
HIERARCHICAL INTERFACES FOR HARDWARE/SOFTWARE SYSTEMS

Tudor NICULIU Chouki AKTOUF Sorin COTOFANA
Universitatea «Politehnica» Bucuresti, Institut National Polytechnique de Grenoble Delft University of Technology
Facultatea de Electronica si Telecomunicatii LCIS-ESISAR Valence Faculty of Electrical Engineering
Bd. Iuliu Maniu 1-3 50, Rue Barthelemy de Laffemas Mekelweg 4
77202 Bucuresti, Romania BP 54, 26902 Valence, France 2600 GA Delft, The Netherlands
tudor@messnet.pub.ro Chouki.Aktouf@esisar.inpg.fr S.D.Cotofana@dutepp0.et.tudelft.nl

KEYWORDS
Hierarchical, Object-oriented, AI in simulation, Combined
simulation, Electronics

ABSTRACT

Competent design of hierarchical interfaces for
hardware/software systems needs the convergence of three
concurrent research directions: the study of hierarchy types,
the intelligent communication between different domains,
the formalization of verification/test. We aim to extend the
theory of hierarchy types, in order to integrate
communication properties as well as correctness and
testability, to suit the behavioral specification of today’s
complex system design. The high level approach of these
problems permits the intervention of an intelligent agent for
adapting techniques, models or methods to the particular
design: a designer, assisted by man-machine dialog
interface, or an artificial intelligence system. Behavioral
design-for-testability offers a good startup. Testability
measures the difficulty of test; it is used in this paper to
emphasize the high-level strategy. Design-for-testability
techniques (full and partial scan, test point insertion or built-
in self-test) increase the fault coverage and reduce the test
generation time; as they aim to modify the system's
specification to improve testability, performing them at
higher levels of the design hierarchy reduces the complexity
of their generation and application. An intelligent use of the
acquired knowledge on design for communication,
verification and testability is enabled.

ARGUMENT & CONCEPTS

We consider the concept of simulation
integrating: design (structural simulation of the
system’s function) and verification (functional
simulation of the system’s structure), as well on
higher as on lower abstraction levels of different
hierarchy types. The complexity of the
simulation’s object, e.g. interfaces needed for
communication between different domains, used
to define heterogeneous systems, imposes a
hierarchical approach.

Generally, multiple, coexistent and interdependent
hierarchies structure the universe of models for

complex systems, e.g., hard/ soft ones. They
belong to different hierarchy types, defined by:
abstraction levels, block and class structures,
symbolization and knowledge hierarchies, whose
study and formalization result in separation of
basic hierarchy types, that can be interpreted as
the object-oriented (Booch 1991) and the
symbolization paradigm (Bibel 1993). Abstraction
and hierarchy are semantic and syntactical aspects
of a unique fundamental concept, the most
powerful tool in systematic knowledge; hierarchy
results from formalization of abstraction.

The structure of the communication between
heterogeneous parts of the object-system, and
with its exterior, should reflect the hierarchies of
the simulation technique/ model/ method.
Considering the heterogeneous relations between
different functions that collaborate to build the
behavior of the simulated system, we have to
extend the scope of man-machine dialog, from
standard I/O functions, to assistance of iterative
knowledge-based co-simulation.

Representation is a 1-to-1 mapping from the
universe of systems (objects of simulation) to a
hierarchical universe of models, so a
representation can be inverted. A model must
permit knowledge and manipulation, so it has two
complementary parts/ views: description and
operation. If models correspond to classes, in a
formal approach, specifications are instances; if
models are formalized as languages,
specifications are expressions.

We define a general hierarchical approach for
complex simulation, applying it in handling
communication between different domains
implied by hard/ soft systems; e.g., combined
simulation of dynamic objects (handled in
software) and parallel activities (realized in
hardware).

APPROACH

The planned framework permits, at any level of
abstraction of the simulation hierarchy:
• description of the system in a convenient and

commonly used language, e.g., C++
(Stroustrup 1997) extended for parallelism by
synchronization constructs (Kumar et al.
1996);

• automatic partition of the description into
hardware and software;

• correct and complete communication between
heterogeneous parts and with the exterior;

• simulation and validation of the whole system
during any design phase.

