
Hierarchical Approach for Hardware/ Software Systems

Tudor NICULIU Sorin COTOFANA* Anton MANOLESCU
Universitatea «Politehnica» Bucuresti, Facultatea de Electronica si Telecomunicatii

Bd. Iuliu Maniu 1-3, 77202 Bucuresti, Romania,
E-mail: tudor@messnet.pub.ro

(*)Delft University of Technology, Faculty of Electrical Engineering
Mekelweg 4, 2600 GA Delft, The Netherlands

Competent design for hardware/ software systems needs the convergence of three
concurrent research directions: the study of hierarchy types, the intelligent
communication between different domains, the formalization of verification/ test. We aim
to extend the theory of hierarchy types, in order to integrate communication properties as
well as correctness and testability, to suit the behavioral specification of today’s complex
system design.

Argument & Concepts

We consider the concept of simulation integrating:
design (structural simulation of the system’s
function) and verification (functional simulation of
the system’s structure), as well on higher as on
lower abstraction levels of different hierarchy
types. The complexity of the simulation’s object,
like interfaces needed for communication between
different domains, used to define and realize
heterogeneous systems, imposes a hierarchical
approach. Multiple, coexistent and interdependent
hierarchies structure the universe of models for
complex systems, e.g., hard/ soft ones. They belong
to different hierarchy types, defined by: abstraction
levels, block and class structures, symbolization
and knowledge hierarchies, whose study and
formalization result in separation of basic hierarchy
types, that can be interpreted as the object-oriented
[1] and the symbolization paradigm [2]. Abstraction
and hierarchy are semantic and syntactical aspects
of a unique fundamental concept, the most
powerful tool in systematic knowledge; hierarchy
results from formalization of abstraction.

The structure of the communication between
heterogeneous parts of the object-system, and with
its exterior, should reflect the hierarchies of the
simulation technique/ model/ method. Considering
the heterogeneous relations between different
functions that collaborate to build the behavior of
the simulated system, we have to extend the scope
of man-machine dialog, from standard I/O
functions, to assistance of iterative knowledge-
based co-simulation.

Representation is a 1-to-1 mapping from the
universe of systems (objects of simulation) to a
hierarchical universe of models, so a representation
can be inverted. A model must permit knowledge

and manipulation, so it has two complementary
parts/ views: description and operation. If models
correspond to classes, in a formal approach,
specifications are instances; if models are
formalized as languages, specifications are
expressions.

We define a general hierarchical approach for
complex simulation, applying it to handle
communication between different domains implied
by hardware/ software systems, that combine
dynamic objects (handled in software) with parallel
activities (realized in hardware).

Approach

The planned framework permits, at any level of
abstraction of the simulation hierarchy:
• description of the system in a convenient and

commonly used language, e.g., C++ [5]
extended for parallelism by synchronization
constructs [4];

• automatic partition of the description into
hardware and software;

• correct and complete communication between
heterogeneous parts and with the exterior;

• simulation and validation of the whole system
during any design phase.

If one of the imposed properties (design
constraints) is considered as not being fulfilled after
applying a technique, using a model and suitable
methods for measure and improvement, different
strategies permit altering one of the technique/
model/ method, to repeat the process for the initial
behavioral specification or the one resulted from
prior (insufficient) improvement. This calls for an
intelligent choice of the designer or the AI system
that should assist/ automate the design. The
methods are recursive (iterative) to handle the
different components in the behavioral specification

of the system. The process continuation is
controlled by measurement functions, so, generally,
these must be called for each call of the
improvement functions, but there are also methods
demanding for a global improvement based on a

prior measurement. The behavioral adaptable
design for communication properties, correctness
and testability is synthesized in the following
BADCCT algorithm:

class BehavioralDescription ...
BADCCT (BehavioralDescription behavSpecif, Bool increment) : BehavioralDescription
begin
techniques := Ø; models := Ø; methods := Ø; good := false;
while (not good) begin technique := selTech (behavSpecif, techniques, models, methods);
if (not technique in techniques) begin techniques.add (technique); models := Ø end;
model := technique.selModel (behavSpecif, models);
if (not model in models) begin models.add (model); methods := Ø end;
specification := model.detSpec(behavSpecif);
method := model.selMeth (specification, methods);
if (not method in methods) methods.add (method);
if (integrated) begin (good, enough) := method.measure (specification);
 while (not enough) begin specification := improveLoc (specification);

(good, enough) := method.measure (specification) end
 end

else (good, specification) := improveGlob (specification, method.measure(specification));
if (increment) behavSpecif := model.returnToBehavDescr (specification)
end;
return model.returnToBehavDescr (specification)
end.

