
BBCS Based Sparse Matrix-Vector Multiplication: Initial Evaluation

Stamatis Vassiliadis� Sorin Cotofanay Pyrrhos Stathisz

Abstract

This paper presents an evaluation of the BBCS scheme meant to alleviate the performance degradation exper-

ienced by Vector Processors (VPs) when manipulating sparse matrices. In particular we address the execution of

Sparse Matrix Vector Multiplication (SMVM) algorithms on VPs. First we introduce a Block Based Compressed

Storage (BBCS) sparse matrix representation format variants, and a BBCS based SMVM algorithm. Subsequently,

we consider a set of benchmark matrices, report some preliminary performance evaluations, and compare our scheme

with the Jagged Diagonal (JD) scheme. Our experiments suggest that our scheme achieves an average vector re-

gister �lling larger then the one achieved by JD and that is not sensitive to the assumed value of the VP section

size. Due to reduction of the startup penalty when executing vector instructions, higher vector register �lling will

translate into higher performance.

1 Introduction

Generally speaking, due to their intrinsic support for data parallelism, vector architectures [8] are potentially good
candidates to e�ciently execute Sparse Matrix Vector Multiplications (SMVMs) and other types of sparse matrix
manipulations. In practice however they are not as e�cient1 on sparse matrices as they are on dense. This performance
degradation mainly relates to the code and data irregularity induced by the fact that SMVM algorithms make use
of sparse matrix representation formats [9] in order to avoid trivial operations on zero value elements and to reduce
memory bandwidth requirements. Such sparse formats are meant to be a sparse matrix representation in memory
in such a way that the large amount of zeros a sparse matrix contains are not stored. Consequently, only the non-
zero elements accompanied by some positional information are stored in memory and this obviously implies poor
data regularity and make otherwise powerful vector instructions, e.g., vector multiply, quite ine�cient. One way to
alleviate this performance degradation is to augment the vector processor with some architectural support for sparse
matrix manipulation as suggested for example in [7]. In this line of reasoning there was recently proposed by the
authors in [12] a vector processor ISA architectural extension and an associated sparse matrix storage format. This
paper constitutes a preliminary evaluation of the performance of the scheme in [12] and its main contributions can be
summarized as follows:

� We introduce two Block Based Compressed Storage (BBCS) format variants, the SBBCS and S+BBCS to
eliminate the need for indexed vector load and store instructions.

� We consider a set of benchmark matrices and show that the average number of elements present in vector registers
during the execution of the BBCS based SMVM algorithm, i.e., the vector registers �lling, is above 80% for the
majority of the cases and is una�ected by the VP section size increase, for all considered cases, whereas the
JD vector �lling drops signi�cantly when the VP section size increases, especially for small matrices. This high
vector register �lling translates into high VP performance.

�Delft University of Technology, stamatis@Plato.ET.TUDelft.NL
yDelft University of Technology, sorin@Plato.ET.TUDelft.NL
zDelft University of Technology, pyrrhos@Plato.ET.TUDelft.NL
1As an example a CRAY Y-MP operates, as suggested in [11], at less than 33% of its peak
oating-point unit throughput when executing

FEM computations.

16th IMACS World Congress (c
 2000 IMACS)

1

Functional Unit 1

Functional Unit 2

Functional Unit 3

Functional Unit N

Scalar PipelineScalar RegistersCache

Scalar Controller

Vector Controller

Store

Unit

Load
Vector

Register

File

Vector processor

Main

Memory

Vector Unit

Scalar Unit

Figure 1: Vector Processor Organization

The presentation is organized as follows: In Section 2 we give a short description and preliminaries about the BBCS
scheme. In Section 3 we introduce the BBCS scheme and the storage variants. In Section 4 we present some preliminary
simulation results and compare the BBCS based SMVM scheme with the JD scheme. Finally, in Section 5 we draw
some conclusions.

2 The BBCS Scheme

In this section we give some background information about the BBCS sparse matrix representation format and its
associated architectural extension, in short the BBCS scheme2 as described in [12]. The BBCS scheme is an extention
to a vector processor as described in [8] (Fig 1). A vector processor di�ers from a scalar processor essentially in
that it can execute instructions that act on series of data (vectors). To hold these vectors in the processor, the
VP uses vector registers. The maximum number of elements that can �t in each the VP's vector registers is called
the section size s. To support the BBCS matrix representation format an architectural extension to the assumed
vector processor is described in [12] consisting of the Multiple Inner Product and Accumulate (MIPA) and LoaD Section

(LDS) vector instructions. LDS Loads a part of the matrix that is stored in BBCS format into a vector register. The
MIPA instruction operates on these vectors in order to perform SMVM. Further details considering the working of the
architectural extension will be omited here since this does not directly a�ect the goal of our paper.