If one of the imposed properties (design
constraints) is considered as not being fulfilled
after applying a technique, using a model and
suitable methods for measure and improvement,
different strategies permit altering one of the
technique/model/method, to repeat the process for
the initial behavioral specification or the one
resulted from prior (insufficient) improvement.
This calls for an intelligent choice of the designer
or the AI system that assists/ automates the
design. The methods are recursive (iterative) to
handle the different components in the behavioral
specification of the system. The process
continuation is controlled by measurement
functions, so, generally, these must be called for
each call of the improvement functions, but there
are also methods demanding for a global
improvement based on a prior measurement. The
behavioral adaptable design for communication
properties, correctness and testability is
synthesized in the following BADCCT algorithm:

class BehavioralDescription ...
BADCCT (BehavioralDescription behavSpecif,

Bool increment) : BehavioralDescription
begin
techniques := Ø; models := Ø; methods := Ø; good := false;
while (not good) begin

technique := selTech (behavSpecif,
techniques, models, methods);

if (not technique in techniques) begin
techniques.add (technique); models := Ø end;

model := technique.selModel (behavSpecif, models);
if (not model in models) begin

models.add (model); methods := Ø end;
specification := model.detSpec(behavSpecif);
method := model.selMeth (specification, methods);
if (not method in methods) methods.add (method);
if (integrated) begin

(good, enough) := method.measure (specification);

 while (not enough) begin
specification := improveLoc (specification);
(good, enough) :=

method.measure(specification)
end

 end
else (good, specification) :=

improveGlob (specification,
method.measure(specification));

if (increment) behavSpecif :=
 model.returnToBehavDescr (specification)

end;
return model.returnToBehavDescr (specification)
end.

Boolean variables that control the decisions are:
• increment - decides whether to keep the more

but not enough adequate specification when
applying a new method/model/technique or to
reset to the initial specification;

• good and enough - represent the limits
corresponding to different criteria controlling
the continuation of the cycles; they are
actualized by the function that measures the
adequacy of the specification to the necessary
properties of communication, correctness,
testability;

• integrated – expresses the decision to apply
together, for each iteration of the model’s
method, the function to measure and that to
improve the adequacy; otherwise,
improvement is applied after having measured
the entire behavioral specification.

To begin, the intelligent component that makes
the design system adaptable, by selecting the next
technique/ model/ method to be applied, is
replaced by experiment associated to man-
machine dialog: the comparison results of
completeness checking versus consistency
checking regarding communication, of validation
versus formal verification, of structural testing
versus functional testing are used to choose
another technique/ model/ method.

HIERARCHY TYPES

Hierarchies are of different types, corresponding
to the kind of abstraction they reflect:
• symbolization hierarchy - corresponds to

formalization of all kind of types, in particular
also of hierarchy types;

• conceptualization (class) hierarchy - builds a
virtual framework to represent all kinds of

hierarchies, based on form-contents dichotomy
(class-instance), modularity, inheritance,
polymorphism; an object is defined by identity,
state and behavior, being instance of a class,
that defines its internal structure and behavior,
as well as its external behavior;

• knowledge hierarchy - corresponds to reflexive
abstraction, so each level has knowledge of its
inferior levels, including itself; recurrence of
structures and operations enables approximate
self-knowledge (with improved precision on
the higher levels of knowledge hierarchies); a
continuous model for hierarchy levels would
perhaps offer a better model for intelligence; a
possible interpretation of such hierarchies is:
real time of the bottom levels, corresponding to
behavior, is managed at upper levels,
corresponding to strategies, and abstracted on
highest levels, corresponding to types;

• construction (simulation) hierarchy -
autonomous levels for different abstraction
grades of description build a
design/verification (= simulation) framework;
time is explicit at highest (behavioral) levels
(being integrated in the model), and exterior on
lowest levels (being implicit for the system’s
activity); artificial intelligence approaches try
to configure the simulation hierarchy type as
reciprocal to the knowledge hierarchy type;

• structure hierarchy - helps managing all other
hierarchy types on different levels, following
the principle «Divide et Impera et Intellige»,

by recursive decomposition in autonomous
blocks.

The different hierarchies can be represented
symbolically and object-oriented; that means: the
first two enumerated types build a reference
system for any hierarchy type. All hierarchy types
have in common structures allowing for the
following description:

(U, { Hi∈Sh}) = universe -
structured by different hierarchies Hi,

Sh = set of hierarchies defined on universe U:
 H = (Rel_eq, {(Levelj,Structurej): j∈Sl},

Rel_ord, {Aj: j∈Sl}) = generic hierarchy:
Sl = set of hierarchy levels,

Rel_eq = equivalence relation -
divides the universe in levels,

Structurej = structure defined on level j,

Rel_ord = order relation (total) -
defined on the set of hierarchy levels,

Aj∈{ (x,y): x∈ Levelj-1, y∈Levelj, j∈Sl }
= relation of abstraction.

