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Abstract

The BOPS® ManArray™ architecture is presented as a
scalable DSP platform for the embedded processor
domain. In this domain, ManArray-based processors use
a single architecture definition, that supports mulitiple
configurations of processing elements (PEs) from low
end single PE to large arrays of PEs, and single tool set.
The ManArray (selectable) parallelism architecture
mixes control oriented operations, VLIWs, packed data
operations, and distributed array processing in a
cohesive, independently selectable manner. In addition,
scalable  conditional  execution and  single-cycle
communications across a high connectivity, low cost
network are integrated in the architecture. This allows
another level of selectivity that enhances the application
of the parallel resources to high performance algorithms.
Coupled with the array DSP is a scalable DMA engine
that runs in the background and provides programmer-
selectable data-distribution patterns and a high-
bandwidth data-streaming interface to system peripherals
and global memory. This paper introduces the embedded
scalable ManArray architecture and a number of
benchmarks.  For example, a standard ASIC flow
DSP/coprocessor core, the BOPS2040, can process a
distributed 256-point complex FFT in 425 cycles and an
8x8 2D IDCT that meets 1EEF standards in 34 cycles.

1. Introduction

As chip densities continue to improve, demand
increases for the low cost integration of high
performance, parallel processing systems. For example
audio, video, and communication signal processing are
but three areas that require very high performance and
are in demand for low cost consumer products. For such
application domains a number of proposals exist that
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intend to improve the over-all execution of specialized
software. The proposed architectures can be divided in
the following three main categories: Specialized,
specialized augmented, and general-purpose. A general
discussion regarding those classes follows:

Specialized processors: In this class of processors, a
specific standard such as MPEG-2 may be assumed, and
for such a standard, a processor is designed that uniquely
performs this standard’s requirements. Several available
processors use this approach, for example MPEG-2
Decoders.[1,2]. Additionally, a standard may not be
assumed. These processors are targeted to a specific
application domain, such as video-recorders and
television sets. The programmability of these processors
is limited; they can only perform a predefined set of
operations. Typical operations executed by these
processors are image enhancement, picture-in-picture,
and on-screen-display. Examples of these processors can
be found in [3,4] and [5].

Specialized augmented processors: In this class of
processors, programmability is assumed and no
restrictions to standards are imposed. That is, the
processing follows the usual general-purpose paradigm of
programmability and the instructions set definition.
These C-programmable processors are general program
processors with extensions that make them particularly
suited for media processing. For example the Philips Tri-
media architecture and processors [6] use fine-grain
extensions to the VLIW processor and include coarse-
grain coprocessors for e.g. VLD decoding. Another
example of this class of processors is the Texas
Instruments Multimedia Video Processor (MVP) [7].

General-purpose processors: The family of general-
purpose machines is extended with co-processing
capabilities to improve the performance of multimedia
applications. This approach follows the traditional
extension oriented processing. That is, a general-purpose



processor is extended with new architectural features in
order to improve a certain application domain, which
allows the design of coprocessors specialized for the
considered application. Examples of such extensions
include the floating point and vector extension of general
purpose computing. Examples of this type of extensions
with respect to multimedia include:

Intel MMX (Multi Media eXtensions) [8],
ALPHA MVI (Motion Video Instruction
extensions) [9],

Sun VIS (Visual Instruction Set) [10] and
MIPS DME (Digital Media Extensions) [11].

whether an instruction is executed in parallel across the
array of PEs or sequentially in the SP. In addition, the
instruction set is partitioned into four groups using the
high two bits of the instruction format; a control group,
an arithmetic group, a load/store group, and a reserved,
proprietary instruction group, Fig. 1. Control and branch
instructions are executed by the Sequence Processor
(SP), which can also indirectly execute local iVLIWs.
To minimize the effects of branch latencies, an extensive,
scalable conditional execution approach is also defined in
the instruction set format. To optimize the use of the
distributed register files, the ManArray network {12} is
integrated into the architecture providing single-cycle
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Figure 1 ManArray Instruction Groupings

Our goal is to describe a scalable family of
programmable DSP cores based upon an architectural
definition for application specific processors containing
features of all these categories. The proposed processor
family provides three basic levels of parallelism namely
indirect VLIW (iVLIW), packed data, and multi-
processing. This paper introduces the ManArray DSP
platform as a strong contender to be a ubiquitous, high-
volume signal processor in commercial applications. The
presentation is as follows: The ‘embedded ManArray
processor architecture is presented in section 2.
Consequently, we describe a ManArray processor design
point and present some benchmark performance
evaluations. We conclude the presentation with some
final remarks.

