
Functional Memory Faults: A Formal Notation and a Taxonomy

Ad J. vande Goor Zaid Al-Ars

Section CARDIT, F aculty of Information Tec hnologyand Systems

Delft Universit yof T ec hnology, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: vdGoor@cardit.et.tudelft.nl

Abstract: This pap er presents a notation for de-
scribing functional fault models, which may occur in
memory devices. Using this notation, the space of all
possible memory faults has been constructed. It has
been shown that this space is in�nite, and contains
the currently established functional fault models. New
fault models in this space have been identi�ed and veri-
�e d using resistive and cap acitive defect inje ction and
simulation of a DRAM model.

Keywords: F unctional memory fault model, tax-
onomy, fault space, simulation stimuli

1 Introduction

For test purposes, faults in memories are usually
modeled as functional faults such that functional tests
can be used to detect those faults. The adv an t-
age of functional tests is that completeness and ir-
redundancy proofs become a logical problem, which
is rather easy to deal with. In addition, the design
of a functional test, giv en a (set of) functional fault
model(s) can be done using a systematic set of rules,
which has already been automated to some exten t
[vdGoor94, Zarrineh98]. F rom this, it is clear that
the knowledge of the functional faults, which ma y oc-
cur in the memory under test, is essential for designing
tests and for getting a low PPM level.

Many functional fault models (FFMs) for memor-
ies ha ve been in troduced in the past; some w ell
kno wnFFMs, which date bac k to before 1980, are
[vdGoor98]: address decoder faults, stuc k-at faults,
inversion and idempotent coupling faults, and neigh-
borhood pattern sensitiv efaults. Of later dates are
the following FFMs: data retention faults [Dekker90],
stuc k-open faults [Dekker90], state coupling faults
[Dekker90], read disturb faults [Adams96], deceptive
read disturb faults [Adams96], and disturb coupling

faults [vdGoor96]. The process of detecting new FFMs
has been very ad-hoc and, therefore, slow. Experi-
mental results of applying a large number of tests to
a large number of chips [vdGoor99a, Schanstra99] in-
dicate that many functional tests do detect faults in
memories, which cannot be explained using the cur-
ren t set of known FFMs. This means that additional
FFMs do exist.

Establishing new FFMs is usually done by insert-
ing resistiv e defects in to the electrical schematic of
a memory, follo w edby SPICE simulation of the ef-
fect of the resistiv e defect. One problem with this
method relates to the stimuli used to drive the simu-
lator; some authors have used existing march tests to
driv ethe simulator [Mak98] suc h that the fault cov-
erage of the used march tests for the inserted defects
can be established. How ev er, this does not lead to new
FFMs and new tests to detect faults of the new FFMs
[vdGoor99b]. In order to show the presence/absence
of a particular FFM, the correct sequence of stimuli
for the simulator has to be used. These stimuli are
FFM speci�c and hence, the FFMs to be anticipated
ha ve to be known in advance. If not, the detection of
new FFMs is an ad-hoc activity.

The fact that many faults in memories do exist for
which no FFM has been established yet, together with
the fact that the FFMs to be anticipated have to be
kno wn in advance, calls for a systematic way to con-
struct potential FFMs and explore the space of all
potential FFMs.

This paper is organized as follo ws. Section 2 dis-
cusses the basic properties of memory faulty behavior
and ends with a formal de�nition of an FFM. Sec-
tion 3 introduces a taxonomy for the space of FFMs.
Section 4 and Section 5 are concerned with single-cell
and tw o-cellFFMs, respectively. Section 6 uses an
electrical DRAM model to verify the de�ned FFMs
based on defect injection and fault simulation. Fi-
nally , Section 7 ends with the conclusions.

0-7695-0613-5/00 $10.00 � 2000 I

2 Properties of fault models

Functional faults can be de�ned as the deviation of
the observed memory behavior from the functionally
speci�ed one under a set of performed operations.
Therefore, two basic ingredients can be identi�ed to
any FFM: (1) a list of performed memory operations,
and (2) a list of corresponding deviations in the ob-
served behavior from the expected one. Any list of
performed operations on the memory is called an op-
eration sequence. An operation sequence that results
in a di�erence between the observed and the expected
memory behavior is called a sensitizing operation se-
quence (SOS)1. The observed memory behavior that
deviates from the expected one is called a faulty be-
havior. A general notation to represent operation se-
quences is given �rst, followed by a notation of the
faulty behavior.

2.1 Representing operation sequences

In order to perform a memory operation, an address
should �rst be provided to indicate the cell to be ac-
cessed. Secondly, an operation type should be selec-
ted to distinguish between a read (denoted by r) and
a write (denoted by w) operation. Thirdly, in case of
a write operation, the data to be written should also
be provided.

Besides the above three items, it is known that the
faulty behavior of a memory is also a�ected by the
initial logic value present inside the cell. Based on
these observations, any SOS can be represented by
the following notation

c(iOd)1 c(iOd)2 ::: c(iOd)k ::: c(iOd)n

where c: cell address used by k-th operation,
i: initial stored value in cell c, i 2 f0; 1g,
O: type of operation on c, O 2 fw; rg, and
d: data to be written into c, d 2 f0; 1g.

Notice that d is only needed if the performed op-
eration is a write (O = w), however it is the custom
to set d to the expected output if the operation is a
read (O = r). For example, if an operation sequence
is denoted by 3(0w1) 3(1r1) 2(0r0) then the sequence
starts with accessing cell 3, which contains a 0, and
writing a 1 into it, then reading the written 1 from
cell 3, and �nally reading a stored 0 from cell 2.

1In the literature, a distinction is made between operations
that sensitize the fault internally and those that result in detect-
ing the fault on output lines. Since, in this paper, we are mainly
concerned with the internal memory behavior, this distinction
is not necessary.

Sometimes a fault is sensitized without the need to
perform any operation. This way, simply setting the
cell into a known initial state is enough to sensitize
the fault. This situation can be described by replacing
c(iOd) with c(i). For example, observing the state of
cell 2, which contains a 0, without accessing it can be
denoted by 2(0). Here, we assume to have the means
to initialize the cell to a known initial state without
accessing it. Generally, this is not possible externally,
but this paper is mainly concerned with the internal
memory behavior which makes it possible to know and
observe the initial state of the cell without accessing
it.

