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Abstract. In training feed-forward neural networks using the backpropagation algorithm, a
sensitivity to the values of the parameters of the algorithm has been observed. In particular, it
has been observed that this sensitivity with respect to the values of the parameters, such as the
learning rate, plays an important role in the final outcome. In this tutorial paper, we will look
at neural networks from a dynamical systems point of view and examine its properties. To this
purpose, we collect results regarding chaos theory as well as the backpropagation algorithm
and establish a relationship between them. We study in detail as an example the learning of
the exclusive OR, an elementary Boolean function. The following conclusions hold for our
XOR neural network: no chaos appears for learning rates lower than 5, when chaos occurs,
it disappears as learning progresses. For non-chaotic learning rates, the network learns faster
than for other learning rates for which chaos occurs.

1. Introduction

In this tutorial paper, we study the appearance of chaos during the learning
process of a specific kind of neural networks, namely error backpropagation
networks. We try to establish under what conditions this chaos occurs and
also what role it plays in the learning process. Before actually analysing the
learning process, we will first extensively introduce the reader to the basic
notions of chaos theory and explain what mathematical tools are available to
characterise it.

Before starting, we want to emphasise the following limitations of the
results as discussed in this paper. The first limitation is that we are only
dealing with what could be considered a toy-problem. However, neural
networks are always seen as black boxes. When we want to study what goes
on inside this box, it is a sound scientific principle to reduce the complexity
of your phenomenon as much as you can without eliminating those properties
that you want to study.1

The second limitation refers to the values of the learning rates that were
used in the simulations. It could be argued that learning rates larger than 1 are
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highly unusual and not of any practical relevance. However, it is only after
studying extensively the issue of chaos, that we know whether chaos occurs
for all kinds of learning rates and what its influence is on the learning process
and whether it can be controlled. These and other issues need to be addressed
before one can advance any kind of conclusion. The objective of this paper is
to try to answer these questions.

The paper is organised as follows. We first briefly describe the algorithm
in section 2. We consequently introduce the basic notions of chaos theory
(section 3) and illustrate their essence using the Verhulst equation, a simple
one dimensional dynamical system (section 4). In section 5, we discuss how
chaos can be characterised numerically. In section 6, we then turn to the
backpropagation algorithm and graphically as well as numerically reveal
the presence of chaos and describe how the order of chaos evolves during
learning.

2. The Backpropagation Algorithm

The backpropagation algorithm is a well known learning algorithm for feed-
forward neural networks. We will therefore restrict our discussion of the
algorithm to a definition of the equations used for learning.

The following equations allow to compute the output of any node (hidden
or output) (McClelland and Rumelhart 1988):

Apj =
m∑
i=1

WjiOpi − Uj (1)

Opj = fj (Apj ) = 1

1+ e−Apj /t (2)

whereApj is the activation for the input patternp presented to nodej, Wji

is the weight of the connections between nodesi and j, Opi is the output
of node i presented to nodej as input andUj is the threshold of nodej.
The transfer functionOpj is also called the sigmoid transfer function. The
parametert is called the temperature. The smaller the value, the more the
transfer function looks like a step-function and the higher the temperature,
the flatter it becomes. The following equations are used to train the network:
− To compute the necessary weight modifications, a rule, denoted as the

delta rule, is used which is as follows:

1pWji = βδpjOpi (3)

whereOpi is the value of theith incoming connection,β is the learning
rate andδpj is the error at thejth node for the input patternp. The error
δpj needs to be calculated separately for the hidden and the output nodes.



CHAOS AND BPA 167

− For the output nodes, the error can be computed in the following way:

δpj = (tpj −Opj)f
′(Apj ) (4)

where the term (tpj − Opj ) computes the difference between the
expectedtpj and actual outputOpj of the network. This error is then
multiplied by the first derivative of the transfer function. This allows
to sanction nodes that generate an uncertain output (an activation
value close to 0) because there the first derivative will be high and
consequently the weight change will be larger. The inverse is true for
nodes that generate large activation values. There the first derivative will
be close to zero and consequently will result in small weight changes.

