent March testing (% of a chip silicon area)

It is rather natural and obvious that the feasibility of
implementing BIST increases with the size of the memory.
This is due to the fact that the area of silicon required for
BIST circuitry increases logarithmically whereas the area
required for the memory itself increases linearly. In fact,
the IC DRAM size considered by industry for one of the
first reported BIST implementations was 256M bit [18].

7. Simulation package MAP+

Originally developed at the Delft University of Tech-
nology, the Memory Animation Package MAP [6] has
been employed for a number of years as a simulation tool
for the evaluation of new and known test algorithms in
presence of different faults (such as stuck-at, transition,
coupling, address decoder, neighbourhood pattern sensi-
tive, etc.). Unfortunately, the package does not support the
RDF and DRDF fault models. In addition, the simulator is
not capable of working with transparent tests (it does not
have background initialisation for regular or random pat-
terns, and does not support multiple executions of a single
test for different backgrounds).

Addressing the necessity of obtaining and making it
capable of evaluating new transparent tests, a modified
version of the simulation system - MAP+ has been devel-
oped. The modified package provides the same user envi-
ronment as its parent version (Fig.3). At the same time, it
offers several new enhancement options for memory test-
ing simulation (Fig. 4). In addition to all options of the
‘old’ system, it supports the following new functions:
=  handling faults of read type;
= memory initialisation, 1.e., writing specified initial

backgrounds (deterministic or random) manually or

automatically;

= automatic new background initialisation and execu-
tion of a transparent March algorithm, while record-
ing failed cells after each run;

* limited option of new March test generation for given
test faults.

The new menu for the Test Memory option offers ad-
ditional items on writing a user-defined initial background
into the memory-under-test prior to the test execution. It
can be performed either automatically in between test cy-
cles, or manually. The manual memory initialisation func-
tion has the structure presented in Fig. 5.

The initialisation is performed incrementally, one cell
at time. This function is useful for the detection of some
particular fault configurations. However such an approach
can be impractical for any large size memories, or in cases
where the same test is performed over a number of differ-
ent backgrounds. Counter-based and Random Initialisa-
tion options of MAP+ allow for automatic background
writing (Fig. 6). A special function write_def_background
is employed. It can be called by the write_and_test func-
tion that implements the user option of writing all possible
backgrounds to a memory while repeatedly performing the
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same test (or a number of tests) for each background. The
background writing function uses right-left conversion
technique for integer to binary conversion [17].

Another improvement that has been introduced into
MAP+ is a new function of automatic March test genera-
tion for given type of faults. At this stage it has limited
fault type coverage and is based on combining the test
phases that initialise and detect corresponding faults [6]
(Table 2).

Fault Initialisation and detection procedure

SAF
TF

From each cell, a 0 and a 1 must be read

Each cell must undergo a T transition (state of cell goes
from O to 1), and a | transition (state of cell goes from 1
to 0), and be read after each transition before undergo-
ing any further transitions.

For all cells which are coupled cells, each cell must be
read after a series of possible CFins may have occurred
(by writing into the coupling cells), with the condition
that the number of transitions in the coupled cell is odd
(i.e. the CFins do not mask each other).

For all cells which are coupled cells, each cell should be
read after a series of possible CFids may have occurred
(by writing into the coupling cells), in such a way that
the sensitised CFids do not mask each other

Active NPSF: Each base cells must be read in state 0
and in state 1, for all possible changes in the deleted
neighbourhood pattern.

Passive NPSF: Each base cell must be written and read
in state 0 and in state 1, for all permutations of the de-
leted neighbourhood pattern.

Static NPSF: Each base cell must be read in state 0 and
in statel, for all permutations of the deleted neighbour-
hood pattern.

RDF: Each cell must be read from immediately follow-

CFin

CFid

NPSF

RF
ing a write operation.

DRDF: Each cell must be read from twice in succession
following a write operation.

Table 2. Fault diagnostic phases

It is planned to use some additional techniques to
achieve maximal fault types coverage and minimisation of
the generated algorithm thus making the package more
efficient. For example, a state-machine based approach'®
and the approach based on the use of Markov chain mod-
elling in algorithm generation [20] are considered for im-
plementation. Several other modifications are going to be
incorporated into the package MAP+ (one of them is the
sliding window framework, proposed by one of the
authors - $.D.° together with his graduate student N. Lord

[21]). The package will be demonstrated to the time of the
symposium.

8. Conclusion

The development and evaluation of transparent
March memory tests enhanced to cover read faults were
discussed in this paper. The tests are of minimal complex-
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ity while their fauit coverage is asymptotically rising
along with the number of test executions over different
backgrounds. The algorithms are particularly suitable for
application in an on-line BIST environment for memories
of sufficiently large capacities. This has been proved by
the experimental results on design of BIST test generator
for microelectronics, implementation in CMOS technol-
ogy. At the same time minimal complexity transparent
March algorithms also can be used in traditional off-line
external memory testing.

In order to support design and evaluation of new
March algorithms of the transparent type, an enhanced
memory test simulation system MAP+ has been devel-
oped. We believe the system is the only one of its type
supporting transparent testing among the software simu-
lators available on the market. The system allows per-
forming arbitrary background initialisation, provides
multiple test execution for different backgrounds, offers a
fail data collection option, and supports some new fault
models.
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