2.2 Describing faulty behavior

Throughout the 1980s and during the �rst half of the
1990s, the only functional parameter considered relev-
ant to the faulty behavior was the stored logic state in
the memory cell [vdGoor98]. Recently, another func-
tional parameter, the output value of a read operation,
has also been considered to be relevant [vdGoor99b].
Therefore, any di�erence between the observed and
expected memory behavior can be denoted by the fol-
lowing notation <S=F=R>. S describes the SOS, F
describes the state stored in the faulty cell, F 2 f0; 1g,
and R describes the logic output of a read operation,
R 2 f0; 1;�g. R = � is used in case a write opera-
tion, and not a read, is the operation that sensitizes
the fault. The di�erence between the observed and
expected memory behavior denoted by <S=F=R> is
referred to as a fault primitive (FP). The notion of
FPs makes it possible to give a precise de�nition of an
FFM as understood for memory devices. This de�ni-
tion is presented next.

A functional fault model is a non-empty set
of fault primitives.

3 Space of all memory FPs

FPs can be classi�ed according to #C, the number of
di�erent cells accessed during an SOS, and according
to #O, the number of di�erent operations performed
in an SOS (see Figure 1). For example, if the SOS is
3(0w1) 3(1r1) 2(0r0) then #C = 2, since two di�erent
cells (cell 2 and cell 3) are accessed by this sequence.
On the other hand, #O = 3 for this SOS since cell 2
is accessed once and cell 3 is accessed twice.

Depending on #C, FPs can be divided into the
following classes:

� If #C = 1 then the FP sensitized by the corres-
ponding SOS is called a single-cell FP.

� If #C > 1 then the FP sensitized by the corres-
ponding SOS is called a coupling FP. If #C = 2
then it is described as two-coupling FP or two-cell
FP. If #C = 3 then it is described as 3-coupling
FP, etc.

Depending on #O, FPs can be divided into the
following classes:

� If #O � 1 then the FP sensitized by the corres-
ponding SOS is called a static FP.

� If #O > 1 then the FP sensitized by the corres-
ponding SOS is called a dynamic FP. If #O = 2
then it is described as 2-operation dynamic FP.
If #O = 3 then it is described as 3-operation dy-
namic FP, etc.

Figure 1 shows a taxonomy of the space of FPs.
It is important to note that the two ways to classify
FPs are independent, since their de�nition is based on
independent factors of the SOS. As a result, a single-
cell FP can be static, or dynamic with any number of
operations. The same applies to coupling FPs.

#C #O

#O>1

#O=2 #O=3

Static
fault primitive

Dynamic
fault primitive

dynamic dynamic

Fault primitives

#C=1

Coupling
fault primitive

#C>1

2-coupling
fault primitive

3-coupling
fault primitive

#C=2 #C=3

2-operation 3-operation

#O=<1

fault primitive
Single-cell

Figure 1. Taxonomy of fault primitives.

Since an FFM is de�ned as a set of FPs, it is expec-
ted that FFMs will inherit the properties of FPs. For
example, if an FFM is de�ned as a collection of single-
cell FPs, then the FFM is a single-cell fault model, etc.
If an FFM consists of FPs classi�ed into inconsistent
classes, single-cell and two-cell FPs for example, it is
described as a single-cell and a two-cell fault model.

The taxonomy above can be extended to include
linked faults [vdGoor98] and data retention faults
[Dekker90].

4 Single-cell FFMs

Single-cell FFMs are those fault models that consist
of single-cell FPs (i.e., they are FFMs that describe

Table 1. All possible combinations of the values in the
<S=F=R> notation resulting in single-cell static FPs.

S F R FP Fault model

1 0 1 { < 0=1=� > SF0

2 1 0 { < 1=0=� > SF1

3 0w0 1 { < 0w0=1=� > WDF0

4 0w1 0 { < 0w1=0=� > TF"

5 1w0 1 { < 1w0=1=� > TF#

6 1w1 0 { < 1w1=0=� > WDF1

7 0r0 0 1 < 0r0=0=1 > IRF0

8 0r0 1 0 < 0r0=1=0 > DRDF0

9 0r0 1 1 < 0r0=1=1 > RDF0

10 1r1 0 0 < 1r1=0=0 > RDF1

11 1r1 0 1 < 1r1=0=1 > DRDF1

12 1r1 1 0 < 1r1=1=0 > IRF1

an incorrect behavior of either the data stored in a
single cell or the operations performed on it). For
single-cell FFMs, the general notation for the sensit-
izing operation, c(iOd)1 ::: c(iOd)k ::: c(iOd)n can be
simpli�ed to (iOd)1 ::: (iOd)k ::: (iOd)n performed on
cell c, because all operations are applied to a single
cell with address c. Moreover, the expected initial
value of the cell (i) before performing the k-th opera-
tion is always the same as the stored value in the cell
(d) after performing the (k{1)-th operation. There-
fore, it is possible to remove all i values except the
�rst one, resulting in the following simpli�ed nota-
tion: i(Od)1(Od)2:::(Od)n performed on cell c. For
example, the SOS 4(1w0) 4(0w1) 4(1r1), which is per-
formed on a single cell, can be simpli�ed to: 1w0w1r1
performed on cell 4. Single-cell FFMs can be classi�ed
into static FFMs and dynamic FFMs.

4.1 Static single-cell FFMs

Static single-cell FFMs describe faults sensitized by
performing at most one operation on the faulty
cell (i.e., #O � 1). As mentioned earlier, a
particular FP is denoted by <S=F=R>. S 2
f0; 1; 0w0; 0w1; 1w0; 1w1; 0r0; 1r1g for static FPs, F 2
f0; 1g while R 2 f0; 1;�g.

Now that the possible values for S, F and R are
de�ned for single-cell static FPs, it is possible to list
all detectable FPs using this notation. Table 1 lists all
possible combinations of the values, in the <S=F=R>
notation, that result in FPs. The remaining combina-
tions of the S, F and R values do not represent a faulty
behavior. For example, <0w0=0=�> corresponds to a
correct w0 operation after which the cell contains a 0,
as expected.

The way the 12 FPs of Table 1 relate to FFMs is
shown in the last column of the table. Below, a list is
compiled of a number of well known and new single-
cell static FFMs, described in terms of non-empty sets
of FPs.

1. State faults (SFx)|A cell is said to have an
SF if the logic value of the cell
ips before it is
accessed, even if no operation is performed on it2.
Two types of SF exist: SF0 = f<0=1=�>g, with
FP #1, and SF1 = f<1=0=�>g, with FP #2.

