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Abstract. This paper explores through simulation an abstract model
of distributed matchmaking within multi-agent systems. We show that
under certain conditions agents can find matches for cooperative tasks
without the help of a predefined organization or central facilitator. We
achieve this by having each agent search for partners among a small
changing set of neighbors. We work with a system where agents look for
any one of a number of identical task matches, and where the number of
categories of tasks can be as large as 100. Agents dynamically form clus-
ters 10 to 100 agents in size within which agents cooperate by exchanging
addresses of non-matching neighbors. We find that control of these clus-
ters cannot be easily distributed, but that distribution in the system as
a whole can be maintained by limiting cluster size. We further show that
in a dynamic system where tasks end and clusters change matchmaking
can continue indefinitely organizing into new sets of clusters, as long as
some agents are willing to be flexible and abandon tasks they cannot
find matches for. We show that in this case unmatched tasks can have a
probability as low as .00005 of being changed per turn.

1 Introduction

In this work we are interested in the global behavior of systems of interacting
entities, where interactions take place on a solely local level, and entities make
non-deterministic decisions. We consider this setting a good abstract model for
large multi-agent systems. [3] Our purpose in studying such systems is to char-
acterize on a conceptual level the behaviors possible in multi-agent systems. We
would like our model to include the following properties:

– no agent or other system entity has a global view of the entire system
– agents each know about and communicate with only a small subset of the

rest of the system
– agents are built by many different designers
– the system is open and dynamic; agents come, go and change purpose often
– agents are initially placed into the system without considering a global view

of the system

We limit the agents in our model to performing exclusively local interactions.
By this we mean that agents can only interact within a local neighborhood; that
is a small subset of other agents whose addresses are known to that agent. In
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addition no agent may require any form of knowledge about the entire sys-
tem, thus we cannot have any central controlling entities. The size of an agent’s
neighborhood is based upon the resources of the agent, however what we con-
sider important is that as the number of agents in the system grows the size
of the neighborhood of any agent in the system remains constant. We create
this restriction for a number of reasons. First, it creates a more scalable agent
system. Broadcast based algorithms that are required to maintain system wide
information are expensive in terms of communication for very large systems.
Single node broadcast takes O(r) time, where r is the diameter of the network.
In addition to the cost, there are a number of reasons to avoid global information
that relate to agent autonomy. Maintaining global information requires cooper-
ation. Thus it requires agents to act on a scope that considers the system as a
whole, whereas agents that consider only their individual interests are simpler
and much easier to create. Additionally global information is open to sabotage
as a malicious agent could corrupt the data that other agents rely on.

A second characteristic of our model is that choices are made nondetermin-
istically. By “nondeterministic” we mean to specify that from the system level
view such agent algorithms are forms of randomized algorithms. Agents are mod-
elled as making random choices, though this can include some measure of the
agent’s environment. Again, this restriction is used to denote several phenom-
ena. First it represents the autonomy of the individual agents; if an agent is
truly autonomous we cannot predict how it will behave when observing it from
a system level. Second, it represents agent choices that may be made based on
incomplete or incorrect data. An agent may have a fixed decision behavior, but
may make the wrong choices because it is not possible to for it to know with
certainty the data that those choices are based on. Finally, it represents the
possible stupidity of agents. Agents may have correct data, yet be limited in
their reasoning powers, or even poorly programmed and thus make unexpected
choices.

Overall we would like to know what kinds of algorithms a system limited as
described above is capable of performing. In this paper we consider a specific
problem from this point of view, a form of the matchmaking problem. Matchmak-
ing asks how agents requiring outside services find other agents who are capable
of providing those services. We choose the matchmaking procedure for several
reasons: it is an essential component of many agent systems, it is well stud-
ied, and the majority of algorithms for matchmaking use a central or broadcast
component. In a previous paper we defined a local random search procedure for
matchmaking and showed that it performed well under a wide range of param-
eters. [6] However our model had a major drawback in terms of locality; agents
were grouped into clusters and their search space was limited to the neighbors
of their clusters. Clusters were controlled centrally, and as clusters could grow as
large as all the agents in the system, a cluster controller could become a global
central controller. In this paper we show that cluster operations cannot be easily
distributed, however we find that the size of clusters can be limited. We also ex-
tend our model to a dynamic system where tasks complete and agents continue
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to search for partners for further tasks. We show that such a system deteriorates
over time if agents make completely random choices for their new tasks, but can
continue indefinitely if agents are flexible and are willing to abandon tasks or
consider the partners available when choosing new tasks.