− For the hidden nodes, the error can be computed in the following way:

δpj = (
n∑
k=1

δpkWkj )f
′(Apj ) (5)

whereδpkWkj represents the error of the connected neurons of the above
layer, multiplied by the corresponding weights, which is propagated
throughout the network. For exactly the same reasons as mentioned
above, the first derivative of the transfer function is included.

One of the problems associated with the backpropagation algorithm
is its parameterisation. Beforehand, the value of a number of parameters
need to be specified. It has been found that very small variations in these
values can make the difference between good, average or bad performance
(Weiss and Kulikowski 1991). This also implies that one can never be
sure to have found the optimal solution. Furthermore, the backpropaga-
tion algorithm can converge in a local minimum or oscillate between two
(or more) different solutions (Aleksander and Morton 1991). Because, the
rule for weight-modifications bears some structural resemblance with a well
known chaotic equation, a possible explanation for the hypersensitive and
sometimes problematic behaviour of the backpropagation algorithm may be
found in chaos theory.

We investigate the backpropagation algorithm from this perspective and
reveal the presence and evolution of chaos during learning. We first introduce
the basic notions of chaos theory (section 3) and illustrate their essence using
the Verhulst equation, a simple one dimensional dynamical system (section
4). Consequently, in section 5, we discuss how chaos can be characterised
numerically. In section 6, we then turn to the backpropagation algorithm and
graphically as well as numerically reveal the presence of chaos and describe
how the order of chaos evolves during learning.
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3. Definition of Chaos

Only dynamical systems can exhibit chaotic behaviour. In (Broer et al. 1991),
a dynamical system is defined as a triple (M, T, φ), consisting of a phase
space, a time setT and an evolution operatorφ: M × T → M where the
phase spaceM represents all the possible states of a system at any particular
moment, the time setT is the time lag in which the system is defined and the
evolution operatorφ specifies deterministically from any give state the future
of the system.

Furthermore, chaotic phenomena can appear in dynamical systems which
have in addition the following characteristics (Feigenbaum 1980):
− non-linear: only non-linear equations exhibit the kind of dynamical

behaviour where phenomena such as chaos arise. In the linear system,
one merely has superpositions.

− recursive: the evolution operatorφ generates a time series representing
the evolution of the system over time. Iff is the operator and the starting
point is x0 (to take a one-dimensional example), thenx1 = f(x0), x2 =
f(x1), x3 = f(x2), . . . ,xn+1 = f(xn). Thenth element,xn then isfn(x0)2 and
the order of the corresponding polynomial is 2n−1.

Feigenbaum (1980) also points out that this complex behaviour is mainly
generated by its recursive nature, rather than by the specific operation
performed by the function.

There is very little agreement on what constitute the properties of chaotic
systems. However, one element is always considered to be most character-
istic, namely sensitivity to initial conditions (SIC) (Broer et al. 1991). In
general, this means that the slightest difference in initial conditions of a
dynamical system will cause the system to take a completely different orbit
towards a potentially different final state. We will primarily focus on SIC
to describe the essence of chaos. We will also observe that this SIC covers
a multitude of other phenomena for which we can compute a number of
statistics. We also limit ourselves to the period doubling bifurcation (which
will be explained later) as a road to chaos.3

To determine whether or not there is sensitivity to initial conditions, the
concept of strange attractors is very important. Attractors can be defined as
a final state to which all trajectories converge. We might say that it consti-
tutes the final solution of the non-linear differential equation in which the
system will remain. We distinguish between regular attractors, corresponding
to periodic and quasi-periodic solutions (or limit cycles) and irregular or
strange attractors corresponding to aperiodic solutions. The nature of this
attractor now determines whether or not there is sensitivity to initial condi-
tions. The periodicity of the limit cycle represents the number of iterations
the system needs to reproduce itself. Consequently, by observing the system
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for a certain lapse of time, we will find that the system behaves in a regular
and orderly way. From any given state, we can consequently predict any
future state of the system. What is now the implication of this with respect
to the initial conditions? When the attractor is periodic, the final state of
the system will always be the attractor, irrespective of the initial conditions.
Consequently, the information that is represented in the initial values of the
system is destroyed as any nearby initial situation will always lead to the same
final state.