In short, in the associated BBCS sparse representation format an n�n matrix is partitioned in d
n

s
e Vertical Blocks

(VBs) of at most s columns, where s is the section size. Then, the non-zero values of each of these blocks are stored
sequentially. Additionally, for each of the nonzero values their corresponding column positions within the block are
stored as well as a number of
ags that need not be discussed here. For a graphic depiction of the partitioning, see
Figure 2, top left, where a 19�19 is considered and a section size of 8. The x-marks correspond to the non-zero values
of the matrix.

3 BBCS based SMVM Algorithm and BBCS variants

Assuming the the architectural extensions and the basic BBCS format described in [12], the pseudo-assembler code
describing the BBCS based SMVM can be written as follows:

for all VBs do:

LDV @b,VR2 ;load a vector b section in VR2

ST #0,RPR ;reset RPR

loopA: LDS @A,VR1,VR4 ;load VB-section

2By scheme we mean here and from now on both the storage format and the algorithm used to execute SMVM.

2

LDVI VR4,VR3 ;load vector c with index vector VR4

MIPA VR1,VR2,VR3 ;multiply VB-section with b and add to c

STVI VR3,@c,VR4 ;store vector c with index VR4

compute new @A

if not EOB or EOM jump to loopA

where @c is assumed to be the memory address of the �rst element of the vector ~c, the result vector, and @A is assumed
to be a pointer to the �rst data entry of the BBCS stored matrix.

As the indexed load/store vector instructions may loose any advantage coming for the interleaved organization [10]
of the main memory, they might be much more ine�cient than the standard load/store vector instructions. Within
the previously described algorithm such indexed operations are used for the manipulation of the ~c vector. The need
for using indexed loads and stores rises from the fact that when the VB entries are processed they may originate from
any row position in the matrix. Since the row position of the entry corresponds to the position in the result ~c vector
to contribute at, the ~c vector needs to be loaded with an index vector. To avoid using an indexed load/store based
scheme we need to restrict the range of the matrix entry row positions that are loaded. Thus, in addition to the basic
BBCS scheme, in the following subsections we propose two techniques that do not make any use of indexed load/store
vector instructions.

3.1 Segmented BBCS (SBBCS)

Within these scheme the ~A matrix has to be partitioned into vertical blocks as before but now each VB is partitioned
at its turn in s� s sub-blocks called segments. This extra partitioning is realized by adding a new �eld, the EOS (End
Of Segment)
ag, to the BBCS entry format. All the other �eld of the SBBCS format follow the BBCS structure.
The EOS
ag signals the end of a segment and thus it is set for entries representing the last non-zero element of a
segment. In this new scenario the load unit executing an LDS instruction ceases loading, additionally to te previously
speci�ed cases, when an entry with a set EOS
ag is encountered. This guarantees the fact that after the subsequent
execution of a MIPA instruction the result lies within a known contiguous corresponding section of ~c which we can be
loaded and stored without the aid of an index vector.

3.2 Extended SBBCS (S+BBCS)

This scheme uses the SBBCS data format to represent the matrix. The di�erence is that any LDS instruction ceases
loading after k segments and not just after one segment. This means that the result values subsequently produced by a
MIPA instruction lies within a known contiguous k� s size section of the ~c vector. Consequently, the S+BBCS method
requires a special memory that we will call the c-memory that can hold k�s matrix elements and is directly accessible
by the MIPA functional unit. There is no need to load and store the partial results in ~c like in the BBCS method as this
is now done in the c-memory. We note that for this scheme to be realized there are extra architectural modi�cations
needed, e.g., the c-memory and instructions to access it. Such instructions would be for instance initialize/load/store
the c-memory and of course the MIPA functional unit has to be able to implicitly accesses the c-memory. Another
di�erence between SBBCS and S+BBCS is in the way the ~A matrix is accessed. Whereas SBBCS accesses the matrix
in the same order as BBCS, S+BBCS accesses �rst the �rst k segments of the �rst VB and then continues with the
�rst k segments of the second VB and so on. After (k� s)�d

n

s
e processed segments the c-memory has to be stored to

the main memory and the next k segments of each VB can be processed and so on until the entire matrix is processed.