For example: The classical activities in complex
systems simulation (Gajski et al. 1994), that
regard comparisons between different levels of
the construction or knowledge hierarchy, as well
as of the structure hierarchy, can be expressed
object-oriented and simulated or formally
approached by symbolization of the more abstract
entities, as sketched below:

Symbolical

Object-oriented

observed behavior

required behavior abstract instance

concrete instance

class

consistency

 verification

completeness

validation

structural testing

functional testing

Figure 1: Hierarchical Simulation

PERFORMANCE EVALUATION

To illustrate our general approach, currently under
development as an intelligent framework, we
describe the performance evaluation needed for
further choices during the assisted design process
of dynamic parallel systems. Let us assume that
the total execution time for the system's current
partition has to be estimated and that the
following six characteristics are known:
1. the execution time of each simple method (no

calls to other methods),
2. the medium iteration count of each cycle,
3. the branch probabilities of each conditional

statement,
4. what methods can be executed in parallel,
5. which objects are to be synthesized to software

and which to hardware,
6. which parallel-executable hard-methods of the

same object are linked by synchronization
constraints of the form:

class X { ... m1 (); m2 (); ...};
#m2_calls <= #m1_calls <= #m2_calls +
constant.

To provide an answer to this problem we need to
construct a directed a-cyclic graph containing the
method-calls (a-cyclic because no recurrence is
permitted, for hardware compatibility), and, the
following information for each method:
• a block of statements,
• a list of methods that are called in parallel

(constructed from the list of methods that can
be executed concurrently and are on direct
paths from methods called in parallel),

• a list of synchronization constraints to which it
participates (only the parts that can postpone
its call, the rest retains the counterpart
method),

• the number of calls,
• the cost (execution time).

The parallelism relation is not transitive (just
reflexive and symmetric). Parallelism is possible
only between methods that are not on the same
path in the directed a-cyclic graph (don't call each
other, directly or indirectly) and is conditioned by
hard/soft realization (the number of soft methods
in a list of parallelism is given by the number of
parallel working processors). Synchronization
constraints can appear only between methods of
the same object. The most important classes are:

Method, MethodList, Statement, SyncList,
Evaluation, Stack. The textual description
language for the abstract problem is:

method ::= { statement; ... statement;}
statement ::=

IF (probability) method ELSE method
| FOR (number) method
| method | parallel-call

parallel-call ::= (method, ... , method)

Considering the call hierarchy of the methods
(tree - no recurrence, directed a-cyclic graph - no
dependence of the method execution time on the
call context), the method-DAG:
1. is constructed top-down;
2. is actualized for concrete values of the method

attributes and their concrete relations;
3. is visited recursively (depth-first post-order)

to determine execution time for each method;
each method keeps track of the number of
times it has been called, to enable estimation
considering synchronization constraints;

the last result is the total execution time, implying
a global clock.

Of different approaches to handle synchronization
constraints, we firstly experimented a simulation-
oriented one: the system's behavior is simulated to
estimate the execution time. Synthetically: if the
synchronization constraints are not verified, the
call is postponed, marking this in method-list,
together with the value of the global clock; this
time value will be used when the method's call
will be successful, to determine the waiting time
that must be added to its execution time,
considering parallelism. A waiting call is retried
when its counterpart is successfully called. When
a method call is postponed, a dummy-return-value
0 and a list of ascendants (calling methods),
whose estimation is influenced by the correction
of the postponed method's time, can avoid
recurrence interruption; lists of calling methods,
implemented as stacks, are needed for each
parallel call. The execution time of a method is
computed hierarchically from the components of
its block. The contribution to time estimation of a
directly or indirectly parallel called method has
not the same form in the case of synchronous
parallelism as in that of asynchronous parallelism.

The algorithm for synchronous parallelism is:

• construction of a list of methods, representing
the directed a-cyclic graph of the system,
containing the methods and their relations;

• deduction of actual directly or indirectly
parallel calls from the list of methods,
parallelism information and hard/soft partition
information - to permit concurrent execution,
two methods should have only possible parallel
descendants, including themselves;

• time evaluation of a method with parallelism,
synchronization constraints and deadlock
determination.