When, on the contrary, the attractor is aperiodic, a totally different behavi-
our of the system will be observed. Where in the periodic case, the system was
perfectly predictable and orderly in its behaviour, in the aperiodic case, the
system behaves in an ostensibly random way. The aperiodicity of the attractor
has as major implication that during whatever time length the system is
observed, it will be virtually impossible to detect some kind of sequence that
will permit to make any kind of prediction. In the periodic case, the system
exhibits a high degree of self-similarity: after a certain number of iterations
(which depends on the periodicity), the system reproduces itself. In the aperi-
odic case, this self similarity diminishes and finally disappears after a number
of iterations. This implies that it severely limits the possibility to predict from
any given moment a future state of the system. Periodic attractors are also
called simple attractors and aperiodic ones are called strange attractors (Broer
and Takens 1992).

4. The Verhulst Equation: From Bifurcation to Chaos

In the previous section, we have given a description of chaos and have
introduced a number of concepts. We will now illustrate these concepts by
means of the Verhulst equation which is a classical example of the bifurcation
cascade process as a route to chaos.

The Verhulst Equation is cited in almost any book on chaotic systems as a
classical example of a non-linear dynamical system (see for instance Bergé et
al. (1992) and Lorenz (1989)). It is especially interesting to discuss its chaotic
properties because of its unidimensionality. The equation has the following
quadratic structure:

xt+1 = αxt(1− xt ) (6)

The equation was introduced by the Belgian professor Verhulst to explain
the population growth in terms of its birth and death rate.xt represents the
normalised population at timet andα is a parameter. A steady state solution
can be found by solving

x∗t+1 = αx∗t (1− x∗t ) (7)
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Figure 1. Graphical solution procedure forα = 2.9 and mapping forα = 0.5, 1, 2, 3, 4.

which has two solutions, the trivial solutionx∗ = 0 andx∗ = 1 − 1/α. One
might expect consequently, that whatever the initial value ofx0, we would
always end up in either of these solutions. However, the dynamics of this
equation are more complex and need to be investigated further. A graphical
solution procedure for the logistic function is given in Figure 1 (left figure)
and the mapping for different values ofα (right figure). One should interpret
the different graphs in the following way. We start at the x-axis for any given
value ofx, e.g.x∗. We proceed vertically to the function being depicted,f(x∗).
From f(x∗) we go horizontally to the 45◦-line. Along this linext = xt+1 so
that the point on this line gives the starting point for the next iteration. The
next value can thus be found by proceeding again vertically to the function,
yielding f(f(x∗)), denoted byf2(x∗). This can be repeated for any number of
iterations until the obtained solution does not change anymore. A solution of a
dynamical system is said to be stable when, irrespective of the initial situation,
the system will always end up in the same particular state. By contrast, a
solution is said to be unstable whenever a slight deviation from the initial
situation will make the system evolve towards another solution.

For discrete time dynamical systems, the asymptotic stability of the fixed
point x∗ depends on whether the slope off, evaluated at the fixed point, lies
within the unit circle, i.e., whether|δf(x∗)/δx| = |λ| < 1 and the equilibrium
condition becomesλ = 1. As can be seen from Figure 1 (right figure), the
slope of the graph at the fixed point increases asα increases.

Consequently, there will be a value forα for which the fixed pointx∗
becomes unstable, giving rise to a bifurcation. The slope of the graph of
equation 6 is

df (xt )

dxt |xt=x∗
= α(1− 2x) = 2− α
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Figure 2. Graphical solution procedure forα = 0.95 and 2.5.

Forα = 3, the stable fixed point becomes unstable and a new stable fixed
point of period-2 occurs.

In function of the value ofα, the system may have the following solu-
tions:
− the origin: from Figure 2 (left figure), forα = 0.95, we can easily see

that any value forx will, after a limited number of iterations, converge to
the origin. The absolute value of the first derivative of this fixed point is
zero and thus less than one, implying its stability.4 This fixed point will
remain stable and thus attracts all other values.

− a fixed point (see Figure 2 (right figure) forα = 2.5): for 1< α < 3,
the origin is still a fixed point, but the absolute value of the slope off
is at this point equal toα, which is larger than one. Consequently, this
fixed point is an unstable equilibrium point. That means that starting at
0, the system will remain at this value, but for anyx0-value differing
marginally from 0, the system will move away from this unstable, fixed
point and will converge to the second fixed point,x∗ = 1 − 1/α. The
absolute value of the slope at this fixed point is now less than 1 and will
be the new attractor of the system. In other words,x∗ is an asymptotic
fixed point to which the system will converge for any initial value.