2. Transition faults (TFx)|A cell is said to have
a TF if it fails to undergo a transition (0 ! 1 or
1 ! 0) when it is written.

3. Read disturb faults (RDFx) [Adams96]|A
cell is said to have an RDF if a read operation
performed on the cell changes the data in the cell
and returns an incorrect value on the output.

4. Write disturb faults (WDFx)|A cell is said
to have a WDF if a non-transition write operation
(0w0 or 1w1) causes a transition in the cell.

5. Incorrect read faults (IRFx)|A cell is said
to have an IRF if a read operation performed on
the cell returns the incorrect logic value, while
keeping the correct stored value in the cell.

6. Deceptive read disturb faults (DRDFx)
[Adams96]|A cell is said to have a DRDF if a
read operation performed on the cell returns the
correct logic value, while it results in changing the
contents of the cell.

7. Stuck-at faults (SAFx)|A cell is said to have
a SAF if it remains always stuck at a given
value for all performed operations. Two types
of SAF exist: SAF0 = f<8=0=�>g, and SAF1 =
f<8=1=�>g.

8 symbolizes the idea that for all operations the
same value remains in the cell. Therefore, S = 8
can be replaced by only those operations that
sensitize the fault. This leads to the following
equivalent SAF de�nitions. SAF0 = f<1=0=�>
;<0w1=0=�>;<1w1=0=�>g = SF1 [TF" [
WDF1, and SAF1 = f<0=1=�>;<1w0=1=�>
;<0w0=1=�>g = SF0 [TF# [WDF0. The [
sign is the usual mathematical union sign. In
terms of FPs, a [connecting a number of sets
with FPs means that the FPs are all present in

2It should be emphasized here that the state fault should be
understood in the static sense. That is, the cell should
ip in
the short time period after initialization and before accessing
the cell.

Table 2. All possible combinations of the values in the
<S=F=R> notation resulting in a single-cell 2-operation FP.

S F R FP # S F R FP

1 0w0w0 1 { < 0w0w0=1=� > 2 0w0w1 0 { < 0w0w1=0=� >

3 0w0r0 0 1 < 0w0r0=0=1 > 4 0w0r0 1 0 < 0w0r0=1=0 >

5 0w0r0 1 1 < 0w0r0=1=1 >

6 0w1w0 1 { < 0w1w0=1=� > 7 0w1w1 0 { < 0w1w1=0=� >

8 0w1r1 0 0 < 0w1r1=0=0 > 9 0w1r1 0 1 < 0w1r1=0=1 >

10 0w1r1 1 0 < 0w1r1=1=0 >

11 1w0w0 1 { < 1w0w0=1=� > 12 1w0w1 0 { < 1w0w1=0=� >

13 1w0r0 0 1 < 1w0r0=0=1 > 14 1w0r0 1 0 < 1w0r0=1=0 >

15 1w0r0 1 1 < 1w0r0=1=1 >

16 1w1w0 1 { < 1w1w0=0=� > 17 1w1w1 0 { < 1w1w1=0=� >

18 1w1r1 0 0 < 1w1r1=0=0 > 19 1w1r1 0 1 < 1w1r1=0=1 >

20 1w1r1 1 0 < 1w1r1=1=0 >

21 0r0w0 1 { < 0r0w0=1=� > 22 0r0w1 0 { < 0r0w1=0=� >

23 0r0r0 0 1 < 0r0r0=0=1 > 24 0r0r0 1 0 < 0r0r0=1=0 >

25 0r0r0 1 1 < 0r0r0=1=1 >

26 1r1w0 1 { < 1r1w0=1=� > 27 1r1w1 0 { < 1r1w1=0=� >

28 1r1r1 0 0 < 1r1r1=0=0 > 29 1r1r1 0 1 < 1r1r1=0=1 >

30 1r1r1 1 0 < 1r1r1=1=0 >

the faulty behavior simultaneously. That is, per-
forming each SOS results in sensitizing the cor-
responding FP3.

The FFMs de�ned in the �rst 6 items of the list
above cover the space of all 12 single-cell static FPs.
Any single-cell static FFM can be represented as the
union set of two or more of these 12 FPs. For ex-
ample, the SAF1 has been de�ned above as a the
union set of 3 FPs. Another example, if a defect res-
ults in a faulty behavior represented by a RDF1 and a
WDF1, then the corresponding behavior is described
as f<1r1=0=0>g [f<1w1=0=�>g= RDF1 [WDF1.

4.2 Dynamic single-cell FFMs

Dynamic FFMs are faults sensitized with more than
one operation (i.e., #O > 1), and as such, there is
an in�nite number of them. Therefore, we restrict
ourselves to the case with #O = 2.

Any particular FP is denoted by < S=F=R >,
where S 2 fi(Od)1(Od)2 : O 2 fr; wg; i 2
f0; 1g and d 2 f0; 1gg for 2-operation dynamic FPs,
F 2 f0; 1g, and R 2 f0; 1;�g. Based on the values of
S, F and R, all 30 detectable single-cell 2-operation
dynamic FPs are compiled in Table 2.

Again the question arises of how the 30 FPs of
Table 2 relate to speci�c FFMs. Each FP can be used
to de�ne a corresponding FFM resulting in 30 dynamic
FFMs. Below, not all these FFMs are presented since
we will only attempt to verify a limited number of dy-
namic FFMs (see Section 6). The names of the FFMs
are chosen in such a way that they represent an ex-
tension of the existing single-cell static FFMs.

3To be precise, stuck-at faults are not strictly static FFMs.
SAFs are very general FFMs that describe general dynamic
faulty behavior and, therefore, can include many (static and
dynamic) single-cell FPs.

1. Dynamic read disturb faults (RDFxy)|The
dynamic RDF has a similar de�nition to the RDF
in the static case. It is a fault whereby an xwyry
SOS changes the stored logic value to y and gives
an incorrect output. Four types of dynamic RDF
exist: RDF00 = f<0w0r0=1=1>g, with FP #5,
RDF11 = f<1w1r1=0=0>g, with FP #18, RDF01

= f<0w1r1=0=0>g, with FP #8, and RDF10 =
f<1w0r0=1=1>g, with FP #15.

