
A Look Inside the Learning
Process of Neural Networks

O ne of the best-known results of the sciences of complexity is that complex
systems learn on the edge of chaos, by which is meant that both chaotic and
orderly states coexist and that the system remains close to this borderline and

may switch from one state to the other. In this article, we take a look inside the
learning process of neural networks, and we more specifically focus on the role of
chaos for learning a nonlinearly separable function, the XOR Boolean function. It is
clear that neural networks are complex adaptive systems (CAS) in the sense of Casti’s
definition of CAS [1]. The neurones are individual components that can make some
kind of computation. These neurones interact as they send the result of their com-
putation to neighboring neurones, and they only use local information as they do
not receive information from all the neurones in the network. For a detailed dis-
cussion of neural networks, we refer to Ref. [2], which previously appeared in Com-
plexity, and for an extensive discussion of the results reported here we refer to Refs.
[3], [4], and [5]. The following restrictions apply to the research reported on in this
article. We only look at a relatively simple problem. Even though it could be argued
that a simple problem such as the XOR problem is not representative of more
realistic problems, the simplicity of the network allows us to better focus on the
phenomenon we want to study, namely the occurrence of chaos during the learning
process. We also restrict ourselves to multilayer neural networks that are trained,
using the backpropagation algorithm. Similar analyses for other learning algorithms
could be the subject of further research.

The article is structured as follows. We first briefly introduce the basic equations
of the backpropagation algorithm (BPA). We then show that chaos occurs during the
learning process and investigate in more detail the role of two parameters, the
learning rate and the temperature. We finally address the question whether chaos
increases learning speed and could therefore be considered necessary or beneficial
for efficient learning.

ALGORITHMIC BASICS
We will not explain the entire algorithm here as it has already been discussed
previously, but the remainder of the article centers around the so-called Delta rule.
As we know, backpropagation neural networks belong to the category of supervised
learning neural networks, implying that it is known what output the network has to
produce for a given set of inputs. The following equations allow us to compute the

output of any node (hidden or output) [6]:
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Apj = (
i=1

m

WjiOpi − Uj (1)

Opj = fj~Apj! =
1

1 + e−Apj/t
, (2)

where Apj is the activation for the input
pattern p presented to node j, Wji is the
weight of the connections between
nodes i and j, Opi is the output of node
i presented to node j as input, and Uj is
the threshold of node j. The transfer
function Opj is also called the sigmoid
transfer function. The parameter T is
the temperature. As can be seen from
Figure 1, the smaller its value, the more
the transfer function looks like a step-
function and the higher the tempera-
ture, the flatter it becomes.

The Delta rule computes the weight
changes of the connections in function
of the error in the computed output in
the following way:

DpWji = bdpjOpi (3)

where Opi is the value of the ith incom-
ing connection, b is the learning rate,
and dpj is the error at the jth node for
the input pattern p. The error dpj needs
to be calculated separately for the hid-
den and the output nodes.

For the output nodes, the error can
be computed in the following way:

dpj = (tpj 1 Opj)f 8(Apj), (4)

where the term (tpj 1 Opj) computes the
difference between the expected and
actual output of the net. This error is
then multiplied by the first derivative of
the transfer function. This derivative
follows from the gradient descent equa-

Influence of temperature on the sigmoid transfer function.

FIGURE 1

Bifurcation diagram for the logistic equation.

FIGURE 2

As we know, backpropagation
neural networks belong to the

category of supervised learning
neural networks, implying that it

is known what output the
network has to produce for a

given set of inputs.
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tions characterizing the BPA, but it can
be interpreted in the following way: It
allows to sanction nodes that generate
an uncertain output (an activation
value close to 0) because there the first
derivative will be high and conse-
quently the weight change will be
larger. The inverse is true for nodes that
generate large activation values.

For the hidden nodes, the error can
be computed in the following way:

dpj = S(
k=1

n

dpkWkjDf 8~Apj!, (5)

where dpkWkj represents the error of the
connected neurons of the above layer,
multiplied by the corresponding weights,
which is propagated throughout the
net. For exactly the same reasons as

mentioned above, the first derivative of
the transfer function is included.

The two parameters that are impor-
tant in these equations are b and T. b is
the learning rate and specifies how
much of the computed error will be
taken into account for learning. Values

for b can be any positive number. Typi-
cal values of b normally never exceed
the value of 1 even though certain con-
ditions may require higher values. In
this article, we will explore a much
wider range of b values. This is required
because we want to study under what
conditions chaos appears and disap-
pears and what its influence is on the
learning process. In Ref. [4] it was
shown not only that chaos occurs for
different values of b but also that the
critical point, called bc, at which chaos
occurs differs in function of the value of
the temperature parameter: The higher
the temperature, the higher the value of
bc. We will now first explain why chaos
occurs. We then discuss more in detail
the role of two parameters, b and T.

WHY CHAOS OCCURS
Feigenbaum [7] defines the mathemati-
cal conditions for chaos to occur, which
are that the dynamical system needs to
be nonlinear and recursive. He also
points out that the latter property is far
more important than the specific op-
eration being performed. In the BPA,
the Delta rule contains the first deriva-
tive of the logistic or sigmoid transfer

Architecture of the neural network.

FIGURE 3

A dynamic view on learning the XOR function (Reprinted with permission from Ref. [4]).

FIGURE 4TABLE 1.

