
Using Multi-objective Design Space Exploration to
Enable Run-time Resource Management for

Reconfigurable Architectures

Giovanni Mariani∗, Vlad-Mihai Sima †, Gianluca Palermo‡, Vittorio Zaccaria‡, Cristina Silvano‡ and Koen Bertels†
∗ALaRI - University of Lugano, Lugano, Switzerland

Email: marianig@alari.ch
†Delft University of Technology, Delft, The Netherlands

Email: {v.m.sima, k.l.m.bertels}@tudelft.nl
‡Politecnico di Milano, Milano, Italy

Email: {gpalermo, zaccaria, silvano}@elet.polimi.it

Abstract—Resource run-time managers have been shown par-
ticularly effective for coordinating the usage of the hardware
resources by multiple applications, eliminating the necessity of
a full-blown operating system. For this reason, we expect that
this technology will be increasingly adopted in emerging multi-
application reconfigurable systems.

This paper introduces a fully automated design flow that
exploits multi-objective design space exploration to enable run-
time resource management for the Molen reconfigurable archi-
tecture. The entry point of the design flow is the application
source code; our flow is able to heuristically determine a set of
candidate hardware/software configurations of the application
(i.e., operating points) that trade off the occupation of the
reconfigurable fabric (in this case, an FPGA), the load of the
master processor and the performance of the application itself.
This information enables a run-time manager to exploit more
efficiently the available system resources in the context of multiple
applications.

We present the results of an experimental campaign where we
applied the proposed design flow to two reference audio appli-
cations mapped on the Molen architecture. The analysis proved
that the overhead of the design space exploration and operating
points extraction with respect to the original Molen flow is within
reasonable bounds since the final synthesis time still represents
the major contribution. Besides, we have found that there is
a high variance in terms of execution time speedup associated
with the operating points of the application (characterized by
a different usage of the FPGA) which can be exploited by the
run-time manager to increase/decrease the quality of service of
the application depending on the available resources1.

I. INTRODUCTION

Reconfigurable systems represent as a suitable option to
meet performance, power, and cost constraints that charac-
terize the challenge of future supercomputing, provided that
reconfiguration overhead is balanced with respect to compu-
tationally intensive workload [1]. In this context, commercial
systems based on Field Programmable Gate Arrays (FPGAs)
and standard multi-core CPUs have been already deployed
to augment the capabilities of servers running performance-

1This work was enabled thanks to an HiPEAC mobility grant.
This research is partially supported by the Hasler Stiftung under the
EMME project (grant no. 11096), and by the European Community un-
der the projects: FP7-ICT-248716-2PARMA, FP7-ICT-247999-COMPLEX,
ARTEMIS-100230-SMECY and Artemisia FP7 Reflect (grant no. 248976).

critical operations (see, for example, the Convey HC1 server
[2]).

Given the mixed workloads and multi-application scenarios
that characterize the future of reconfigurable systems, we
speculate that a Run-time Resource Manager (RRM) software
layer, either at the firmware level or at the operating system
level, will be needed to dispatch reconfigurable resources
to the applications (with suitable virtualization primitives)
just as in purely microprocessor-based eco-systems [3], [4].
Current approaches to run-time resource management require
that the application is written to expose a set of operating
software configurations. Each of those configurations provides
a different trade-off in terms of application performance,
power consumption and resource usage. In the reconfigurable
computing scenario considered in this paper, different con-
figurations consist of different mappings of the application
tasks on the heterogeneous (hardware and software) processing
elements.

In this paper, we introduce a fully automated design flow
that exploits multi-objective design space exploration (DSE)
to enable run-time resource management for the Molen re-
configurable architecture [5]. Starting from the application
source code, our flow extends Molen to heuristically determine
a set of candidate hardware/software operating points that
trade off the occupation of the reconfigurable FPGA fabric,
the load of the master processor and the performance of the
application itself. To this end, we developed a DSE technique
that identifies the most promising operating points by using
profiling information coming from both software simulation
and hardware synthesis.

The main contributions of this paper are the following:

• We introduce one of the first fully automated ap-
proaches to enable run-time resource management of
multi-application reconfigurable systems.

• We analyze the overhead of the design space exploration
and operating points extraction with respect to conven-
tional reconfigurable synthesis flow such as Molen.