The Embedded ManArray Processor Architecture
consists of a control sequence processor (SP) and an
array of processing elements (PEs) that use a distributed
register file model with simple instructions defining
operations on local register operands. All arithmetic and
load/store instructions execute in one or two cycles with
no hardware interlocks. Further, all arithmetic and
load/store instructions can be combined in VLIW format
and stored in small, distributed memories (VIMs). The
VLIWs can be indirectly selected for execution from the
VIMs. A dedicated bit in all instruction formats controls
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data transfers between orthogonal clusters of PEs. The
communication instructions can also be included into
VLIWs, thereby overlapping communications with
computation operations, which, in effect, reduces the
communications latency to zero. The ManArray network
operation is independent of background DMA operations,
which provide a data-streaming path between peripherals,
such as a global memory. By partitioning the instruction
set format into four groups the ManArray architecture
reserves more than a quarter of the instruction-set space
for future definition. Any of the four groups of
instructions can be dynamically mixed on a cycle-by-
cycle basis. The single ManArray instruction set
architecture supports the entire ManArray family of cores
from the single, merged SP/PE core (the 1x1) to any of
the highly parallel multi-processor arrays (1x2, 2x2, 2x4,
4x4, etc..). The ManArray instruction set summary, Fig.
2, shows 32-bit simplex instructions in groupings that
represent the five execution-unit slots of the first
ManArray implementation plus a control group. The
execution units include an arithmetic logic unit (ALU), a
multiply accumulate unit (MAU), a data select unit
(DSU), a load unit, and a store unit.Each PE and the
array controller SP contain an iVLIW Instruction
Memory (VIM) and each addressable location in the
VIM consists of five simplex-instruction slots (one per
execution unit) Fig. 3. Using the Load-iVLIW
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instruction (LV), the programmer or compiler loads
individual instruction slots with the 32-bit simplex
instructions optimized for the algorithm. A single 32-bit
Execute iVLIW instruction (XV) triggers the execution
of an iVLIW at a specific VIM address in the SP, or in
all PEs. Instructions in the five slots execute in parallel,
each within its respective execution unit. Consequently,
the VIM contains application-specific iVLIW s that are
optimized for a specific task and that can be easily
changed for subsequent tasks.

Next, two variations of a PE communication instruction
and a Multiply Complex instruction are reviewed. Fig. 4
shows a PE exchange instruction (PEXCHG Rt, Rs,
Transpose) in operation. The figure shows a 2x4 cluster-
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switch with two levels of multiplexing connecting the
PEs and a symbolic depiction of the operation in the
upper left hand corner. For the transpose operation on a
2x2 with row-major PE ordering as shown, a transfer of
data between PEs 1 and 2 is to occur. This is a single
cycle DSU operation which can be specified in an
iVLIW and uses the receive model of communications.
In the receive model each PE makes a specified source
operand available to its output port and provides the
proper control signals to its path control portion of the
cluster switch. In the example shown, PE 1 provides Rs1
to its output port and PE2 provides Rs2 to its output port.
PE 1 receives the Rs2 value through its cluster switch
multiplexors and PE 2 receives Rs1. The received values



are loaded into the specified target register in each PE.
Fig. 5 shows a PE exchange (PEXCHG Rt, Rs, 2x4PEG)
operation on a 2x4, demonstrating the broadcast
capability of the ManArray network and receive model of
communications used. The symbolic depiction in the
upper left hand corner shows that PE6 is the source of the

2x4 array. It should be noted that all inter-cluster paths
are primarily "point-to-point” supporting the high
performance interface.

Fig. 6 depicts the pipelined operation sequence for a
Multiply Complex Instruction. For ManArray high
performance PEs, Multiply Complex provides superior
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Figure 5 PE Broadcast Between PEs

data to be broadcast to all active PEs in the 2x4. This
single-cycle DSU operation can also be specified in a
tVLIW. In this case PE6 makes its source operand
available and each of the other active PEs in the array
specify the proper path control to receive PE6’s data.
This is a cross cluster broadcast of data to all PEs in the
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performance support for algorithms that require complex
multiply operations. Complex numbers are stored in two
halfwords where H1 represents the real component and
HO the imaginary component. The complex result
returned contains the real part in Hl and the imaginary
part in HO. This is a two cycle operation with rounding
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Figure 6 Multiply Complex Instruction Pipeline

occurring in the second cycle. By pipelining, 2 cycles
latency and single-cycle throughput are achieved.