Training set for the XOR problem

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0
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function. It is easy to see that f 8(A) =
t11Opj(1 1 Opj). The recursive nature of
the learning algorithm can be shown by
rewriting

Opj = fj ~Apj! =
1

1 + e−(
i=0

m

WjiOpi

(6)

using a Taylor series developed around
0, as

O pj
new = @1/2 + 1/4 (

i=0

n

WjiOpi#

+ 1/4S(
i=0

n

O pi
2 DbdpjOpj ~1 − Opj!

+ Q~O pj
6 !. (7)

Even though the dependence of the
right-hand side of this equation is more
complicated than a simple quadratic
map, we can see that Equation 7 is
structurally related to the Verhulst

equation known for its chaotic behav-
ior, which is as follows:

xt+1 = lxt(1 1 xt). (8)

This Verhulst equation has different
solutions, depending on the value of the
one parameter in the equation, l. These
states are (1) a fixed point for values of
l between 0 and 3 and (2) a limit cycle
for l values between 3 and 3.5699999.
This means that there are a limited
number of states in which the system
can be and through which the system
iterates. If we have 4 different states, the
system will start in state 1. The next
time period, it will be in state 2 and then
states 3 and 4, after which this iteration
starts again. For any value beyond this
critical value of l, chaos occurs. The be-
havior of the equation can be visualized
by means of the Feigenbaum bifurca-
tion diagram, given in Figure 2. We ex-
plore this issue in the next section.

The Role of BETA
We conducted numerical experiments
in which the network had to learn the
XOR function (see Table 1 for the input
sets and the corresponding target out-
put). As depicted in Figure 3, the net-
work has two input nodes: one hidden
layer with two nodes and one node in
the output layer. The two supplemen-
tary nodes represent the thresholds Uj.
In order to establish whether bifurca-
tions and chaos also appeared during
the learning process, we ran different
learning processes where each time the
b value was changed. Each bifurcation
diagram plots 200 computed outputs
for each of the four input sets.

Figure 4 shows the bifurcation dia-
gram where the different learning rates
are plotted on the X-axis and the Y-axis
represents the computed output. As we
can observe from this figure (going from
upper left to lower right), not only fixed
points, limit cycles, bifurcations, and

Bifurcation diagram for T = 0.065, 0.35, and 1.25 (Reprinted with permission from Ref. [4]).

FIGURE 5

Different temperatures and the corre-
sponding bc (Reprinted with permission
from Ref. [4]).

FIGURE 6

Required number of iterations for differ-
ent T ’s and b’s.

FIGURE 7

Different temperatures and the corre-
sponding critical and fastest b values.

FIGURE 8
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chaos appear for certain values of the
learning parameter, but also that these
phenomena disappear as learning pro-
gresses (which is of course to be ex-
pected). For a detailed account of these
simulations, we refer to Ref. [4].

The Role of Temperature
We can now look at the second param-
eter in our equations, the temperature,
in order to establish its influence on the
above behavior. We ran another series
of simulations in which the learning
rate b was varied for different values of
the temperature. The same neural net-
work was used as above, which again
had to learn the XOR function.

What we can observe from Figure 5
is that as the temperature increases, the
bifurcation diagram shifts to the right.
This implies that chaos will occur only
for larger b values, and it seems to in-
dicate a way to control the occurrence
of chaos during the learning process.
Analogously to the Verhulst equation,
we can compute the value of the learn-
ing rate for which chaos first occurs,
called the critical beta, bc. When we plot
these values in function of the different
temperature values, we obtain a straight
line, as can be seen in Figure 6. This
seems to indicate that we can control
the occurrence of chaos during the
learning process by choosing an appro-
priate value of the temperature. This
will be addressed in the remainder of
the article.

DOES CHAOS INCREASE
LEARNING SPEED?
The next logical step in our analysis is to
find out whether chaos plays a positive
role for learning and whether a param-
eterization strategy can be proposed.
Do neural networks learn faster when

using chaotic learning rates, and do we

therefore need to push the network in a

chaotic regime? This final series of

simulations involved again the XOR

function, and we computed the number

of iterations the network needed to con-

verge for any given pair of b and T. The

result is shown in Figure 7. The b values

are plotted on the abscissa, and the

number of iterations required for con-

vergence is plotted on the ordinate

(which is expressed in thousands). The

following can be concluded:

1. The network converges for a wide

range of learning rates, going from

0.1 to 68.

2. As the temperature increases, the av-

erage number of iterations needed to

converge increases also.

3. For any given temperature, the U-

shaped curve indicates that for very

low as well as for very high learning

rates, a higher number of iterations

is required.

4. There is a high variability in the dif-

ferent convergence rates when using

very high bs. For these b values,

there is always chaos.

5. In Figure 8, we plotted the curve of

those tuples (b, T) for which there

was fastest convergence together

with the critical b values of Figure 6.

Even though many more simulations

are required to draw statistically

sound conclusions, we can see that

fastest convergence is obtained for b

values corresponding almost always

to the chaotic regime. For very low

temperature values, the critical

learning rates are close to the fastest

ones. Only there could we say that

learning takes place on the edge of

chaos.

CONCLUSIONS
Even though we do not claim to ad-

vance a general statement on neural

networks with respect to chaos and

learning, the following seems to

hold as suggested by our numerical

experiments.

As the temperature increases, the b

value has to be increased proportionally

for chaos to occur during the learning

process. Our simulations suggest that

fastest learning appears more often for

“chaotic” b values. However, the irregu-

larity in the chaotic regime does not

guarantee that fastest convergence will

always be achieved.
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