2. Dynamic incorrect read faults (IRFxy)|
The dynamic IRF has a similar de�nition to the
IRF in the static case. It is a fault whereby an
xwyry SOS returns the logic value y while keep-
ing the correct state of the cell. Four types of
dynamic IRF exist: IRF00 = f<0w0r0=0=1>g,
with FP #3, IRF11 = f<1w1r1=1=0>g, with FP
#20, IRF01 = f<0w1r1=1=0>g, with FP #10,
and IRF10 = f<1w0r0=0=1>g, with FP #13.

3. Dynamic deceptive read disturb faults
(DRDFxy)|The dynamic DRDF has a sim-
ilar de�nition to the DRDF in the static case.
It is a fault whereby an xwyry SOS returns
the correct logic value y while destroying the
state of the cell. Four types of dynamic DRDF
exist: DRDF00 = f<0w0r0=1=0>g, with FP
#4, DRDF11 = f<1w1r1=0=1>g, with FP #19,
DRDF01 = f<0w1r1=0=1>g, with FP #9, and
DRDF10 = f<1w0r0=1=0>g, with FP #14.

5 Two-cell FFMs

Two-cell FFMs are faults consisting of two-cell FPs.
The cell that shows the faulty behavior is called the
victim, while the cell with which the victim cell in-
teracts to produce the fault is called the aggressor.
Two-cell FFMs can be classi�ed into static FFMs and
dynamic FFMs.

5.1 Static two-cell FFMs

Static two-cell FFMs describe faults sensitized by per-
forming at most one operation while considering the
e�ect two di�erent cells have on each other, such that
S = c(iOd)1 ::: c(iOd)k ::: c(iOd)n can be simpli�ed
to one of the following sequences:

Ssn = a(i) v(j): no cell accessed

Ssa = a(iOd) v(j): only aggressor accessed

Ssv = a(i) v(jOd): only victim accessed

where i and j are the initial states of the aggressor
and victim, respectively, and a and v stand for the ad-

Table 3. All possible combinations of the values in the
<S=F=R> notation resulting in two-cell static FPs.

Sa Sv F R < Sa;Sv=F=R > # Sa Sv F R < Sa;Sv=F=R >

1 0 0 1 { < 0; 0=1=� > 2 0 1 0 { < 0; 1=0=� >

3 1 0 1 { < 1; 0=1=� > 4 1 1 0 { < 1; 1=0=� >

5 0w0 0 1 { < 0w0; 0=1=� > 6 0w0 1 0 { < 0w0; 1=0=� >

7 0w1 0 1 { < 0w1; 0=1=� > 8 0w1 1 0 { < 0w1; 1=0=� >

9 1w0 0 1 { < 1w0; 0=1=� > 10 1w0 1 0 { < 1w0; 1=0=� >

11 1w1 0 1 { < 1w1; 0=1=� > 12 1w1 1 0 { < 1w1; 1=0=� >

13 0r0 0 1 { < 0r0; 0=1=� > 14 0r0 1 0 { < 0r0; 1=0=� >

15 1r1 0 1 { < 1r1; 0=1=� > 16 1r1 1 0 { < 1r1; 1=0=� >

17 0 0w0 1 { < 0; 0w0=1=� > 18 1 0w0 1 { < 1; 0w0=1=� >

19 0 0w1 0 { < 0; 0w1=0=� > 20 1 0w1 0 { < 1; 0w1=0=� >

21 0 1w0 1 { < 0; 1w0=1=� > 22 1 1w0 1 { < 1; 1w0=1=� >

23 0 1w1 0 { < 0; 1w1=0=� > 24 1 1w1 0 { < 1; 1w1=0=� >

25 0 0r0 0 1 < 0; 0r0=0=1 > 26 1 0r0 0 1 < 1; 0r0=0=1 >

27 0 0r0 1 0 < 0; 0r0=1=0 > 28 1 0r0 1 0 < 1; 0r0=1=0 >

29 0 0r0 1 1 < 0; 0r0=1=1 > 30 1 0r0 1 1 < 1; 0r0=1=1 >

31 0 1r1 0 0 < 0; 1r1=0=0 > 32 1 1r1 0 0 < 1; 1r1=0=0 >

33 0 1r1 0 1 < 0; 1r1=0=1 > 34 1 1r1 0 1 < 1; 1r1=0=1 >

35 0 1r1 1 0 < 0; 1r1=1=0 > 36 1 1r1 1 0 < 1; 1r1=1=0 >

dresses of the aggressor and the victim, respectively.
The subscript s indicates a static sequence; the sub-
script n in Ssn indicates that it represents a sequence
with no performed operations and that the states of
the two cells are only observed; and the subscripts a
in Ssa and v in Ssv indicate that there is only one
operation performed on the aggressor and the victim,
respectively. Note that the operation sequence part
concerning the aggressor is put always �rst. For ex-
ample, 2(1) 3(0) means that cell 2 is set to 1 and taken
as aggressor, while cell 3 is set to 0 and observed as a
victim for a possible change of state. Usually, two-cell
sequences are given a special notation that separates
the sequence part concerned with the aggressor from
the sequence part concerned with the victim, and men-
tions the addresses of the cells afterwards in the order
a; v. As a result, any two-cell static operation sequence
S can be presented as follows: S = Sa;Sv performed
on cells a, v. Using this special notation, the sequence
S = 2(1) 3(0) is transformed into S = 1; 0 performed
on cells 2, 3, where Sa = 1, Sv = 0, a = 2 and v = 3.

Applying the special notation of S, a two-cell
static FP can be represented as follows <S=F=R> =
<Sa;Sv=F=R>a;v. Table 3 enumerates the 36 possible
two-cell static FPs this notation can distinguish.

Below, a list of FFMs, some well known and some
new, is constructed from the 36 FPs of Table 3. The
new FFMs below are de�ned in such a way that all
FPs are covered by at least one FFM.

1. State coupling fault (CFst)|Two cells are
said to have a CFst if the victim is forced into
a given logic state only if the aggressor is in a
given state, without performing any operation on
the victim. This fault is special in the sense that
no operation is needed to sensitize it and, there-
fore, it only depends on the initial stored values
in the cells. Four types of CFst exist which can be

summed up as: CFstx;y = f<x; y=y=�>g, where
x, y 2 f0; 1g.

2. Idempotent coupling fault (CFid)|Two
cells are said to have an CFid if a transition
write operation (0w1 and 1w0) on the aggressor
forces the victim into a given state. This fault
is sensitized by a transition write operation per-
formed on the aggressor. Four types of CFid ex-
ist which can be summed up as: CFidxwx;y =
f<xwx; y=y=�>g, where x, y 2 f0; 1g.