• We characterize the statistical behavior of the operating
points for two reference audio applications both in terms
of quantity (which may impact the speed of the run-
time selection routine) and quality (how much the system
speed can change when changing operating point).978-3-9810801-8-6/DATE12/ c©2012 EDAA



The rest of the paper is organized as follows. Section
II introduces an analysis of the background work. Section
III introduces the target architecture and the proposed DSE
framework while Section IV describes two case studies asso-
ciated with two reference audio synthesis applications. Finally,
in Section V we draw our conclusions and summarize the
relevant contributions of this work.

II. BACKGROUND

Reconfigurable hardware technology is a consolidated set of
methodologies, techniques and tools whose aim is to combine
the flexibility of software and the speed and efficiency of
hardware. In recent years, reconfigurable arrays (either coarse-
grained - CGRAs or field-programmable-gate-arrays - FPGAs)
have been either combined with VLIW processors [6], or
to enhance the instruction set architecture of conventional
CPUs [5], [7]. Deploying a reconfigurable application means
partitioning it into a set of tasks, allocating them on the
(heterogeneous) processing elements and scheduling their ex-
ecution order. Since parallelism may be a very significant
factor for improving resource usage efficiency and applica-
tion speed, a great deal of research has been dedicated to
devise techniques for automatic [8], or semi-automatic [9]
parallelization. Parallelization and partitioning benefit either
from independent mapping and scheduling [10], or from joint
mapping and scheduling [11], [12]. Once application tasks
are appropriately mapped, compilation and synthesis phases
generate binaries for the master processor and bit-streams for
the configurable devices [13].

All the previous approaches assume that the target platform
is dedicated to execute a single application. Application par-
titioning and task mapping are thus done for each application
considering that all computing resources are available. To the
best of our knowledge, there has been no attempt in the past to
devise techniques for mapping and scheduling re-configurable
applications in a multi-application scenario. Our assumption is
that the rate of adoption of reconfigurable systems in general
computing and supercomputing will create a need to manage
this increasingly complex scenario. In this paper we propose
to tackle this problem by augmenting existing reconfigurable
synthesis flow with design space exploration.

III. THE PROPOSED METHODOLOGY

The proposed methodology targets the design-time iden-
tification of different operating configurations for a target
application. Once identified, the operating points are exposed
to the Run-time Resource Manager (RRM) system software. In
a multi-application scenario, the RRM is in charge to control
the access to the configurable resources of the system. Since
they are in limited number, the RRM should decide how to
partition them among the running applications. The operating
points that have been derived for each application are used for
this purpose. Our main assumption is that the figures of merit
that have been measured independently for each application
do not vary significantly when the same applications run in a
multi-application environment (i.e., orthogonality holds).

In the original Molen reconfigurable platform, each applica-
tion is in charge of setting up its own reconfigurable resources
(e.g. FPGA slots) through a set instruction and launch its ex-
ecution through a execute instruction. The assumption is that

Fig. 1. Structure of the hardware/software system at run-time.

the application has unconditional access to the reconfigurable
resources.

In our extended Molen reconfigurable platform, each appli-
cation should be granted access to the required resources by
interacting with the RRM. Given the availability of operating
points, the RRM can decide to partition and grant resources in
order to maximize the overall, multi-application performance.

The considered RRM. In this paper, we work with a
run-time resource manager that is aware of the performance
that each application can reach, given a specific configuration
of its hardware/software components. The performance (and
other information) associated with each configuration is called
operating point and will be described later in the paper. A list
of operating points for each application is thus available to the
run-time manager.

Each application has thus multiple operating points that are
derived by trading off performance and resource usage. The
run-time manager layer (which is aware of all the applications
running simultaneously on the system, see Figure 1) can
decide to change the current operating point of an application
by means of an heuristic algorithm (in our case, we use a
knapsack based heuristic [14]).

In our approach, we assume that the application, whenever
it reaches a Control Point (CP), asks the run-time resource
manager for how many reconfigurable resources it can use,
given the current system-wide state. The CP is a point in
the code where it is possible to choose between a hardware
(reconfigurable) or software implementation (typically, a func-
tion call) of application tasks. Given that the system can have
applications running on the reconfigurable device, the number
of resources that the application is allowed to use at that
particular moment may be less than in the stand-alone case.

In the following subsections, we will describe the original
Molen platform and how we extended the original design flow
to enable run-time resource management.