4 Experimental Results and Comparisons

In this section we present some initial performance evaluations for the BBCS schemes. As the BBCS schemes are
generally applicable, that is, they make no assumption about the matrix properties as for instance a speci�c non-zero
structure or a property that might arise from the type of problem that the matrix is used to solve, we do not consider
in our comparisons methods that are speci�cally tuned for certain classes of matrices, e.g., block diagonal, etc. Given
that, up to out best knowledge, from the general applicable methods reported in the literature the JD scheme [2] is
considered to deliver the best performance we decided to compare our schemes with it.

The Jagged Diagonal (JD) [2] scheme provides the best SMVM performance, when no consideration is made about
possible speci�c properties of the non-zero structure of the matrix.. The JD scheme reorders the non-zero matrix
elements in columns in an attempt to provide an adequate vector register �lling and to reduce the startup penalty.

3

BBCS v=7

Jagged Diagonal v=8

SBBCS v=10

S BBCS (k=2) v=8
+

s s s s

s s

s

Figure 2: Vector Register Load Scenario

The JD format consists of shifting all the non-zero values of each row in the matrix to the right and form the non
sparse column vectors (V V). An illustration can be seen in Figure 2.

To evaluate each of the schemes presented in the previous section we use a set of benchmark matrices and some
simple simulation models that covers the loading of the matrices to be processed in vector registers and the execution
of the SMVM core instructions by a functional unit. For all schemes the same assumptions have been made in order
to make a fair comparison.

Within our experiments we targeted the evaluation of the average vector register �lling.
The average Vector Filling is the average number of elements present in the vector registers during the execution of

a SMVM algorithm. It is expressed as fraction of the VP section size s and calculated as follows: V ectorF illing = n

sv

where n is the number of non-zero elements in the ~A matrix and v is the total number of vectors that are loaded by
the load/store unit during the execution of a SMVM algorithm. As one may expect the value of v very much depends
on the scheme. To better clarify this issue we depicted in Figure 2 the data load behavior corresponding to each of
the SMVM methods we considered for the same example matrix and assuming a VP section size of 8. In the case of
the BBCS scheme the load/store unit loads s = 8 elements to form each subsequent vector except at the end of a VB
where the vector length will generally be shorter. For SBBCS the same e�ect occurs while loading when the end of a
segment is reached and for S+BBCS when the end of a k� s (here 2� 8) segment is reached. For the JD scheme3 the
loaded vector length is smaller than s when the end of a VV column is reached.

We note here that for all the experiments where the scheme S+BBCS is involved, we have chosen to present only the
results where k = 8. This is because during our experiments we observed no signi�cant improvement of the S+BBCS
performance for higher values of k on the benchmark matrices that we considered.

We selected a sparse matrix test suite from the Matrix Market on-line collection [3]. We carried a thorough
examination of the statistical properties of the available matrices by focusing our attention on the statistical properties
of the number of non-zeros elements per row (NZPR) because these are the parameters that mainly in
uence the
performance of the SMVM schemes. The parameters we considered are: the average NZPR, the NZPR variance, and
the existence of any rows with a large NZPR. Consequently, we divided the matrices into three categories as follows:

3In Figure 2 the JD format is displayed after being shifted and permuted.

4

Category Matrix Name Matrix Dimension # of non-zeros Average
NZPR

NZPR
Variance

longest
NZPR

Regular Large cavity16 4562 x 4562 138187 30 15 62

Regular Small gre 185 185 x 185 1005 5.3 0.85 6

Irregular-1 Large memplus 17758 x 17758 126150 5.6 13 353

Irregular-1 Small fs 183 3 183 x 183 1069 5.8 9.1 72

Irregular-2 Large mbeause 496 x 496 41063 83 130 489

Irregular-2 Small tols90 90 x 90 1746 19 35 90

Table 1: Sparse Matrix Test Suite

� Regular: a sparse matrix that has a relatively (to others matrices of the same size) small NZPR variance and
the row with the largest NZPR has an NZPR which is not signi�cantly larger than the average NZPR plus the
NZPR variance.

� Irregular-1: a sparse matrix that has approximately the same NZPR average and variance as a regular matrix
but contains rows with a large NZPR.

� Irregular-2: a sparse matrix that has a large average NZPR, a large NZPR variance, and rows with a large
NZPR.

The selected matrices are presented in detail in Table 1. For each category we have chosen two matrices that we
consider representative for that category: one small and one large4.