 Presently, we attempt to accomplish multi-
hierarchical communication between different
domains implied in complex systems, as
hardware/software ones. We next concentrate on
behavioral enhancements needed to adapt such
systems to simulation and test.

 BEHAVIORAL DESIGN FOR TESTABILITY

 Design-for-testability (DFT) must suit the
behavioral specification of today’s complex
system design. It aims to adapt the system's
specification to improve testability; to reduce test
generation and application complexity, the
specification must be adapted for testability at
behavioral levels of the design hierarchy.
Referring to high-level synthesis, design-for-
testability can operate before, while or after it.
The first choice permits the intervention of an
intelligent agent for adapting the design-for-
testability technique, model or method to the
particular design. We call it behavioral adaptable
design-for-testability (BADFT): it improves the
testability, measured with adequate methods,
direct on the behavioral specification or aided by
special representations, that have to permit
returning to the behavioral description after
improving the testability of the system to be
designed. We present synthetically high-level
descriptions and design-for-testability techniques.
Then, we concentrate on partial scan design-for-
testability techniques, comparing structural,
textual and formal approaches. The results are
general enough to be valid for systems, either
hard, soft or hard/soft.

 Memory elements - registers (arrayed flip-flops)/
flip-flops/ latches (unclocked flip-flops) - are
represented in behavioral hardware descriptions

by variables or signals. Variables (“containers”)
are description objects local to processes/
subprograms, used to store intermediate values
between sequential statements, characterized by
free assignment (exception: global variables).
Signals (“wires”) are permanent description
objects to link concurrent elements: components/
processes/ concurrent assignments, demanding
synchronized assignment, declared locally -
within architecture, block or other declarative
region, or globally - in extended package (Fleury,
Aktouf, Robach, 1999).

 In the context of a process synchronized by a
clock signal, in a behavioral description, signals
implicated in simple/ multiple signal assignment
generate memory during synthesis. Instances of
this rule are:
• multiple synchronization points, i.e., several

wait statements with identical synchronization
conditions) infer memory elements, allowing to
describe Finite State Machines without
declaring the state variables; several wait
statements with different synchronization
conditions are not yet synthesizable;

• if a signal is read (its value used) before being
assigned it infers memory; a particular case of
this rule is a conditional statement that does not
affect a signal in every of its branches
(conditional signal assignments have
equivalent processes containing conditional
statements).

 An analog rule can be formulated for variables:
Inside a process, a variable that must hold values
between iterations of the process implies memory
elements; that is: a variable which is set but not
used between synchronization statements infers
memory; a variable which is read before being
assigned also infers memory.

 The context is not restrictive, as all concurrent
statements are equivalent to processes (excepting
direct/ component instantiation). For called
subprograms the rules of memory inference can
be deduced directly: pure functions (no side
effects) do not - while procedures (side effects) do
infer memory elements.

 BEHAVIORAL PARTIAL SCAN

 Scan techniques imply a test mode added to the

design, with or without separate clock: when this
mode is active, all registers - for full scan, or just
a part of them - for partial scan, are connected to
form a shift register. Such a design for testability
technique introduces two extra primary inputs: for
test data and test enable, and an extra primary
output, for test data. This allows controlling and
observing the states of the scanned registers,
reducing the complexity of the necessary test for
the sequential system almost to the one demanded
by a test for a combinational system.

 The partial-scan problem is the selection of the
scan registers following a strategy to find an
optimum compromise between testability
improvement and the implied cost. Most of the
methods are applied by now on register-transfer
level and lower levels of the design hierarchy.
The applied methods choose different selection
criteria based on combinations of different kind of
models, listed below:
• Structural (graph-based): a weighted directed

graph (S-graph), models the flip-flops as nodes
and the combinational paths between them as
arcs; testability is represented by the weights,
but is also related to total length of feedback
cycles and to sequential depth (maximum
length of a path in the S-graph that links an
input to an output).

• Formal (FSM-based): a Finite-State-Machine
network, corresponding to the behavioral
specification, models sequential behavior; the
operation of this model is simplified using
implicit techniques for state enumeration,
efficiently generating the state transition graph
and storing it as characteristic functions in
Reduced Ordered Binary Decision Diagrams,
thus allowing to estimate testability of different
elements and to guide scan selection.