− a limit cycle: Figure 3 (left figure) shows the evolution of the system for
α = 3.4. In addition to the curvext − xt+1, we have now also added the
period-2 curve relatingxt with xt+2. At α = 3, the previous fixed, stable
point now becomes unstable and a bifurcation arises. Forα > 3, the
system needs two iterations to reproduce itself, implying the existence
of two fixed stable points. When a system’s solution oscillates between
two or more values, it is said to have entered a limit cycle (in this case a
period 2 limit cycle). This means that, for instance for the period 2 case,
the system will eventually produce the sequence of valuesx∗1, x∗2, x∗1, x∗2,
. . . Asα increases, the two stable fixed points will become unstable (the
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Figure 3. Graphical solution procedure forα = 3.4 and 3.9.

absolute values of the first derivatives become = 1), giving rise to another
bifurcation in each of the fixed points. A new limit cycle of period 4 will
emerge. The limit cycle then becomesx∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 , x∗∗1 , x∗∗2 , x∗∗3 , x∗∗4 ,
. . . For consecutive increases ofα, the periodicity of the limit cycles will
then become 8, 16, 32, . . .

It was shown by Feigenbaum (1980) that this period doubling cycle
will tend to infinity at a value forα ∼= 3.56999. . . , called the critical
value. From then on, phenomena other than infinite periodicities may
occur.

− chaotic (Figure 3 (right figure) forα = 3.9): as soon asα exceeds this
critical value, it is said that the system enters a chaotic state where a
number of other phenomena are observed. A quasi infinite number of
fixed points leads to aperiodic behaviour. Also, limit cycles of unpair
periodicity appear in regions calledwindowswhere the number of fixed
points suddenly decreases. Examples of these low-order periodicities are
the period 3 limit cycle forα = 3.839, the period 5 limit cycle atα = 3.74,
etc. . . . The fractal nature of the Verhulst equation is also remarkable
in this region.5 The asymptotic periodic orbits of period 6 and 12 (for
α equal to respectively 3.845 and 3.849) result in the period doubling
of period 3 similar to the doubling of the pair periods. The parameter
regime forαc < α < 4 is called the chaotic regime. The simultaneous
presence of periodic cycles of orderk and of aperiodic cycles is called
deterministic chaos.

Another way of representing these different solutions for distinct values of
α is by means of the Feigenbaum bifurcation diagram (see Figure 4) which
shows the asymptotic behaviour of the system. On the x-axis, we plot the
different values ofα and on the y-axis the value of the system’s solution
after a number of iterations. This diagram clearly reveals the period doubling.
From Figure 4, it can be observed that for values ofα between 1 and 3,
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Figure 4. Bifurcation diagram for the Logistic equation.

always one end-state will be found. Whenα reaches the value 3, the system’s
state becomes unstable and then moves into two possible new states. This
bifurcation process goes on tillα reaches the value 3.56999 after which the
chaotic behaviour emerges.

In the next section, we present a number of descriptive and numerical tools
that allow us to detect whether or not a particular system exhibits chaotic
behaviour. These tools are the phase space, the embedding dimension, the
correlation dimension, spectral analysis and the Kolmogorov Entropy.6 They
relate to chaos in the following way. Sensitivity to initial conditions means
that the system has an aperiodic attractor to which all final states converge.
By using phase spaces, we can often describe some topological properties
of the attractor and the periodicity or aperiodicity of the attractor can be
revealed by applying a Fourier transformation. In the former case, a partic-
ular frequency will be found and in the latter case a continuous broadband
spectrum will be observed.7 Finally, the fact that all solutions are still located
on this aperiodic attractor, means that there is some kind of limitation to the
final outcome, which will be reflected in the finite Kolmogorov Entropy and
in the correlation dimension.
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5. Descriptive and Numerical Tools to Study Chaos

Besides numerical experiments, the sensitivity to initial conditions can also
be revealed by means of other tools that allow us to shed more light on the
underlying chaotic process. These tools are presented in this section and will
be explained from a ‘user’ point of view.