Figure 1: BADCCT algorithm

Boolean variables that control the decisions are:
• increment - decides whether to keep the more

but not enough adequate specification when
applying a new method/ model/ technique or to
reset to the initial specification;

• good and enough - represent the limits
corresponding to different criteria controlling
the continuation of the cycles; they are
actualized by the function that measures the
adequacy of the specification to the necessary
properties of communication, correctness,
testability;

• integrated – expresses the decision to apply
together, for each iteration of the model’s
method, the function to measure and that to
improve the adequacy; otherwise, improvement
is applied after having measured the entire
behavioral specification.

To begin, the intelligent component that makes the
design system adaptable, by selecting the next
technique/ model/ method to be applied, is replaced
by experiment associated to man-machine dialog:
the comparison results of completeness checking
versus consistency checking regarding
communication, of validation versus formal
verification, of structural testing versus functional
testing are used to choose another technique/
model/ method.

Hierarchy types

Hierarchies are of different types, corresponding to
the kind of abstraction they reflect:
• symbolization hierarchy - corresponds to

formalization of all kind of types, in particular
also of hierarchy types;

• conceptualization (class) hierarchy - builds a
virtual framework to represent all kinds of
hierarchies, based on form-contents dichotomy
(class-instance), modularity, inheritance,
polymorphism; an object is defined by identity,
state and behavior, being instance of a class,
that defines its internal structure and behavior,
as well as its external behavior;

• knowledge hierarchy - corresponds to reflexive
abstraction: each level has knowledge of its
inferior levels, including itself; recurrence of
structures and operations enables approximate
self-knowledge (with improved precision on the
higher levels of knowledge hierarchies); a
continuous model for hierarchy levels would
perhaps offer a better model for intelligence; a
possible interpretation of such hierarchies is:
real time of the bottom levels, corresponding to
behavior, is managed at upper levels,
corresponding to strategies, and abstracted on
highest levels, corresponding to types;

• construction (simulation) hierarchy -
autonomous levels for different abstraction

grades of description build a design/ verification
(= simulation) framework; time is explicit at
highest (behavioral) levels (being integrated in
the model), and exterior on lowest levels (being
implicit for the system’s activity); artificial
intelligence approaches try to configure the
simulation hierarchy type as reciprocal to the
knowledge hierarchy type;

• structure hierarchy - helps managing all other
hierarchy types on different levels, following
the principle «Divide et Impera et Intellige», by
recursive decomposition in autonomous blocks.

The different hierarchies can be represented
symbolically and object-oriented: the first two
enumerated types build a reference system for any
hierarchy type. All hierarchy types have in common
structures allowing for the following description:

 (U, {Hi∈Sh}) - universe,
structured by different hierarchies Hi,

Sh - set of hierarchies defined on universe U:

 H = (Rel_eq, {(Levelj,Structurej): j∈Sl},
 Rel_ord, {Aj: j∈Sl}) - generic hierarchy:
Sl - set of hierarchy levels,

Rel_eq - equivalence relation
divides the universe in levels,

Structurej - structure defined on level j,
Rel_ord - order relation (total)

defined on the set of hierarchy levels,
Aj∈{(x,y): x∈Levelj-1, y∈ Levelj, j∈Sl }

- relation of abstraction.

For example: The classical activities in complex
systems simulation [3], that regard comparisons
between different levels of the construction or
knowledge hierarchy, as well as of the structure
hierarchy, can be expressed object-oriented and
simulated or formally approached by symbolization
of the more abstract entities, as sketched below:

Symbolical

Object-oriented

observed behavior

required behavior abstract instance

concrete instance

class

consistency

 verification

completeness

validation

structural testing

functional testing

Figure 2: Hierarchical Simulation

Abstract Performance Evaluation of
Dynamic Parallel Systems

To illustrate our general approach, currently under
development as an intelligent framework, we
describe the performance evaluation needed for
further choices during the assisted design process.
Let us assume that the total execution time for the
system's current partition should be estimated and
that the following six characteristics are known:
1. the execution time of each simple method (no

calls to other methods),
2. the medium iteration count of each cycle,
3. the branch probabilities of each conditional,
4. what methods can be executed in parallel,
5. which objects are to be synthesized to software

and which to hardware,
6. which parallel-executable hard-methods of the

same object are linked by synchronization
constraints of the form:

class X { ... m1 (); m2 (); ...};
#_m2_calls <= #_m1_calls <= #_m2_calls + const.