• Textual (HDL-based): a Hardware Description
Language behavioral specification guides the
testability measurement and improvement; the
measure is a combination of different aspects
that contribute to the low testability of the
hardware corresponding to signals/ variables in
the behavioral specification of the system/
component.

In a structural approach testability is related to
cycles and sequential depth, but can also be
represented, partially or totally, by the node
weights. The S-graph is used as intermediate
format of high-level synthesis in literature

(Cheng, Agrawal, 1990), but can be managed as
model of the behavioral description.

From structural point of view, feedback cycles
among registers are mainly responsible for low
testability, as their total length influences
exponentially the complexity of test generation.
Only the maximal strongly connected sub-graphs
must be considered when reducing the cycle-size-
sum; strong connection is dual to a-cyclic. The
next structural attribute that testability depends on
(linearly) is sequential depth.

The algorithm used to eliminate cycles is
minimum feedback vertex set = finding the
smallest set of (weighted) nodes whose removal
results in a directed a-cyclic graph. Self-loops and
other loop-structures that do not pose test
problems can be excepted, e.g., by absorbing
them in nodes. As this algorithm is NP-complete
different solutions to reduce the complexity must
be applied to the graph. Formal or heuristic
testability measures (to be improved) can be
defined on the structural model, e.g., probabilistic
metrics for signals/ variables (randomness,
transparency) operated within a Markov chain
model, respectively, with composition rules. The
weights of the S-graph retain the cost/ gain to
scan a node.

An other form of graph model, with weighted
vertices or arcs, could be used to integrate a
testability measure in a less complex graph-
theoretical algorithm to eliminate cycles (e.g.,
maximum-flow problem).

An intelligent interface assures the translation, in
both senses, from behavioral hard/ soft
description to a structural representation of the
required behavior, that guides the partial-scan
selection, using a knowledge base to generate the
weighted directed graph (flip-flops, combinational
paths) and to return to text the differences caused
by transformation for testability improvement.
The rules of correspondence between description
object (signal/ variable) assignments and registers,
as well as rules to translate the data flow in the
behavioral specification to weighted arcs in the
graph counterpart and to combine different
testability measures in node weights, guide the
first step, while incrementing rules for hard/ soft
description solve the last one.

Man-machine dialog:

Translation Knowledge base:

classes&objects
for DFT techniques;
algorithms Model

selection

tool

learning; specification; results

for DFT methods

Figure 2: Behavioral Adaptable DFT framework

Testability for behavioral description is based on
data objects (like signals or variables) and
functions (relations, operations, transformations);
it results, as usual, from controllability and
observability. If the test vectors applied on the
input of a description module form a complete
vector set, i.e., that causes every element of the
module, on the current description level, to
traverse its whole defined value range for objects
and input range for functions, the module is
controllable. If the values of all elements of the
module can be determined of its response to a
complete vector set, the module is observable.

The full-scan case is solved in (Fleury, Aktouf,
Robach, 1999). First, memory elements are
located among the hardware-objects; each is
related to a number of flip-flops (a register whose
length is) depending on the type of the considered
variable/ signal. Then, a scan chain is built that
contains all design flip-flops.

The difference to full-scan needed by partial-scan
for the return translation reduces to a pointing
scheme for the scanned objects among signals/
variables of the behavioral specification; this can
be managed by an adequate data structure or by
using access types or attributes in hardware
description languages. What remains to add is the
register selection for partial-scan. Register
elements are flip-flops; when the context permits,
“register” is used also for register element.
Latches are not present, as we suppose
synchronized specifications. In principle, flip-
flops are selected for scan, but when a register is
used parallely, it is candidate entirely for scan.

For partial-scan, the variables/ signals inferring
memory are sorted to select incrementally the
scan elements that will be eventually mapped to
the scan register. The selection is “integrated”,
applying together, for each iteration of the graph’s
method, the function to measure and that to
improve testability.

The testability measure is a combination of
different aspects that contribute to the low
testability of the memory elements corresponding
to objects in the behavioral description
(signals/variables) of the system/ component;
these aspects can be modeled by weights in the
behavioral S-graph, in addition to the structural
testability measures based on feedback cycles in
the graph and sequential depth: the relationship
degree between nodes modeling memory
elements, represented by arc weights, can be
reduced by conditions; arc weights determine
node weights through topology, finally reflecting
the hardness to test the behavioral object
corresponding to the node; node weights are
further influenced by characteristics that can be
determined by an analysis of the description text:
restricted value range of an object in a description
statement and non-uniform distribution caused by
an operation on the object’s values. These
measures are compatibilized by algebraic
operations and combined to reflect the testability
of a node (modeling a variable/ signal). The graph
representing the interconnected autonomous
modules, separately processed for testability
improvement, has analog properties to a testable
behavioral S-graph; so the same algorithm is
performed at the higher structural level.