3. Inversion coupling fault (CFin)|Two cells
are said to have an CFin if the logic value of the
victim is inverted in case a transition write oper-
ation is performed on the aggressor. Two types of
CFin exist which can be summed up as: CFinxwx
= f<xwx; y=y=�>;<xwx; y=y=�>g, where x, y
2 f0; 1g.

4. Non-transition coupling fault (CFnt)|Two
cells are said to su�er from a CFnt if a non-
transition write operation (0w0 and 1w1) per-
formed on the aggressor forces the victim into a
given state. Four types of CFnt exist which can
summed up as: CFntxwx;y = f<xwx; y=y=�>g,
where x, y 2 f0; 1g.

5. Disturb coupling fault (CFds)|Two cells are
said to have a CFds if an operation (write or
read) performed on the aggressor forces the vic-
tim into a given logic state. Here, any opera-
tion performed on the aggressor is accepted as a
sensitizing operation for the fault, be it a read,
a transition write or a non-transition write oper-
ation. Twelve types of CFds exist which can be
summed up as: CFdsxwy;z = f<xwy; z=z=�>g
and CFdsxrx;y = f<xrx; y=y=�>g, where x, y, z
2 f0; 1g.

6. Transition coupling fault (CFtr)|Two cells
are said to have a CFtr if a given logic value in
the aggressor results in the failure of a transition
write operation performed on the victim. This
fault is sensitized by a write operation on the vic-
tim and setting the aggressor into a given state.
Four types of CFtr exist which can be summed
up as: CFtrx;" = f<x; 0w1=0=�>g and CFtrx;#
= f<x; 1w0=1=�>g, where x 2 f0; 1g.

7. Write disturb coupling fault (CFwd)|A cell
is said to have a CFwd if a non-transition write
operation performed on the victim results in a
transition when the aggressor is set into a given
logic state. Four types of CFwd exist: CFwdx;y
= f<x; ywy=y=�>g, where x, y 2 f0; 1g.

8. Read disturb coupling fault (CFrd)|Two
cells are said to have a CFrd if a read operation
performed on the victim destroys the data stored
in the victim if a given state is present in the
aggressor. Four types of CFrd exist: CFrdx;y =
f<x; yry=y=y>g, where x, y 2 f0; 1g.

9. Incorrect read coupling fault (CFir)|Two
cells are said to have an CFir if a read opera-
tion performed on the victim returns the incor-
rect logic value when the aggressor is set into a
given state. Four types of CFir exist: CFirx;y =
f<x; yry=y=y>g, where x, y 2 f0; 1g.

10. Deceptive read disturb coupling fault
(CFdr)|A cell is said to have a CFdr if a read
operation performed on the victim returns the
correct logic value and changes the contents of
the victim, when the aggressor is set into a given
logic state. Four types of CFdr exist: CFdrx;y =
f<x; yry=y=y>g, where x, y 2 f0; 1g.

There is a need to select a collection of the FFMs
de�ned above that would cover all FPs listed in
Table 3. An analysis of the de�ned FFMs shows that
the FFMs CFst, CFds, CFtr, CFrd, CFir, CFdr and
CFwd are necessary and su�cient to cover all two-cell
static FPs. Moreover, no other combination of FFMs
may be constructed with this property. Any two-cell
static FFM can be represented as the union of two
or more of these 36 FFMs. For example, if a defect
results in a faulty behavior represented by an incor-
rect read coupling fault f<1; 0r0=0=1>g and a read
disturb coupling fault f<1; 1r1=0=0>g, then the cor-
responding behavior is presented as: f<1; 0r0=0=1>g
[f<1; 1r1=0=0>g = f<1; 0r0=0=1>;<1; 1r1=0=0>g.

5.2 Dynamic two-cell FFMs

Just like the case of single-cell dynamic FFMs, we
restrict ourselves here to the analysis of 2-operation
dynamic fault models. Any particular FP is denoted
by <S=F=R>, where for two-cell 2-operation dynamic
FPs, S can be one of the following:

Saa = a(iO1d1O2d2) v(j)

Sav = a(iO1d1) v(jO2d2)

Sva = v(jO1d1) a(iO2d2)

Svv = a(i) v(jO1d1O2d2)

The subscripts a and v in the SOS names indicate
whether each of the two operations is performed on
the aggressor or the victim, respectively. For example,
<v(0r0) a(1r1)=1=�> stands for an FP sensitized by

performing a 0r0 �rst on the victim then performing a
1r1 on the aggressor. After performing the sensitizing
sequence, a 1 is detected in the victim cell instead of
the expected 0.

Based on the values of S, F and R, all 192 detect-
able two-cell 2-operation dynamic FPs are compiled in
Table 4. The listed FPs can be generated automatic-
ally by substituting all possible values of S, F and R
into the FP notation and discarding those that do not
represent a faulty behavior (<a(0w0w0)v(0)=0=�>,
for example).

Below, the FPs are used to de�ne two-cell 2-
operation FFMs. Each FP can be used to de�ne a
corresponding FFM resulting in 192 dynamic FFMs.
Since we will only attempt to verify a limited number
of dynamic FFMs (see Section 6), only those FPs in-
dicated by an asterisk (�) in Table 4 are used to de�ne
corresponding FFMs.

1. Dynamic read disturb coupling faults
(CFrdx;yz)|The dynamic CFrd has a de�nition
similar to the CFrd in the static case. It is a fault
whereby an a(x) v(ywyry) or a(x) v(ywyry) SOS
changes the stored logic value in the victim to y
and gives an incorrect output. Eight types of dy-
namic CFrd exist which can be summed up as:
CFrdx;yz = f<a(x) v(ywzrz)=z=z>g, where x, y,
z 2 f0; 1g.

2. Dynamic incorrect read coupling faults
(CFirx;yz)|The dynamic CFir has a de�nition
similar to the CFir in the static case. It is a fault
whereby an a(x) v(ywyry) or a(x) v(ywyry) SOS
returns the logic value y while keeping the correct
state of the cell. Eight types of dynamic CFir
exist which can be summed up as: CFirx;yz =
f<a(x) v(ywzrz)=z=z>g, where x, y, z 2 f0; 1g.