2. ManArray-based DSP Cores

Generally speaking, ManArray defines building
blocks that can be combined into high-performance DSP
Cores with different processor-array configurations. The
basic building blocks are
The SP/PEO - the array controller SP
merged with PEQ of the array
Individual PEs
Configuration-specific cluster-switches to
connect the PEs
A powerful scalable DMA engine

These basic building blocks can be combined into
array building blocks. For example an SP/PEQ with three
additional PEs, and cluster-switch creates a 2x2-array
building block. Such a 2x2 building block can be
combined with other building blocks (additional PEs or
additional arrays), or it can be a used by itself as the basis
for a DSP core, like in the BOPS2040 DSP core in Fig. 7
(shown without DMA).  Combining multiple 2x2
building blocks into larger arrays, such as 2x4s and 4x4s,
also enables software controlled reconfiguration options.
For example a 4x4 array can be programmed to act as 4
independent 2x2s.
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The SP, as part of the merged SP/PE building block,
provides program control, contains the instruction and
data address generation units, and controls the dispatch of
instructions to the processor array. Merging the
controller SP into the array of PEs allows the SP access
to the PE-to-PE interconnection network and
consequently easy access to each PEs internal resources.
A rich set of addressing modes is provided in the SP and
each PE, and the SP also supports high-performance
interrupts and unique event-point looping.

Each SP and PE uses a 64-entry register space that is
configured as a 32x32 Reconfigurable Compute Register
File (RCRF), 8x32 Address Register File (ARF), and
24x32 Miscellaneous Registers (MRF). In ManArray, the
address registers are separated from the compute register
file. This approach maximizes the number of registers
available for compute operations and guarantees a
minimum number of dedicated address registers. This
does not require any additional address generation ports
from the compute register file, and it allows independent
PE memory addressing for such functions as local, data-
dependent table lookups. The RCRF 1is configurable to
support both 32-bit data types including quad byte, dual
halfword, and word, and 64-bit data types including octal
byte, quad halfword, dual word, and double word. The
balanced architectural approach taken for the compute
register file provides the high performance features
needed by many applications. It supports octal byte and
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Figure 7 BOPS2040 2x2 ManArray DSP Core

quad halfword operations in a logical 16x64-bit register
file space without sacrificing the 32-bit data type support
in the logical 32x32-bit register file. Providing both
allows optimum usage of register file space and
minimum overhead in manipulating packed data.

In Fig. 7, each PE contains five execution units,
identified in the instruction set groupings of Fig. 2. Each
execution unit supports various 8/16/32/64-bit packed
data types, a 32x32-bit reconfigurable compute register
file, a VLIW-Instruction-Memory unit (VIM), and local
data memory. The DSU supports shifts, rotates, and
single-cycle PE-to-PE communications across the
ManArray network. With the indirect VLIW (iVLIW)
architecture, the communications operations can be
overlapped with the compute operations, thereby
providing zero-latency data transfers between PEs. The
32x32-bit reconfigurable register file is multi-ported,
which allows the parallel iVLIW execution. The load
and store units provide independent data paths between
the local memories in each PE in the array. The local PE
data memory is a two-port memory that is configured
into two 32-bit banks, that support byte, halfword, word,
and double word loads. With the twin banks, one
memory can be loading and storing data simultaneously
to/from the PE’s register file while the DMA unit is
loading/storing to/from the other bank. This effectively
hides DMA delays and supports a data streaming
approach to processing on the array, which allows very
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high memory bandwidth support for compute-intensive
algorithms.

Each of the five execution units on each PE on the
array supports up to 64-bit packed data types, which
makes ManArray’s data parallelism very flexible.
Adding PEs to an array increases the overall available
data parallelism, such that a 1x2 array (1 SP/PE + 1PE)
in effect provides 128-bit packed data support, a 2x2 (1
SP/PE + 3PEs) 256-bit packed data support, etc. Yet, on
the same array the programmer can also choose to
process different streams of data in each PE. So the
appropriate level of data parallelism can be used, without
sacrificing any processing bandwidth.

The VIM can contain an unlimited number of
iVLIWs, though products for video compression,
graphics, signal processing, or communications typically
require no more than a 64-entry VIM. Local PE data
memory is not limited by the architecture but is also
sized according to the intended applications.