The behavioral metrics is not targeted for any
particular design for testability improvement
technique, so they can be useful for any of them.
They can be translated to weights for the nodes of
the behavioral S-graph and combined to weights
reflecting scan-depth contribution and feedback
cycle contribution of the nodes. For partial-scan,
the behavioral objects inferring memory are
sorted to select incrementally the scan elements
that will be eventually mapped to the scan
register. Therefore, a metric for testability,
integrating the others is defined for the behavioral
S-graph nodes representing variables/ signals that
will be synthesized to memory elements.

Cycle breaking automatically extends to the
greater cycles it is embedded in; so, a cycle list
memorizes the representative cycles (that do not
include one-another). Only strongly connected
components (there exist directed paths between
any pair of nodes of the sub-graph) are considered
for minimum feedback vertex set, because nodes
of different such components can not share a
cycle, i.e., there is no cycle outside of the strongly
connected components of a directed graph; as
usual, the “Divide et Impera et Intellige” strategy
is guided by the strength of communication
between sub-objects (here strongly connected
sub-graphs). Each iteration can be enriched by
selecting more nodes, that are independently
breaking cycles, reducing sequential depth and
improving the testability measures that reflect
restricted value range, operation asymmetry and
statement reachability:

class SGraph ...
List vertexList, arcList;
public: ...
FVS (SGraph dg) : SGraph × List
begin
List cycleList := cycles (vertexList, arcList);
List selVert, vL; List fvs := ∅;
while (cycleList) begin

selVert := minWeight (cycleList);
vL := vertexList;
while (vL) (selVert, vL) :=

nextIndependentMinWeightVertex
 (selVert, vL);

cycleList := removeCycles (selVert);
(dg, fvs) := (weight (vL - selVert,
 arcList - arcs (selVert)), ins (fvs, selVert));
end;

return (dg, fvs)
end

CONCLUSIONS

Formalizing hierarchical descriptions, we create a
theoretical kernel that can be used for systematic
hardware/ software co-simulation. A new
perspective on simulation is gained by unifying
representation for design and verification,
separating it from the general methods of multi-
hierarchical operation; this will permit theoretical
development, as well as efficient application to
hierarchically built interfaces for hardware/
software systems. As an aid to keep in our
formalization process close to real problems, we
intend to propose and develop an integrated

programmable system for design and verification
of hardware/ software systems.

REFERENCES

Booch, G., 1991, Object-Oriented Analysis &
Design, Benjamin/ Cummings Publishing
Company.

Bibel, W. et al., 1993, Wissensrepräsentation und
Inferenz, Vieweg.

Cheng, K-T., V.Agrawal, 1990: "Partial Scan
Method for Sequential Circuits with Feedback",
IEEE Transactions on Computers, vol.39, no.4,
pp.544, April.

Fleury, H., C.Aktouf, C.Robach, 1999, "A
Practical Technique for Scan Insertion at
Behavioral Level", Proceedings of the
International Test Synthesis Workshop.

Gajski, D. et al., 1994, Specification, and Design
of Embedded Systems, Prentice-Hall.

Kumar, S. et al., 1996, The Codesign of
Embedded Systems, Kluwer Academic Publishers.

Stroustrup B., 1997, The C++ Programming
Language (3rd edition), Addison-Wesley.

BIOGRAPHY

Dr. Tudor NICULIU, born 1961 in Bucharest,
graduated Electronics (1985, Technical University in
Bucharest) and Mathematics (1994, University in
Bucharest). 1995 he obtained the PhD degree in
Microelectronics from the Technical University in
Bucharest. He is Associate Professor at the Electronics
Department of the Technical University in Bucharest,
teaching courses on Programming techniques, AI in
simulation, Formalization of hardware & software
design. He worked as guest researcher at the Technical
Universities in Braunschweig (1991-1992), Darmstadt
(1994, 1995, 1997, 1998), Valence-Grenoble (1999-
2000) as well as at the University of Southern
California in Los Angeles (1996).