5.1. Phase space

One of the ways in which one may study the dynamical behaviour of a system
and detect the presence of attractors is by means of a phase space diagram
which is a graphical representation of the evolution of a system towards a
solution. Each point of that space then determines unequivocally the state of
the system at a given time. The axes may represent the position and speed of
the system and the corresponding space trajectory or orbit is the evolution of
the system.

5.2. Embedding dimension

When studying a dynamical system, we may not always have an idea of what
the system looks like nor which variables influence its behaviour. However,
quite often one disposes of at least a one dimensional observation. Takens
has developed a technique that allows to reconstruct the properties of the
dynamical system under study solely on the basis of this one dimensional
observation (Takens 1981). We thus create an artificial dynamical system
which, as Takens proved, has the same topological properties as the original
system. This boils down to finding an appropriate dimension in which to
represent the system, called the embedding dimension.

One proceeds in the following way. We assume that the time series is
produced by a set of deterministic equations such asxit+1 = fi(xt ) wherex
∈ <n, i = 1, . . . , n. As we said previously, we do not know the structural
form of the system nor its true dimension (n). Nor are we certain that the
time series contains the realxit -values, so we represent the observed values by
xit and we assume that the following relation holds:xit = h(xt ) which means
that the observed values in some way depend on the true value vectorxit .
We now take the last element of the time series and combine it with itsm
predecessors to form a vector of lengthm, Xmt = (xjt , x

j

t−1, . . . ,xjt−m+1). We
do this for every element in the time series, eliminating of course the first
m− 1 elements. We thus obtain a series ofm-dimensional vectorsXmj . The
lengthm is called the embedding dimension and each vector is called am-
history, describing a point inm-dimensional space. Takens proved that this
artificially reconstructed object is topologically equivalent to the real system
if the following conditions hold:
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− the variablesxi of the true system are located on the attractor.
− the functionsfi(x) andhi(x) are smooth functions.
− m> 2n− 1.

This is a very important result because it allows us to calculate three other
very important measures, namely the correlation dimension, the Kolmogorov
Entropy and Lyapunov exponents.

In order to illustrate this somewhat abstract procedure, we apply it to the
well known chaotic system, the Lorenz System which is composed of the
following set of coupled non linear differential equations:

dX
dt
= a(Y −X)

dY
dt
= bX − Y −XZ

dZ
dt
= XY − cZ

For our purposes, we are not so much interested in the exact semantics of
the variables but rather in the overall behaviour of the system. We computed
15,000 values (wheredt = 0.05) forX, YandZ using the following parameter
values:a = 10, b = 10 andc = −4. When reconstructing the attractor, we
assume that we only dispose of a one dimensional observation of the system,
namely on theX-variable. To simplify things a bit and using the fact that the
Lorenz system is of dimension 3, we fix the embedding dimension to 3.

In order to avoid autocorrelation (which would merely generate an
attractor where all points are centered around the diagonal (plane)), we only
use 1 out of every 5 observations. Some of the original values and their
constructed vectors are given in Table 1. If we now plot both the original
X, Y andZ-values (see Figure 5(a)) and the artificially reconstructed system
X, Y′ andZ′-values (see Figure 5(b)), we can indeed see that topologically the
two are equivalent.

5.3. Correlation dimension

As we said previously, a fundamental characteristic of chaotic systems is
its sensitivity to initial conditions which basically means that two orbits
starting from very close initial points, soon become uncorrelated. However,
this does not imply that the dynamical system can be at any position in
phase space. Every orbit will always be located at an attractor and there-
fore all the points on the attractor are spatially related. Grassberger and
Procaccia have developed a technique which measures the degree of spatial
correlation between 2 points in phase space (Grassberger and Procaccia
1983).