In the remainder of this paper we first discuss related work in sections 2
and our model in section 3. In section 4 we present a summary of our previous
results with this model. Section 5 presents new results on decentralizing clusters,
limiting cluster size and task completion. Section 6 concludes with some final
remarks.

2 Related Work

Matchmaking within multi-agent systems is generally accomplished through a
market or by providing middle agents. For one-to-many or many-to-many ne-
gotiations market mechanisms are used, as in Contract Net [9]. Here an agent
requiring a service broadcasts a request, and providers of that service return
bids. Repeated bids and offers can then be used to negotiate fair prices. Markets
however can require a large amount of communications as bids and offers are
often broadcast to all participants. Moreover, these broadcasts are commonly
made though a central market controller that must keep track of all market
participants [11]. The second common form of matchmaking within multi-agent
systems is through providing a broker or middle agent or agents [2]. There are
many different forms of such agents, but they all are based on a set of agents that
act as a directory for services available in the system. These directory agents are
well know to the other agents, and are queried to find matches. [4] [10]. However
this means that middle agents must provide a directory of the entire system. For
a large and dynamic system such a directory can be expensive to maintain, and
if there are many requests for matches the middle agents can become a bottle-
neck. On the other hand they provide an efficient solution in terms of numbers
of messages. Further, they can guarantee that an agent finds a match if it exists
or allow an agent to find the best match system wide. In addition to work on
markets and middle agents, there is also a good deal of work on more abstract
models of matchmaking. This work is focused on defining the exact cost of creat-
ing and maintaining directory servers, and on the levels of distribution possible
[1] [5].

In this work we are more curious about how matchmaking can be done on a
purely disorganized local level. We explore to what degree matchmaking is still
possible among agents that only have knowledge of a few direct neighbors. We
find this question interesting as it gives an indication of how well multi-agent
systems can organize by themselves, versus how much structure they must have
pre-defined for them. It also gives an indication of how well very large unregu-
lated systems might be able to perform from the point of view of an individual
agent. One model for such a system is acquaintance networks as described in [7].
This model replaces central directories with broadcast requests made by each
agent. We attempt to improve on this by removing the broadcast element, which
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requires agents to pass on messages for each other, replacing it with a changing
neighbors and clustering routine. A related area is the formation of coalitions
[8], though again this is mostly focused on forming optimal coalitions and thus
also uses system wide broadcast.

3 Model Definition

The model we use in this work in focused on providing an abstract representa-
tion of agents attempting to find partners for tasks. Our purpose is to determine
under what conditions unorganized agents can find partners, and to minimize
any predefined means of cooperating. We would like to determine if such mecha-
nisms are possible given reasonable processing time and memory limitations on
individual agents.

Our system consists of a set of agents A = {a1, . . . , an}, and a set of task
categories C = {c1, . . . , cm}. Each member of the set of tasks categories, ci,
represents a type of job for which an agent may seek a partner. We further
define a pairing among these categories: f : C × C → [0, 1] with

f(ci, cj) =
{

1, if (ci, cj) is a matching pair
0, otherwise.

We consider the case where each category has only one match and that
matches are symmetric. More precisely:

m∑

j=1

f(ci, cj) = 1 for all i,

m∑

i=1

f(ci, cj) = 1 for all j,

and if f(ci, cj) = 1, then f(cj , ci) = 1.

If f(ci, cj) = 1 and i = j we have a job that requires the cooperation of
two like tasks. More interestingly, we concentrate on the case where i 6= j,
representing a client-server pair. We show later that these two cases can produce
some significantly different behaviors.