Conditional execution, also referred to as predicated
execution, allows the programmer to have a given
instruction execute or not, based on the machine state
generated  previously. This feature improves
performance by avoiding the use of branches that incur a
branch delay penalty on pipelined processors. ManArray
extends the concept of conditional execution to an array
of processing elements by specifying the type of
conditional execute action desired in a hierarchical



manner, with a 1-bit, 2-bit, and 3-bit specifier depending
upon the instruction type. In addition, ManArray
supports conditional execution within the iVLIWs, The
ManArray PE independent conditional execution
architecture provides a comprehensive level of data-
dependent parallelism that none of the currently known
and available SIMD machines provide. The standard
conditional branch capability is also provided in the SP,
as well as SP-local, data-dependent conditional execution
in all its arithmetic operations. Initially, four basic types
of operations are supported in ManArray cores, namely
unconditional execution, execute on true-condition,
execute on false-condition, and specialized conditional
execution actions specified on an instruction basis.

3. Benchmarks
The ManArray architecture contains application
specific instructions for video, graphics,

communications, and generalized DSP applications. The
first silicon is a 2x2 core that includes both fixed and
floating point ALU, MAU, and DSU and all the
architectural features discussed in this paper for use on an
evaluation board. Subsets of the architecture can be
prepared to optimize a core for a specific task, if it is
seen as necessary. Consequently, BOPS is developing
application libraries of algorithms for use by product
developers. Many of these are reported on the BOPS
web site [14]. Two example algorithms are briefly
discussed next.

In this first algorithm, discussed in detail in [15], an
8x8 two-dimensional inverse discrete cosine transform
(8x8 2D IDCT) is executed on the BOPS2040 core in 34-
cycles. The algorithm is developed from the 2D 8x8
IDCT algorithm by separating it into 1D 1x8 IDCTs on
all eight rows and then on all eight columns. The 8x8
data is distributed among the four PEs, according to the
1x8 IDCT signal flow graph. The strategy for processing
the IDCT algorithm makes use of a number of features of
the ManArray architecture to provide a unique software
pipeline using indirect VLIWSs operating in multiple PEs.
For example, the indirect eXecute VLIW (XV)
instruction, with the unique enable feature, allows a
software pipeline to be built up and torn down without
creating new VLIWs. Quad 16x16 mulitiplications are
used on each PE in the Sum-of-Two-Products with and
without accumulate instructions to produce two 32-bit
results on each PE. The use of common instructions that
can execute in either the ALU or MAU or both, for
example the butterfly-with-saturate instruction improves
performance. In addition, the DSU supports permute
instructions to aid in organizing the data prior to
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processing and PEXCHG instructions for communicating
between PEs. Tests on the 34-cycle algorithm confirm
that the 2D 8x8 IDCT meets the IEEE standard 1180-
1990 for precision of the IDCT.

In this next algorithm, discussed in detail in [16], a
256 point complex FFT is executed on the BOPS2040
core in 425-cycles. Our implementation utilizes the
multiple levels of parallelism that are available on the
ManArray such as the special multiply complex
instruction, that calculates the product of two complex
32-bit fixed-point numbers in 2 cycles pipelineable for
single-cycle throughput. Instruction level parallelism is
exploited via the indirect VLIW. With the iVLIW, in the
same cycle
a complex number is read from memory, |
another complex number is written to memory,

a complex multiplication starts and another finishes,
two complex additions or subtractions are done, and
a complex number is exchanged with another
processing element.
Both PE-local FFTs and distributed FFTs are
executed in this algorithm which is described by use of
Kronecker product mathematics. Not only are the total
cycles for the calculation of the 256-point complex FFT
very small but the program code is also very compact.

4. Conclusions

In this paper we have presented the ManArray
architecture, an innovative architecture for DSP core
processing. The proposed architecture is especially suited
for emerging applications such as broadband
communications, digital video, imaging and graphics.
Based on this architecture BOPS is currently developing
a hardware implementation platform, software and a
programming environment [17]. The ManArray provides
three basic levels of parallelism (indirect VLIW, packed-
data, and multi-processing), all independent of each other
and available to the compiler or programmer on an as-
needed basis. The combination of these features enables
a 2x2 ManArray-based DSP like the BOPS2040 to
produce

a distributed 256-point FFT in 425 cycles, using
complex numbers of 32 bits (16 bits for real and
imaginary parts), and

an 8x8 IDCT that meets IEEE standards for
precision in 34 cycles.

And finally, since these emerging markets are
primarily System-On-Chip markets, BOPS is providing
the ManArray as licensable IP in the form of Cores, SW,
and Programming Tools.
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