It is computed in the following way. The starting point is the artificial
dynamical system as described in the previous section. Two pointsxit andxjt
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Table 1. Creation of the embedding vector of dimension 3

Observation I Observation II Vector (1) Vector (2) Vector (3)

0.034168 0.347151 0.034168 0.087486 0.274364

0.038980 0.439782 0.898230 2.947274 –

0.046739 0.557647 – –

0.057089 0.707582

0.070430 0.898230

0.087486 1.140478

0.109239 1.447933

0.136953 1.837410

0.172245 2.329264

0.217174 2.947274

0.274364 3.717394
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Figure 5. Reconstruction of the Lorenz attractor.
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are said to be spatially correlated if the Euclidian distance is less than the
radiusr of anm-dimensional sphere centered on one of the two points, or put
more formally:

||xit − xjt || < r
The spatial correlation between all points on the attractor is then measured
by:

C(r,m) = lim
T→∞

1

T 2

T∑
i,j=1

H(r − ||xit (xjt )||) (8)

whereT = length of the series of the constructedm-vectorsxmt , ||. || is the
Euclidean norm and

H = H(y) =
{

1 if y > 0
0 if otherwise

C(r,m) is called the correlation integral from which we can compute the
correlation dimension in the following way:

Dc(m) = lim
r→∞

ln[C(r,m)]
ln[r]

8

The value ofC(r,m), and consequently ofDc(m), depends on the length of
them-vector. It was shown, however, by Grassberger and Procaccia that for
deterministic systems the correlation dimension converges to a fixed value,
independent of the embedding dimension used for calculation. We therefore
will compute the correlation integralC(r,m) for different embedding dimen-
sions and we can then plot, on a log-log scale, the obtained values forC(r,m)
given a particular radius.

An example of these computations for the Lorenz system is given in Figure
6. Each graph connects the different Correlation integrals with the different
radii. What we can observe is that the slopes of these lines do not change
anymore, even though the embedding dimension changes. It is this ‘constant’
slope which yields the value of theDc(m). In the case of pure stochastic
systems, the slope will permanently increase in function of the embedding
dimension.

5.4. Spectral analysis

A well known numerical tool is spectral analysis which allows us to analyse
the periodicity of dynamical systems. The technique used is called the Fourier
Transform.
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When a time series does not converge, it can periodically oscillate, or may
appear to be random. The Fourier analysis allows us to distinguish between
periodic or quasi-periodic series and random ones. However, we must be
careful with this distinction. It may very well be that a time series appears
random without being so. This may be caused by the fact that, for instance,
the length of the observation interval is smaller than the periodicity of the
system.

In the discrete case, we have two possible situations. The first one being
either a periodic or quasi-periodic signal where we can observe important
peaks in the power spectrum on the frequencies of the periods, and eventually
some smaller peaks, for the harmonic frequencies of the main frequencies.
The second possibility is the random case, in which the power spectrum
seems continuous without special peaks. In that case, the power spectrum
reflects broad band noise.

5.5. Kolmogorov Entropy

In the phase space of a dynamical system exhibiting sensitivity to initial
conditions, two initially close points will evolve on divergent trajectories. We
can think of this in terms of information creation when we observe that the
two points that were initially indistinguishable become clearly distinguish-
able after a certain period of time. So we might say that information is added
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or created. A measure for the asymptotic rate of information creation for an
iterative transformation is the Kolmogorov entropyK . Again, this measure is
difficult to compute unless one has a priori knowledge on the probabilities for
the system to be in a particular state.

Grassberger and Procaccia (1983) have shown that the Kolmogorov
entropy can be estimated by the following expression:

K2 = limm→∞limr→O 1

1t
log

Cm(r)

Cm+1(r)
(9)

whereCm is the correlation integral of a time series with embedding dimen-
sion m and the Kolmogorov EntropyK represents the upper bond forK2.
This expression is easier to compute. In the periodic and semi-periodic case,
the entropy will be zero. A chaotic system will be characterised by a finite
entropy, a truly random system will have an infinite entropy.

6. Chaotic Aspects of the Backpropagation Algorithm

We will look at the backpropagation algorithm and study the dynamical Prop-
erties of its learning process. This implies evidently that we will primarily
focus on the delta rule. As specified in the beginning of this paper, the delta
rule for the output node is

1pWji = β(tpj −Opj)Opi(1−Opi)Opi

and for the hidden nodes

1pWji = β(
n∑
k=1

δpkWkj )Opi(1−Opi)Opi

These delta rules are the basic equations driving the learning process of the
neural network and we can immediately see that they are non-linear. As the
backpropagation algorithm is recursive by nature, the necessary conditions
for a chaotic system are satisfied. Given the above, it would therefore seem
natural to observe similar phenomena such as bifurcations and chaos as was
found for the Verhulst equation.