In our model, each agent a in A has a set of tasks Ta = {t1, . . . , tk}, each
task belonging to a category in C. Ta can contain more than one task from a
category. The goal of the matchmaking problem is for the agents to create links
between their tasks and those of other agents, maximizing the number of links
between matching client-server pairs as defined above. We shall represent this
by defining a graph G = (V, E) where the nodes are all of the agents’ tasks and
edges are placed between matching tasks. More formally:
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V = {(a, t) : a ∈ A and t ∈ Ta} and
E = {(u, v) ∈ V × V : u = (a, t), v = (b, t′) such that if c

is the category of task t and c′ is the category
of task t′, then f(c, c′) = 1}.

Thus G is a graph representing all the possible matches in the system. The
matchmaking problem is to find a matching in G, i.e. a set S ⊂ E such that no
two edges in S are adjacent, of maximal size. This represents a system where
each task is paired to one other task and the number of matching client-server
pairs is maximized. In this work we consider an approximation algorithm for
this matchmaking task and instead of searching for a maximum size matching
we look for a sufficiently large one.

In our model we initially create random links between tasks. This creates a
graph that consists of a random subset of the edges in the complete graph on V
above, such that no two edges are adjacent and the degree of each node is 1. In
other words each task in each agent is linked to one other task in another ran-
domly chosen agent, giving the agents one neighbor for each task. This represents
starting connections formed by some means outside of the system, for instance
based on location. Agents then start searching for links that are members of
E above, i.e. they look for links that are between two matching tasks. Such
connected links represent two agents being able to cooperate. Agents search for
connections by permuting which of their unmatched tasks are paired to which of
their unmatched neighbors. This is done in turns; during each turn each agent
reassigns all of its unmatched tasks and links. When a connection is formed, the
agents involved are considered able to cooperate. We assume that agents that
can cooperate on one task are likely to be able to work together more closely,
for instance they might represent devices from the same manufacturer. Thus,
we group such connected agents into a cluster. Clusters then act like compound
agents; the unmatched tasks and neighbors of the agents in the cluster are all
shuffled together on a turn. Simulations halt after no new connections are formed
within a set number of turns.

4 Summary of previous results

In a previous paper we reported on the basic behavior of the model described
above [6]. Behavior was determined through simulation as the system is too
complicated for an exact analysis. Shuffling was done in fixed turns, each agent
or cluster shuffling once per turn. During a shuffle links within an agent or
cluster were rematched at random with equal probability. In general we found
that such a system either quickly formed a single large cluster where almost all
links were matches, or remained almost completely unconnected. This behavior
varied with the number of categories. An example is shown in Figure 1; for
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10 categories almost all matches are found quickly, with 80 categories matches
are found quickly, but after an initial slow phase, and with 300 categories most
matches are never found. As we increased the number of task categories the
probability of this single cluster forming during a trial remained 100 percent
until a point at about 90 categories where it drops off suddenly to near 0 percent.
We found that this drop off point increases to around 400 categories when each
agent is given 4 tasks and 800 categories with 5 tasks per agent. Finally we
showed that the system scales well in the number of turns as the number of
agents in the system is increased. With 120 categories 2000 agents find clusters
in 900 turns while 32000 agents require 1500 turns. For comparison Figures 3, 4
and 5 show data from these original experiments, labelled “original”.

Fig. 1. Sample trials - 2000 agents; 10, 80 and 300 categories.

5 Results

Our previous work considered a system where each cluster was controlled cen-
trally. Thus a single entity kept track of the unmatched tasks of a cluster and
was responsible for shuffling and reassigning links. As clusters grew in size the
number of unmatched tasks in the cluster also increased. Its maximum value
approaches 1/3 to 1/2 of all the tasks in the system. Thus the memory need by
the central element of a cluster and the time to do a shuffle could become pro-
portional to the number of agents. In the following sections we explore solutions
to this problem. We first show in section 5.1 that decentralizing the clusters is
not feasible. However, in section 5.2 we find that we can limit the maximum size
of clusters and thus keep the system as a whole decentralized. In section 5.3 we
study a dynamic system where tasks end and show it always eventually decays.
We remedy this in section 5.4 by adding a probability of agents abandoning
unmatched tasks. Finally in section 5.5 we briefly describe an unsynchronized
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version of these experiments. The experiments shown below all are for 2000
agents, each with 3 tasks. All trials are run until the system remains unchanged
for 200 turns.