Figure 3 depicts the results of our �rst set of experiments that were targeted on the evaluation of the average
vector register �lling for the six matrices in the test suite. The vector �lling is displayed as a function of the section
size s on the x-axis. The y-axis represents the average vector length for a particular scheme divided by the section
size s. By analyzing the curves in Figure 3 we can observe the following:

� The vector �llings for the BBCS schemes are rather una�ected by the section size increase and are above 80%
for the majority of the cases. SBBCS and S+BBCS even increase their �lling percentages for larger section sizes.
In contrast the JD scheme is decreasing the vector �lling when the section size is increasing in all cases.

� For small matrices (left in Figure 3), the JD scheme has worse vector �lling values than for large matrices (on
the right). This can be explained by the fact that when the section size is larger than the dimension of the
matrix a VV (of the JD scheme) can never be equal or larger than the section size and as a result the loaded
vectors are shorter. In contrast, the BBCS schemes perform well on the same circumstances as they can handle
the entire matrix in one or two vectors.

5 Conclusions

This paper constitutes a continuation of the research in [12]. First we introduced the Block Based Compressed Storage
(BBCS) sparse matrix representation format variants, SBBCS and S+BBCS, that aleviate the need for the use of the
indexed loads and stores. Subsequently, we considered a set of benchmark matrices and indicated that the vector
registers �lling, i.e., the average number of elements in the vector registers during execution of the BBCS based
SMVM algorithm, is above 80% for the majority of the cases and is una�ected by the increase of the VP section,
whereas the JD vector �lling drops signi�cantly when the VP section increases, especially for small matrices.

References

[1] H. Amano, T. Boku, T. Kudoh, and H. Aiso. (SM)2-II: A new version of the sparse matrix solving machine.
In Proceedings of the 12th Annual International Symposium on Computer Architecture, pages 100{107, Boston,

Massachusetts, June 17{19, 1985. IEEE Computer Society TCA and ACM SIGARCH.

4Within this context a matrix is considered to be small when the number of non-zero elements it contains is in the order of the VP

section size s, which is in the range of 32 < s < 1024 in our experiments, and considered to be large otherwise.

5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix cavity16.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix memplus.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix mbeause.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix gre__185.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix fs_183_3.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024
Matrix tols90.rua

BBCS-1
BBCS-2

BBCS-3 (k=8)
JD

Figure 3: Average Vector Register Filling (fraction of s that is �lled versus s)

[2] E. C. Anderson and Y. Saad. Solving sparse triangular systems on parallel computers. International Journal of

High Speed Computing, 1:73{96, 1989.

[3] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix Market: A web resource for
test matrix collections. In R. F. Boisvert, editor, Quality of Numerical Software, Assessment and Enhancement,
pages 125{137, London, 1997. Chapman & Hall.

[4] V. Eijkhout. LAPACKworking note 50: Distributed sparse data structures for linear algebra operations. Technical
Report UT-CS-92-169, Department of Computer Science, University of Tennessee, Sept. 1992. Mon, 26 Apr 99
20:19:27 GMT.

[5] A. W. et al. The white dwarf: A high-performance application-speci�c processor. In Proceedings of the 15th

Annual International Symposium on Computer Architecture, pages 212{222, Honolulu, Hawaii, May{June 1988.
IEEE Computer Society Press.

[6] T. J. R. Hughes. The Finite Element Method. Prentice-Hall, Englewood Cli�s, NJ, 1987.

[7] R. N. Ibbett, T. M. Hopkins, and K. I. M. McKinnon. Architectural mechanisms to support sparse vector
processing. In Proceedings of the 16th ASCI, pages 64{71, Jerusalem, Israel, June 1989. IEEE Computer Society
Press.

[8] P. M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill, New York, 1981.

[9] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90-20, Research Institute
for Advanced Computer Science, NASA Ames Research Center, Mo�ett Field, CA, 1990.

[10] G. S. Sohi. High-bandwidth interleaved memories for vector processors - a simulation study. IEEE Transactions

on Computers, 38(4):484{492, Apr. 1989.

[11] V. E. Taylor, A. Ranade, and D. G. Messerschitt. SPAR: A New Architecture for Large Finite Element Compu-
tations. IEEE Transactions on Computers, 44(4):531{545, April 1995.

[12] S. Vassiliadis, S. Cotofana, and P. Stathis. Vector ISA extension for sparse matrix dense vector multiplication.
In International Europar Conference (EURO-PAR'99), page In Press. Springer-Verlag, 1999.

6