3. Dynamic deceptive read disturb coupling
faults (CFdrx;yz)|The dynamic CFdr has a
de�nition similar to the CFdr in the static
case. It is a fault whereby an a(x) v(ywyry)
or a(x) v(ywyry) SOS returns the correct lo-
gic value y while destroying the state of the
cell. Eight types of dynamic CFdr exist
which can be summed up as: CFdrx;yz =
f<a(x) v(ywzrz)=z=z>g, where x, y, z 2 f0; 1g.

6 Veri�cation of FFMs

At this point, the static and dynamic FFMs de�ned
in Sections 4 and 5 are to be veri�ed. To this end,
a study has been performed to analyze the static and
dynamic faulty behavior of DRAM devices, based on

defect injection and simulation [Al-Ars99]. The sim-
ulation tool used is Pstar which is an analogue sim-
ulator produced by Philips. The simulation model is
a clone of a real embedded DRAM design-validation
model. The model has been simpli�ed to include only
one folded cell array column (2�2 memory cells, 2 ref-
erence cells, precharge devices and a sense ampli�er),
one write driver and one data output bu�er. In the fol-
lowing, the simulation methodology is discussed �rst,
followed by the results of the simulation.

6.1 Simulation methodology

Here, we discuss �rst the types and speci�cations of
the injected defects, then the FPs targeted by the sim-
ulation are identi�ed.

Injected defects: The injected defects analyzed are
opens, shorts and bridges. Opens are resistive com-
ponents with any resistance (0
 < Rop < 1
),
injected at all possible locations within memory cells,
along bit lines, on word lines, and in the sense amp-
li�er. Shorts are resistive or capacitive components
with certain values (0
 < Rsh < 1
, 0 F <
Csh < Cmax), injected at all possible locations within
memory cells and along bit lines. Bridges have the
same speci�cations as shorts, but are only injected
within and between memory cells. No layout informa-
tion has been used since all possible opens, shorts and
bridges are considered at the electrical level.

The analysis procedure for opens takes all open res-
istances and initial
oating node voltages into consid-
eration. Inserting an open with a high resistance can
create
oating nodes from the nodes connected to the
open. The analysis varies the voltage on these nodes
between the upper and lower voltage limits. For shorts
and bridges, the analysis procedure takes all possible
resistances and capacitances into consideration.

Targeted FPs: All static FPs described in Tables 1
and 3 are taken into consideration. On the other hand,
only a number of dynamic FPs are considered. It is
clear from Tables 2 and 4 that, although we restricted
our analysis to the single-cell and two-cell 2-operation
dynamic behavior, the number of related FPs is still
relatively high. We choose to limit our attention to the
single-cell dynamic SOS's xwxrx and xwxrx, where
x 2 f0; 1g. The chosen four SOS's are capable of sens-
itizing 12 single-cell 2-operation dynamic FPs. In the
same way, we choose to limit our attention to the two-
cell dynamic SOS's a(x) v(ywyry) and a(x) v(ywyry),
where x and y 2 f0; 1g. The chosen 8 two-cell dy-

Table 4. All possible combinations of the values in the <S=F=R> notation resulting in a two-cell 2-operation dynamic FP.

< S=F=R > < S=F=R > < S=F=R > < S=F=R > < S=F=R >

< a(0w0w0) v(0)=1=� > < a(0w0w0) v(1)=0=� > < a(0w0w1) v(0)=1=� > < a(0w0w1) v(1)=0=� > < a(0w0r0) v(0)=1=� >

< a(0w0r0) v(1)=0=� > < a(0w1w0) v(0)=1=� > < a(0w1w0) v(1)=0=� > < a(0w1w1) v(0)=1=� > < a(0w1w1) v(1)=0=� >

< a(0w1r1) v(0)=1=� > < a(0w1r1) v(1)=0=� > < a(1w0w0) v(0)=1=� > < a(1w0w0) v(1)=0=� > < a(1w0w1) v(0)=1=� >

< a(1w0w1) v(1)=0=� > < a(1w0r0) v(0)=1=� > < a(1w0r0) v(1)=0=� > < a(1w1w0) v(0)=1=� > < a(1w1w0) v(1)=0=� >

< a(1w1w1) v(0)=1=� > < a(1w1w1) v(1)=0=� > < a(1w1r1) v(0)=1=� > < a(1w1r1) v(1)=0=� > < a(0r0w0) v(0)=1=� >

< a(0r0w0) v(1)=0=� > < a(0r0w1) v(0)=1=� > < a(0r0w1) v(1)=0=� > < a(0r0r0) v(0)=1=� > < a(0r0r0) v(1)=1=� >

< a(1r1w0) v(0)=1=� > < a(1r1w0) v(1)=0=� > < a(1r1w1) v(0)=1=� > < a(1r1w1) v(1)=0=� > < a(1r1r1) v(0)=1=� >

< a(1r1r1) v(1)=0=� >

< a(0) v(0w0w0)=1=� >� < a(1) v(0w0w0)=1=� >� < a(0) v(0w0w1)=0=� >� < a(1) v(0w0w1)=0=� >� < a(0) v(0w0r0)=0=1 >�

< a(1) v(0w0r0)=0=1 >� < a(0) v(0w0r0)=1=0 >� < a(1) v(0w0r0)=1=0 >� < a(0) v(0w0r0)=1=1 >� < a(1) v(0w0r0)=1=1 >�

< a(0) v(0w1w0)=1=� >� < a(1) v(0w1w0)=1=� >� < a(0) v(0w1w1)=0=� >� < a(1) v(0w1w1)=0=� >� < a(0) v(0w1r1)=0=0 >�

< a(1) v(0w1r1)=0=0 >� < a(0) v(0w1r1)=0=1 >� < a(1) v(0w1r1)=0=1 >� < a(0) v(0w1r1)=1=0 >� < a(1) v(0w1r1)=1=0 >�

< a(0) v(1w0w0)=1=� >� < a(1) v(1w0w0)=1=� >� < a(0) v(1w0w1)=0=� >� < a(1) v(1w0w1)=0=� >� < a(0) v(1w0r0)=0=1 >�

< a(1) v(1w0r0)=0=1 >� < a(0) v(1w0r0)=1=0 >� < a(1) v(1w0r0)=1=0 >� < a(0) v(1w0r0)=1=1 >� < a(1) v(1w0r0)=1=1 >�

< a(0) v(1w1w0)=1=� >� < a(1) v(1w1w0)=1=� >� < a(0) v(1w1w1)=0=� >� < a(1) v(1w1w1)=0=� >� < a(0) v(1w1r1)=0=0 >�

< a(1) v(1w1r1)=0=0 >� < a(0) v(1w1r1)=0=1 >� < a(1) v(1w1r1)=0=1 >� < a(0) v(1w1r1)=1=0 >� < a(1) v(1w1r1)=1=0 >�

< a(0) v(0r0w0)=1=� >� < a(1) v(0r0w0)=1=� >� < a(0) v(0r0w1)=0=� >� < a(1) v(0r0w1)=0=� >� < a(0) v(0r0r0)=0=1 >�

< a(1) v(0r0r0)=0=1 >� < a(0) v(0r0r0)=1=0 >� < a(1) v(0r0r0)=1=0 >� < a(0) v(0r0r0)=1=1 >� < a(1) v(0r0r0)=1=1 >�

< a(0) v(1r1w0)=1=� >� < a(1) v(1r1w0)=1=� >� < a(0) v(1r1w1)=0=� >� < a(1) v(1r1w1)=0=� >� < a(0) v(1r1r1)=0=0 >�

< a(1) v(1r1r1)=0=0 >� < a(0) v(1r1r1)=0=1 >� < a(1) v(1r1r1)=0=1 >� < a(0) v(1r1r1)=1=1 >� < a(1) v(1r1r1)=1=1 >�

< a(0w0) v(0w0)=1=� > < a(1w0) v(0w0)=1=� > < a(0w0) v(0w1)=0=� > < a(1w0) v(0w1)=0=� > < a(0w0) v(0r0)=0=1 >

< a(1w0) v(0r0)=0=1 > < a(0w0) v(0r0)=1=0 > < a(1w0) v(0r0)=1=0 > < a(0w0) v(0r0)=1=1 > < a(1w0) v(0r0)=1=1 >

< a(0w0) v(1w0)=1=� > < a(1w0) v(1w0)=1=� > < a(0w0) v(1w1)=0=� > < a(1w0) v(1w1)=0=� > < a(0w0) v(1r1)=0=0 >

< a(1w0) v(1r1)=0=0 > < a(0w0) v(1r1)=0=1 > < a(1w0) v(1r1)=0=1 > < a(0w0) v(1r1)=1=0 > < a(1w0) v(1r1)=1=0 >

< a(0w1) v(0w0)=1=� > < a(1w1) v(0w0)=1=� > < a(0w1) v(0w1)=0=� > < a(1w1) v(0w1)=0=� > < a(0w1) v(0r0)=0=1 >

< a(1w1) v(0r0)=0=1 > < a(0w1) v(0r0)=1=0 > < a(1w1) v(0r0)=1=0 > < a(0w1) v(0r0)=1=1 > < a(1w1) v(0r0)=1=1 >

< a(0w1) v(1w0)=1=� > < a(1w1) v(1w0)=1=� > < a(0w1) v(1w1)=0=� > < a(1w1) v(1w1)=0=� > < a(0w1) v(1r1)=0=0 >

< a(1w1) v(1r1)=0=0 > < a(0w1) v(1r1)=0=1 > < a(1w1) v(1r1)=0=1 > < a(0w1) v(1r1)=1=0 > < a(1w1) v(1r1)=1=0 >

< a(0r0) v(0w0)=1=� > < a(1r1) v(0w0)=1=� > < a(0r0) v(0w1)=0=� > < a(1r1) v(0w1)=0=� > < a(0r0) v(0r0)=0=1 >

< a(1r1) v(0r0)=0=1 > < a(0r0) v(0r0)=1=0 > < a(1r1) v(0r0)=1=0 > < a(0r0) v(0r0)=1=1 > < a(1r1) v(0r0)=1=1 >

< a(0r0) v(1w0)=1=� > < a(1r1) v(1w0)=1=� > < a(0r0) v(1w1)=0=� > < a(1r1) v(1w1)=0=� > < a(0r0) v(1r1)=0=0 >

< a(1r1) v(1r1)=0=0 > < a(0r0) v(1r1)=0=1 > < a(1r1) v(1r1)=0=1 > < a(0r0) v(1r1)=1=1 > < a(1r1) v(1r1)=1=1 >

< v(0w0) a(0w0)=1=� > < v(1w0) a(0w0)=1=� > < v(0w0) a(0w1)=1=� > < v(1w0) a(0w1)=1=� > < v(0w0) a(0r0)=1=� >

< v(1w0) a(0r0)=1=� > < v(0w0) a(1w0)=1=� > < v(1w0) a(1w0)=1=� > < v(0w0) a(1w1)=1=� > < v(1w0) a(1w1)=1=� >

< v(0w0) a(1r1)=1=� > < v(1w0) a(1r1)=1=� > < v(0w1) a(0w0)=0=� > < v(1w1) a(0w0)=0=� > < v(0w1) a(0w1)=0=� >

< v(1w1) a(0w1)=0=� > < v(0w1) a(0r0)=0=� > < v(1w1) a(0r0)=0=� > < v(0w1) a(1w0)=0=� > < v(1w1) a(1w0)=0=� >

< v(0w1) a(1w1)=0=� > < v(1w1) a(1w1)=0=� > < v(0w1) a(1r1)=0=� > < v(1w1) a(1r1)=0=� > < v(0r0) a(0w0)=1=� >

< v(1r1) a(0w0)=0=� > < v(0r0) a(0w1)=1=� > < v(1r1) a(0w1)=0=� > < v(0r0) a(0r0)=1=� > < v(1r1) a(0r0)=0=� >

< v(0r0) a(1w0)=1=� > < v(1r1) a(1w0)=0=� > < v(0r0) a(1w1)=1=� > < v(1r1) a(1w1)=0=� > < v(0r0) a(1r1)=0=0 >

< v(1r1) a(1r1)=0=� >

namic SOS's are capable of sensitizing 24 2-operation
dynamic FPs. The reason for selecting these sequences
in particular is the fact that, in memory devices, an
isolated write operation is practically not enough to
detect a fault since, externally, a cell needs to be read
to detect the stored value set during the write.

6.2 Simulation results

The performed simulations on the DRAM model res-
ult in many types of single-cell, two-cell, static and
dynamic faulty behavior. The results of the analysis
are discussed in this section.