5.1 Decentralizing clusters

We wish to create a system that remains local, keeping the number of agents each
entity in the system knows about and the time any operation takes independent
of the number of agents. One way of doing this would be to distribute the control
of each cluster. We can change the shuffle operation so that instead of randomly
mixing tasks within a cluster, unmatched tasks are given a cyclic ordering and
neighbors are simply passed from taski to taski+1 each turn. Experiments using
this form of shuffling are labelled “rotate” in Figures 3, 4 and 5 which show
that the system still performs well with this form of shuffling. Figure 3 shows,
as described above, that our rotating shuffle supports about 20 categories fewer
than the original system. Figure 4 shows the percentages of links connected,
on average, at the end of the runs in Figure 3. Values for trials that formed a
large cluster are shown separately as the “high” data points, and those for trials
that did not connect are labelled “low”. Here the rotating shuffle performs as
well as the original system. Finally Figure 5 shows the number of turns required
on average to complete trials that connected. Here the rotate shuffle performs
between 14% and 30% better than the original system.

While it is easy to decentralize the rotate operation, we run into problems
when forming new matches. When combining two cluster’s task sets, A and B,
to form a new connection between tasks ai and bj a new order can be created
by two different methods, as shown in Figure 2. In “Method 1” ai and bj are
removed leaving the order ai−1, bj+1,. . . ,bj−1, ai+1. Alternatively in “Method
2” the new order is ai−1, ai+1, . . . , bi−1, bi+1. As Figure 2 shows, which of these
methods creates a single cycle depends on whether the connection being formed
is between two tasks in the same cluster or tasks in different clusters. Without
a cluster center this cannot be easily determined. A broadcast message could be
sent through the clusters either asking if the connecting agents are in the same
cluster or giving a new cluster ID to agents in one of the clusters. Alternatively
the direction of one of the orderings can be reversed, thus creating an identical
connection method for each case. However, this takes time proportional to the
number of the free tasks in that cluster. Additionally we have further problems
if we wish to break a connected link and must know if the cluster it is in remains
connected.

5.2 Limiting cluster size

Another approach to maintaining locality in our model is to keep clusters cen-
tralized, but to limit the size of the clusters. One way to do this would be to
connect every matching task pair when a new cluster forms, thus limiting the
number of unconnected tasks. This works if matches are made so that category
ci matches itself. However, if matches are between client-server pairs it still leads
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Fig. 2. two methods of connecting distributed clusters.

to large clusters as clusters build up multiple copies of either the client or server
in each pair. We found that clusters reached a maximum of between 100 and
300 unconnected tasks when running trials with this method of connection.

In our original experiments we considered only cluster formation, not systems
where tasks end thus break up clusters again. Another way of limiting the maxi-
mum cluster size would be to adjust the rate at which tasks end so that clusters
fall apart before becoming too large. However, the evenness of the rate at which
connections are formed makes this adjustment difficult. A high disconnect rates
stops most clusters from forming whereas a slightly lower one still allows for
large clusters.

Fig. 3. percentage of connecting trials: 100 trials per category
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Fig. 4. average % connected links: 100 trials per category.

Fig. 5. average number of turns in a connecting trial vs. number of categories: 100
trials per category.

The “size limit” data in Figures 3, 4 and 5 shows results obtained when
cluster size is limited by preventing new connections forming once a cluster has
reached a given size. The data shown is for clusters limited to 30 agents. Limiting
clusters to between 10 and 100 agents provides similar results. The proportions
of connected tasks for 100 agent clusters are between one and seven percentage
points higher than those shown for clusters of size 30. When cluster size is limited
the difference between trials that connect and those that do not is less clear-cut.
We separated trials into those that formed a maximum sized cluster and those
that did not. Figure 3 shows that the size limited system supports the same
number of categories. However Figure 4 shows that as the number of categories
increases the percentage of connected links in a trial that forms a “large” cluster
decreases towards that of trials that do not connect. We however find in the next
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section that this limitation does not make as much of a difference in a dynamic
system.