To provide an answer to this problem we need to
construct a directed a-cyclic graph (DAG)
containing the method-calls (a-cyclic because no
recurrence is permitted, for hardware
compatibility), and, the following information for
each method:
• a block of statements,
• a list of methods that are called in parallel

(constructed from the list of methods that can be
executed concurrently and are on direct paths
from methods called in parallel),

• a list of synchronization constraints to which it
participates (only the parts that can postpone its
call, the rest retains the counterpart method),

• the number of calls,
• the cost (execution time).

The parallelism relation is not transitive (just

reflexive and symmetric). Parallelism is possible
only between methods that are not on the same path
in the DAG (don't call each other, directly or
indirectly) and is conditioned by hard/ soft
realization (the number of soft methods in a list of
parallelism is given by the number of parallel
working processors). Synchronization constraints
can appear only between methods of the same
object. The most important classes are: Method,
MethodList, Statement, SyncList, Evaluation,
Stack. The textual description language for the
abstract problem is:

method ::= { statement; ... statement;}
statement ::= IF(probability) method ELSE method

 | FOR (number) method
| method | parallel-call

parallel-call ::= (method, ... , method)

Considering the call hierarchy of the methods (tree
- no recurrence, DAG - no dependence of the
method execution time on the call context), the
method-DAG:
1. is constructed top-down;
2. is actualized for concrete values of the method

attributes and their concrete relations;
3. is visited recursively (depth-first post-order) to

determine execution time for each method;
each method keeps track of the number of
times it has been called, to enable estimation
considering synchronization constraints.

The last result is the total execution time, implying
a global clock.

Of different approaches to handle synchronization
constraints, we firstly experimented a simulation-
oriented one: the system's behavior is simulated to
estimate the execution time. Synthetically: if the
synchronization constraints are not verified, the call
is postponed, marking this in method-list, together
with the value of the global clock; this time value
will be used when the method's call will be
successful, to determine the waiting time that must
be added to its execution time, considering
parallelism. A waiting call is retried when its
counterpart is successfully called. When a method
call is postponed, a dummy-return-value 0 and a list
of ascendants (calling methods), whose estimation
is influenced by the correction of the postponed
method's time, can avoid recurrence interruption;
lists of calling methods, implemented as stacks, are
needed for each parallel call. The execution time of
a method is computed hierarchically from the
components of its block. The contribution to time
estimation of a directly or indirectly parallel called
method has not the same form in the case of
synchronous parallelism as in that of asynchronous
parallelism. The algorithm for synchronous

parallelism can be described by:
• construction of a list of methods, representing

the directed a-cyclic graph of the system,
containing the methods and their relations;

• deduction of actual directly or indirectly parallel
calls from the list of methods, parallelism
information and hard/ soft partition information
- to permit concurrent execution, two methods
should have only possible parallel descendants,
including themselves;

• time evaluation of a method with parallelism,
synchronization constraints and deadlock
determination.

Presently, we attempt to accomplish multi-
hierarchical communication between different
domains implied in complex systems, as hardware/
software ones.

Conclusions

Formalizing hierarchical descriptions, we create a
theoretical kernel that can be used for systematic
hardware/ software co-simulation. A new
perspective on simulation is gained by unifying
representation for design and verification,
separating it from the general methods of multi-
hierarchical operation; this will permit theoretical
development, as well as efficient application to
hierarchically built interfaces for hardware/
software systems. As an aid to keep in our
formalization process close to real problems, we
intend to propose and develop an integrated
programmable system for design and verification of
hardware/ software systems.

References

1. G.Booch, Object-Oriented Analysis & Design,
Benjamin/ Cummings Publ. Co., 1991.

2. W.Bibel et al., Wissensrepräsentation und
Inferenz, Vieweg, 1993.

3. D.Gajski et al., Specification, and Design of
Embedded Systems, Prentice-Hall, 1994.

4. S.Kumar et al., The Codesign of Embedded
Systems, Kluwer Academic Publ., 1996.

5. B.Stroustrup, The C++ Programming Language
(3rd edition), Addison-Wesley, 1997.