Detected FPs: The fault analysis shows that all
static single-cell FPs listed in Table 1 have been detec-
ted. Moreover, all targeted 2-operation single-cell FPs
#3{#5, #8{#10, #13{#15 and #18{#20 of Table 2
have been detected. Out of the static two-cell FPs lis-
ted in Table 3, FPs #2{#16 and #30{#32 have been
detected. Finally, none of the targeted 2-operation
two-cell FPs (indicated by an asterisk in Table 4) have
been detected.

Discussion: Table 5 lists the detected single-cell
FFMs as a result of defect injection and simulation.
The second column states the defects resulting in the

FFMs, where C stands for memory cells, BL stands
for bit lines, WL stands for word lines, SA stands for
sense ampli�er, WC stands for within cells and BC
stands for between cells. The third column states the
number of times the FFMs are detected, such that
every time an individual FFM is detected the count
is increased by one (for example, the count of SFx is
increased by one if SF1 or SF0 is detected due to a
given defect). The table shows that the read disturb
fault has the highest count. This is because read op-
erations depend on detecting small voltage di�erences
on a bit line pair which is easily disturbed.

Table 6 lists the detected two-cell FFMs. Every
time an individual FFM is detected, the count in the
second column is increased by one (for example, CFst
is increased by one if either CFst0;0, CFst0;1, CFst1;0
or CFst1;1 is detected due to a given defect). The table
shows that the disturb coupling fault has the highest
count, which is because CFds describes the highest
number of individual FFMs among all other two-cell
faults (12 FFMs). Not all static two-cell FPs de�ned
in Table 3 have been detected. The undetected FPs
are those covered by CFst0;0, CFrd0;0, all CFtr FFMs,
all CFwd FFMs, all CFir FFMs and all CFdr FFMs.
Dynamic two-cell FPs have not been detected either,
which can be explained as follows. The SOS's associ-
ated with the targeted two-cell dynamic FPs consist

Table 5. Summary of the detected static and dynamic single-
cell FFMs as a result of defect injection and simulation.

FFMs Defect Count

Opens: WL 2

SFx Shorts: C 4

Bridges: WC, BC 12

Opens: C, BL, WL, SA 36

TFx Shorts: C, BL 8

Bridges: WC, BC 12

Opens: C, BL, SA 24

WDFx Shorts: C, BL 8

Bridges: WC, BC 12

Opens: C, BL, WL, SA 41

RDFx Shorts: C, BL 10

Bridges: WC, BC 12

Opens: C, BL, WL, SA 20

IRFx Shorts: | 0

Bridges: WC 4

Opens: BL, SA 14

DRDFx Shorts: | 0

Bridges: WC 8

Opens: C, BL, WL, SA 58

RDFxy Shorts: C, BL 20

Bridges: WC, BC 20

Opens: C, BL, WL 22

IRFxy Shorts: | 0

Bridges: WC 8

Opens: C, BL, SA 38

DRDFxy Shorts: | 0

Bridges: WC 8

of a sequence of write then read operations performed
on the victim. Since no write operation on the vic-
tim results in a coupling fault, it is not expected that
a subsequent read operation would cause a coupling
fault either.

7 Conclusions

In this paper, the notion of fault primitives (FPs), to-
gether with their notation, has been introduced. The
traditional functional fault models have been shown
to be composed of FPs. A taxonomy, based on the
proposed FPs, has been introduced for all possible
memory faults FPs can describe. This taxonomy
shows that the space of possible memory faults is in-
�nite, and that it contains the currently established
functional faults. FPs are perfectly suited for test
purposes, since they precisely de�ne the operation se-
quences required to detect the faults the FPs describe.

Resistive and capacitive defect injection and simu-

Table 6. Summary of the detected static two-cell FFMs as a
result of defect injection and simulation.

FFMs Count

CFst 12

CFds 84

CFnt 24

CFid 36

CFrd 12

lation of a DRAM model showed the presence of es-
tablished FFMs: TFx, RDFx, DRDFx, CFst, CFds,
CFnt, CFid, and CFrd. The simulation also identi-
�ed a number of the newly de�ned FFMs: SFx, IRFx,
RDFxy, IRFxy and DRDFxy.

References

[Adams96] R.D. Adams and E.S. Cooley, \Analysis of a De-
ceptive Destructive Read Memory Fault Model and Re-
commended Testing," In Proc. IEEE North Atlantic Test

Workshop, 1996.

[Al-Ars99] Z. Al-Ars,Analysis of The Space of Functional Fault
Models and Its Application to Embedded DRAMs, Tech-
nical Report No. 1-68340-28(1999)-07, CARDIT, Delft
University of Technology, Delft, The Netherlands, 1999.

[Dekker90] R. Dekker et al., \A Realistic Fault Model and Test
Algorithms for Static Random Access Memories," In IEEE

Trans. on Computers, C-9(6), 1990, pp. 567{572.

[Mak98] T.M. Mak, \Cache RAM Inductive Fault Analysis
with Fab Defect Modeling," In Proc. IEEE International

Test Conference, 1998, pp. 862{871.

[Schanstra99] Ivo Schanstra and Ad J. van de Goor, \Industrial
Evaluation of Stress Combinations for March Tests applied
to SRAMs," In Proc. IEEE International Test Conference,
1999, pp. 983{992.

[vdGoor94] A.J. van de Goor and B. Smit, \Generating
Memory Tests Automatically," In Proc. IEEE Interna-

tional Test Conference, 1994, pp. 870{878.

[vdGoor96] A. van de Goor and G. Gaydadjiev, \March LR: A
Memory Test for Realistic Linked Faults," In Proc. IEEE

VLSI Test Symposium, 1996, pp. 272{280.

[vdGoor98] A.J. van de Goor, Testing Semiconductor Memor-

ies, Theory and Practice, ComTex Publishing, Gouda, The
Netherlands, 1998, e-mail: vdGoor@cardit.et.tudelft.nl

[vdGoor99a] Ad J. van de Goor and J. de Neef, \Industrial
Evaluation of DRAM Tests," In Proc. Design, Automation

and Test in Europe, 1999, pp. 623{630.

[vdGoor99b] A.J. van de Goor and J.E. Simonse, \De�ning
SRAM Resistive Defects and Their Simulation Stimuli,"
In Proc. Asian Test Symposium, 1999, pp. 33{40.

[Zarrineh98] K. Zarrineh et al., \A New Framework for Gener-
ating Optimal March Tests for Memory Arrays," In Proc.

IEEE International Test Conference, 1998, pp. 73{82.