A. The Molen reconfigurable platform

The Molen architecture (Figure 2) is composed of a master
processor and one or more blocks of reconfigurable logic.
The software application runs on the master processor and
can invoke the functionality of the configurable logic just as
a co-processor.

Instruction fetch from the main memory is controlled by an
arbiter. Conventional instructions that belong to the ISA of the



Fig. 2. Molen machine organization.

master processor are normally executed by the Microprocessor
Unit itself. However, when a set instruction is decoded,
the arbiter downloads the bit-stream of a specified Custom
Computing Unit (CCU) onto the reconfigurable logic. In fact,
a CCU is a hardware implementation of some application
functionalities that has been synthesized beforehand.

When an execute instruction is decoded by the arbiter
(provided that the CCU has been setup), the reconfigurable
logic is started. Of course, as in co-processor based systems,
the functionality of the CCU may need input parameters from
the application; these parameters are passed through a BRAM
memory that contains a set of exchange registers. In fact,
whenever the CCU needs to read/write data from/to the main
memory, the required memory block is first copied to the
BRAM memory and then copied back to the main memory
once the CCU execution is completed.

In the Molen architecture, the set instruction is typically
scheduled in advance with respect to the execute instruction
to hide the reconfiguration overheads.

The current Molen physical implementation is based on a
Xilinx ML510 board. The master processor is the PowerPC
(PPC) embedded in the Virtex5 FPGA, while the rest of the
FPGA is used to store the reconfigurable CCUs, and basic
system components, such as arbiter and memory controllers.
Overall, the FPGAs available for the CCUs is 38400 LUTs
while 5×64KB BRAM blocks are used for exchange registers.
BRAM blocks are not shared between different CCUs; thus, in
order to have homogeneous independent FPGAs slots available
for CCUs, each slot is composed of maximum 7680 LUTs and
1 BRAM block to accommodate 1 CCU. If a CCU needs more
than 7680 LUTs, it will occupy additional slots (thus reducing
the total number of CCUs simultaneously stored).

B. The proposed design flow

An application can be configured in different ways to map
some of its tasks on the master processor and some others on
the FPGA slots. In the Molen design flow, a task corresponds
to a C function (and all the callee functions of its call sub-tree).
So, when an application invokes a C function that has been
translated to CCU, it synchronously waits for its completion.
In this case, we assume that the master processor can switch
to another application (if it exists).

In our multiple-objective flow, each application configura-
tion is characterized by a cost tuple:

κ = 〈φ, µ, δ〉 (1)

where φ is the number of FPGA slots occupied by the CCUs
of the application, µ is the number execution cycles needed by
the master processor to execute the application (not accounting
for synchronous waits) and δ is the overall execution time of
the application (from start to end).

The proposed design flow takes as input the C source code
of the application and generates the application implemen-
tation in executable format (Figure 3). During the design
process, a design space exploration phase is introduced to
iteratively explore the space of the possible function-to-CCU
mappings with the goal of minimizing the cost tuple κ. In fact,
there might be different choices of mapping a function either
to software (standard case) or to a CCU in hardware. In the
latter case, the function and all the callee functions of its call
sub-tree are mapped in hardware. Depending on the various
choices, different operating points κ will be generated.

Fig. 3. The proposed design flow.

Code analysis. In this paper we use the same tool-chain
front-end as the Molen architecture [13]. The C code is parsed
and converted to an intermediate representation (IR) by using
Harmonic and the Rose compiler [15], [16]. The application
is then analyzed to identify which function can be converted
to a CCU. Functions that present either direct or indirect
recursion, as well as system and library call invocations, are
automatically excluded from the conversion.

Profiling. The execution time of every function that may run
on the master processor is profiled by executing the function
directly on actual hardware (i.e., the PPC available on the
ML510 board). Concerning the functions which can also be
mapped on FPGAs, we profile both the execution time and the
area occupation. The execution cycles are estimated by using
Modelsim simulations of the actual VHDL code generated
by the Dwarv high-level-synthesis compiler [17]. The area
occupation is estimated by means of the analytical model
presented in [18].

For the sake of the exploration, a High Level Simulator
(HLSim) is automatically generated to be used as an executable
model of the target platform. It takes as input the mapping
specification of functions onto either master processor or
FPGAs and it computes the execution time of the application
based on the profiling information collected before. To trade-
off accuracy and simulation speed, this is done by using
dynamic profiling of the software program, i.e., the simulator



runs a pure software version of the application to measure
how many times each function is invoked for a specific input
data-set.