In Van der Maas et al. (1990), a bifurcation diagram for the backpropaga-
tion algorithm is created using the sum of the absolute values of the weights
for different learning rates. The parameter regime indicates that bifurcations
occur for learning rates inferior to 2.3 and a window appears betweenβ = 2.9
andβ = 3.2. For learning rates superior to 3.3, the weights grow exponentially.
They furthermore illustrate the presence of chaos by means of a phase space
diagram, a power spectrum and the calculation of Lyapunov exponents. They
emphasise that for the full range of values the network successfully learned.
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A number of other papers discuss the chaotic aspects of neural networks
other than backpropagation networks. In Aihara et al. (1990) a simple one
neuron neural network is analysed that has a number of properties of biolog-
ical neurons, such as the squid giant axons. The authors find a similar
behaviour of alternating periodic and chaotic sequences of neuron responses.
In Derrida and Meir (1988), it is shown that feed forward neural networks in
general have a chaotic behaviour because the distance between two arbitrarily
close configurations always increases, which may be interpreted as sensi-
tivity to initial conditions. Similar results are discussed in Sompolinsky and
Crisanti (1988) where a continuous time dynamical model of a non-linear
network with random asymmetric couplings is studied. For these networks,
phenomena such as oscillations, bifurcations and chaos are observed.

The following issues have not been addressed in the above mentioned
papers and, while focusing on the Xor-function, will be so in the remainder
of the paper: what is the parameter regime for the XOR-function, how does
chaos evolve during the learning process, does chaos facilitates learning or
not? In the section to follow we present in detail our findings.

6.1. Bifurcation diagrams

In Figure 7, we show the bifurcation diagrams for the XOR-function where
the output-values of the network for each of the XOR-input pairs are plotted
against differentβ-values for a temperature equal to 0.6. The bifurcation
diagrams, constructed at different moments during the learning process, allow
us to observe how the order of chaos evolves over time.

For different values of the learning rateβ, we allowed the network to learn
during a limited number of iterations, up to 40,000. For each run, we kept a
record of the last 200 output values, generated by the network. These values
are then plotted against the correspondingβ-value, resulting in a bifurcation
diagram.

From these diagrams, we can make the following observations. First, it
is clear from the bifurcation diagrams in Figure 7 that we can distinguish
between three possible states in which the neural network can be for each
value ofβ:

− convergence of the network resulting in correct output values equal to 1
and 0 (in fact, we use the values 0.9 and 0.1 because of the asymptotic
properties of the sigmoid function) (e.g. in Figure 7 (middle): forβ = 4
to 14),

− finite periodicity corresponding to a finite number of values which do
not correspond to the desired output (e.g. in Figure 7 (middle): forβ =
14 to 43),
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Figure 7. Bifurcation diagram for temp = 0.6 after 100, 1000 and 40,000 iterations.
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− chaos having an unperiodic series of output values obviously not corre-
sponding to the desired output (e.g. in Figure 7 (middle): forβ > 43).

Secondly, as the number of iterations increases, the neural network
converges for moreβ-values. After 1,000 iterations, we only have conver-
gence forβ-values around 4 and 14 whereas, after 40,000 iterations, conver-
gence is achieved for values between 1 and 30, 48 and 75. Thirdly, as the
number of iterations for the learning process increases, the order of chaos
diminishes. When looking again at Figure 7, we see that, even in the chaotic
zone, more and more values are correctly computed. We will see that this
observation is supported by the computation of the Kolmogorov entropy.

6.2. Phase space

The phase space is a space in which each possible state of the system is
represented unequivocally by a point in that space where each co-ordinate
corresponds with a state variable of the system. If a dynamical system has
a strange attractor, a phase space diagram will reveal its presence if the
dimension of the attractor is less than the projection dimension. Some kind of
structure will appear whenever some kind of deterministic system is involved
(Broer and Takens 1992), which of course is the case for the backpropagation
algorithm. However, this phase plan projection is nothing but an indication of
chaos and its topographical characteristics are difficult to interpret.

In Figure 8, we show phase spaces for different values ofβ. Forβ = 25,
which corresponds to the non chaotic zone, a relatively regular geometric
object emerges. Forβ = 45 and 50, we find a much more irregular object.
This is considered to be an indication of chaos (Moon 1987).