5.3 Task completion

We now extend our model to cover a dynamic system in which tasks are com-
pleted and agents then search for partners for new tasks. We add to the system’s
parameters a probability, Pe, of a connected client-server pair’s task ending at a
given turn. This represents different jobs that take different amounts of time to
complete. When a task between two agents completes, each agent is given a new
task of a randomly selected category. The link between these two new tasks is
left in place. The cluster center checks if breaking this link breaks up the cluster
and if so forms two separate clusters.

Figure 6 shows sample trials with 60 categories, a cluster size limit of 30 and
various values of Pe. Things go well for a time, but the number of connections
in the system gradually decays and eventually the system falls apart. Figure
7, which shows the category distribution at the start, middle and end of the
run with Pe = .003, shows why. In this graph client-server pairs are setup so c0

matches c1, c2 matches c3 etc. At the start of the run the distribution of tasks
is pretty much even. At the end however there is a large difference between the
numbers of clients and servers in some pairs, thus the number of possible matches
in the system is greatly reduced. This happens because matches are made then
removed from the system, and eventually a random distribution with a large
enough number of members will create a large discrepancy between categories.
Since the system needs a minimum number of possible matches, as shown in
previous experiments, it will always eventually decay. However, a system where
category ci matches itself avoids this problem and will continue to form connec-
tions indefinitely.

Fig. 6. % of connected links over time when tasks end: 60 categories, size limit 30.
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Fig. 7. category distribution for the Pe=.003 run in Figure 6.

5.4 Task completion with flexibility

To combat this difference in the number of clients and servers we must add a new
element to the system. We create a new parameter Pc, the probability that an
unmatched task will change to a new type at each turn. This represents agents
giving up on tasks when they cannot find a match for them. Figure 8, which
shows sample runs with various Pc values shows that with this mechanism the
system no longer decays. Figure 9 shows a longer run for Pc = .00005. This run is
interesting since it shows a system where clusters form, change, and occasionally
completely break apart then form again. Note that in the static case a size limit
of 30 produced trials that only formed about 33% of connections, whereas in
the dynamic cased they can achieve almost 55% connected links. In a dynamic
setting the number of connections at any one time however is not as important.
Looking at the tasks completed per agent over time we find that all agents
complete comparable numbers of tasks.

5.5 Unsynchronized turns

Turns in the experiments shown above are synchronized; during each turn each
cluster is allowed to move once. Truly decentralized systems do not have such
a global clock, thus our experiments assume that all clusters move at the same
speed. One way of simulating an unsynchronized system is to move clusters in a
randomly chosen order. We repeated the above experiments moving one cluster
chosen randomly from all the clusters at a time. For comparison’s sake we marked
turns as ending after N moves, where N is the number of clusters at the start
of the turn. Results for these experiments showed that such an unsynchronized
system supported the same number of categories as our original system with less
than 1% difference in the number of turns. Sample runs with tasks ending and
changing also came out the same as those shown above.
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Fig. 8. percentage of connected links over time when tasks end and unmatched tasks
change: 60 categories, size limit 30, Pe=.003.

Fig. 9. Pc=.00005, 60 categories, size limit 30, Pe=.003.

6 Conclusion

In this paper we showed that a system of un-coordinated agents is able to solve a
matchmaking task under certain conditions. We explored a system where agents
look for any one of a number of identical matches. Agents searched among a
local set of neighbor agents for these matches, and formed cluster partnerships
to expand their search space. We showed that such a system could operate if
the size of a cluster is limited to as few as 30 agents. We further investigated
a dynamic version of this system where client server pairs completed tasks and
went on to search for partners for new tasks. We showed that such systems decay
for client-server matches because of an eventual uneven client server distribution.
We overcame this problem by adding a chance of agents abandoning unmatched
tasks. We showed that this probability could be low, .005% per turn per task,
and still allow the system to continue indefinitely.
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Our abstract model is however still far removed from a real system. Currently
the categories of tasks assigned to agents, how long tasks take to complete and
the chance of an unmatched task being reassigned are independent random vari-
ables. In future work we would like to study systems where these values depend
upon the current and past values of other tasks in an agent. This would represent
agents carrying out planned series of actions. We would like to know if in such
a system all agents are able to complete their programs, or if some will be in
positions to perform better than others.
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