Multi-objective DSE. We integrated the multi-objective
DSE tool Multicube Explorer [19] in the tool-chain. The
tool identifies the optimal set of application mappings χ that
provide the best trade-off for the cost tuple κ(χ).

An application configuration χ is a vector of n elements,
each one representing a mapping configuration of a specific
C function of the application. In our case, each element
associated with a function can have 6 different levels (i.e.
PPC, fpga1, ..., fpga5). In the case two functions are as-
signed to the same FPGA slots, a reconfiguration overhead
incurs and the execution time of the application increases.

Optimization is done by using the Greedy Evolutionary
Multi-objective Optimization (GEMO) algorithm [20]. The
algorithm starts from a baseline configuration χ and iteratively
maps functions to FPGA slots by trying to reduce application
execution time δ (estimated with HLSim) and the usage of the
master processor µ. The latter is done in order to unload as
much as possible the master processor that can then be used
for other processes (we assume a common time-sharing OS).
The algorithm is iterated a number of times proportional to
the quantity of free parameters (number of functions) and to
the number of levels a parameter can assume (6).

The configurations belonging to the Pareto set of the multi-
objective problem solved by GEMO are then enumerated
by means of their FPGA resource requirement φ. If more
configurations are found with the same cost φ, only the one
with inferior δ is kept. φ is then used as configuration identifier
by RRM.

Code instrumentation. In the presence of multiple
operating-points, the application code is enhanced by adding
control points (CPs) before the invocation of each function
that has been chosen to be mapped on the FPGA for at least
one configuration. The insertion of CPs consist in glue code
to enable the RRM-supervised selection between hardware
and software implementation of application tasks. At these
control points, the application is supposed to ask to the run-
time manager for available hardware resources (in terms of
usable number of slots φ). It will then use the set and execute
instructions to invoke the hardware functionality.

Compilation/synthesis. Finally, the VHDL code for both
profiling and synthesis is generated by Dwarv [17]. The
code is passed to a commercial synthesis tool to generate
the configuration bitstreams implementing the CCUs. The
remaining parts of the application source code are compiled
and packaged together with the bitstreams to generate a single
executable binary [13].

IV. EXPERIMENTAL RESULTS

In this section, we present the results obtained by applying
the proposed design flow to two reference audio applications
mapped on the Molen architecture. The target applications
are a Wave Field Synthesis (WFS) [21] and an advanced
In Car Audio player (INCAR) [22], [23]. WFS renders 3D
audio by using multiple loudspeakers in a teleconferencing
room; INCAR processes digitally an audio signal supposed
to be listened in a car in order to eliminate noise, equalize
with respect to car cabin features and compensate loudspeaker
positioning.

Fig. 4. Design time breakdown for the proposed design flow considering the
INCAR and WFS case studies.

Design flow analysis. We have run the proposed fully
automated design flow for both WFS and INCAR and we
measured the time required to perform each design. Overall
the whole execution of the design flow took 2 hours and 11
minutes for the WFS application and, 2 hours and 49 minutes
for the INCAR application.

The distribution of the time spent in the different design
phases is shown in Figure 4. The most time consuming phase
is still the synthesis step required to generate the bit-stream
for the FPGAs. This phase alone takes about 2/3 of the overall
time.

The second most important phase (in terms of time) is
the profiling phase required to generate data for the high-
level simulator HLSim. This phase takes from 22% to 25%
of the overall time. The compilation time required to generate
the binaries to run on the master processor is pretty short
compared to the other design phases; in fact compilation takes
4% of the design time for both applications.

The remaining time is spent in the DSE phase and for
other operations like the parsing of the source code and the
generation of the intermediate representation. In particular, the
DSE phase takes from 1% to 4% of the overall design time
while other activities take from 1% to 11% of the design time.
The low overhead introduced by the DSE time is due to the use
of HLSim for evaluating the hardware/software configurations.
Each evaluation took less than a second for each configuration,
while presenting for both applications a measured average and
maximum error of 4% and 9% respectively. The larger DSE
and Others design-time associated with INCAR is likely due to
the higher complexity of the application and to the significant
number of signal processing steps that are considered to be
mapped on hardware.