6.3. Fourier power spectrum

As was mentioned previously, chaotic systems are characterised by a broad-
band Fourier power spectrum in which no particular frequency can be found.
We therefore expect to see for values inside the chaotic zone a broadband
spectrum. We computed this power spectrum of the output values produced
by the network forβ-values 25, 45 and 50. As can be seen in Figure 9, in
the periodic case the three peaks refer to the period-2 (left figure) and the
continuous broadband spectrum (middle figure) to chaos (right figure).

6.4. Kolmogorov Entropy

We finally computed the Kolmogorov Entropy for the XOR-function using
the Grassberger-Procaccia approximation. As was explained above, the
entropy should be finite but non-zero in order to have a chaotic system. Not
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Figure 8. Phase spaces for temp = 0.6 andβ = 25 (left), 45 (middle) and 50 (right).
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Figure 9. Power spectrum for temp = 0.6 andβ = 25 (left), 45 (middle) and 50 (right).
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Table 2. Kolmogorov entropy

Iterations β = 25 β = 50 β = 45

0–10K 0 0.08 0.09

10–20K 0 0.05 0.08

20–30K 0 0.03 0.08

30–40K 0 0.01 0.08

40–50K 0 0 0.08

only did we compute the entropy for the sameβ-values (25, 45 and 50) for a
temperature of 0.6, but we also calculated the evolution of the entropy as the
network learns. The results are shown in Table 2 and clearly indicate that the
process becomes less chaotic. Forβ = 45, there is initially a slight decrease in
the entropy, but then this stabilises, implying that not all of the chaotic behavi-
our disappears. This is a confirmation of what we visually could observe in
the different bifurcation diagrams (see Figure 7).

7. Conclusion

In this tutorial paper, we have investigated the backpropagation algorithm
as a non linear dynamical system having a number of interesting behavi-
oural characteristics. We have established the presence of chaos by means
of the bifurcation diagram and the computation of both the Fourier spectrum
and the entropy. The following conclusions hold: Firstly, for low values of
the learning rate, no chaos occurs. Secondly, for larger learning rates, the
learning process is clearly chaotic. Thirdly, the backpropagation network
converges faster for those values of the learning rate for which no chaos
occurs. This may be an indication that chaos does not prohibit a neural
network to learn but increases the number of iterations needed in order to
converge.

The main question now of course is: what are the implications for the use
of neural networks? As was said in the beginning, the starting point of the
research was to study the backpropagation algorithm as a dynamical system
and to investigate the properties of its learning behaviour. Primary focus was
therefore not on purely operational issues. Trying to give a more operational
interpretation of the obtained results, the following might hold. As long as
low, and therefore ’normal’ learning rates are used, the network behaves non-
chaotic which seems to be necessary for fast learning. Prior to initiating a
learning process for any kind of problem, it might be interesting to visually
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study the parameter regime of the network, given any set of inputs for a given
problem. This would allow to find parameter values for the learning rate and
the temperature for which no chaos occurs in order to assure fast learning.
However, in order to reliably use such a parameterisation strategy, it is clear
that further research needs to be done.

Notes

1 For similar reasons the XOR-function has been chosen in (McClelland and Rumelhart
1988) as a representative example of an interesting problem to be solved.
2 fn(x0) represents thenth iteration of functionf.
3 Other, known and more or less understood ways to chaos are resonance overlap and inter-
mittence (Broer and Verhulst 1992).
4 Remark that we only look at the nonnegative values forx.
5 This means that similar geometric structures are found at different scales in the bifurcation
diagram, shown in Figure 4.
6 In this paper, we will not compute Lyapunov exponents that measure the rate of divergence
of the trajectories of two nearby initial points. Besides certain algorithmic difficulties with
respect to their calculation, there are enough other measures to characterise chaos.
7 A broadband spectrum means that the power spectrum covers the whole frequency spec-
trum without any distinguishable peak.
8 It was also shown by Grassberger and Procaccia thatDc(m) is a good approximation of
the Hausdorff dimension (Dc ≤ DH ), also known for its non-integer values as the fractal
dimension (Grassberger and Procaccia 1983).
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