Trade-off analysis. Figure 5 reports the configurations
found during the DSE phase for the target applications. We
use bubble plots to characterize the application configurations
in three dimensions: required FPGA slots (x-axis), speedup
with respect to pure software (y-axis) and percentage usage
of the master processor (bubble radius).

For the WFS case study, the DSE exposes three configu-
rations (pure-software, 1 function on FPGA and 2 functions



(a) WFS case study

(b) INCAR case study

Fig. 5. Trade off analysis for the INCAR and WFS case studies. The bubble
plots report cost in terms of FPGA resource (x axis), cost in terms of master
processor usage (bubble radius) and application speedup (y axis).

on FPGA). The first function to be mapped in hardware
is too large to fit in a single FPGA slot, thus two FPGA
slots should be allocated. At the cost of two FPGA slots
we can achieve a speedup of 1.55. Mapping an additional
function on the FPGA is possible. In this case, at the cost
of three FPGA slots, a degradation of the performance is
observed due to communication overheads (speedup is 1.39).
This configuration is good since it is optimal in terms of master
processor usage. The time required by the master processor
to execute the WFS is respectively 4.59, 2.11 and 1.83 Giga
cycles when using 0, 2 and 3 FPGA slots.

For the INCAR application, the DSE phase returns six dif-
ferent configurations that occupy from 0 to 5 FPGA slots. The
maximum application speedup is 3.10 (mapping 4 functions
on 4 different FPGA slots). Also in this case, it is possible to
save a few master processor cycles by mapping an additional
function on the fifth FPGA slot.

Comparison with a traditional design approach. In a
traditional design approach, applications are optimized tar-
geting the single-objective maximization of the performance
[12]. The output of the design flow is a single application
configuration, i.e. the one maximizing the performance.

On the other hand, the executable obtained with our ap-
proach should carry a software and hardware implementation
for all the functions likely to be run on hardware. In addition,
we must consider an execution overhead for switching to the
most suitable configuration as selected by the RRM. Summing
up, even if we have multiple configurations we still end up
with a single executable with all the needed information.

Table I reports the size of binaries and configuration bit-
streams, obtained with our approach (multi-objective) and with

the traditional (single-objective).

TABLE I
SIZE OF APPLICATION EXECUTABLE FOR WFS AND INCAR

Application Approach Binary size Bit-stream size

Traditional 113356 952678
WFS Proposed 117682 1429017

Overhead [%] 3.9 50

Traditional 444438 1905356
INCAR Proposed 450511 2381695

Overhead [%] 1.37 25

We can observe that the overhead in terms of binary size is
lower than 4%. However, the bit-stream overhead is consider-
able higher in our case (25% for INCAR and 50% for WFS)
since there is the need to store all the CCU implementations
required by the selected operating points.

In the proposed approach, we should also take into con-
sideration the time overhead introduced by the additional
instructions to check which configuration to run. This time
overhead is anyway very low. In reference to the application
execution time obtained with the traditional approach, the
overhead introduced by the proposed approach is of 0.13%
and 0.01% respectively for the two applications (without
considering the time needed by the RRM to decide which
configuration to use).

Run-time Resource Management Example. To show an
example of run-time resource management enabled by the
operating points found with our methodology, we run a syn-
thetic workload where multiple instances of INCAR and WFS
are launched randomly in time and each application instance
terminates whenever it consumes a fixed input data set. Figure
6 shows the system behavior, both in terms of performance
and resource usage for each application, when the following
sequence of concurrent application scenarios (snapshots) is
observed: INCAR only → INCAR and WFS → WFS and 2
instances of INCAR → 2 instances of INCAR. The objective
of the RRM here is to maximize the application throughput
while minimizing the resource usage (and meeting constraints
on the available resources, both CPU and FPGA slots).

Besides, in Figure 6(a) we present the average normalized
throughput with respect to the pure software implementation
for each instance of the applications, while in Figure 6(b) and
6(c) we report, respectively, the number of FPGA slots and the
CPU load for each application type. In the first snapshot, the
presence of only a single instance of INCAR forces the RRM
to select the high-speed operating point where four FPGA slots
are used, since the operating point using all the FPGA slots
presents a lower throughput (and a lower CPU usage). When
WFS is launched (second snapshot), one of the FPGA slots is
removed from INCAR (at the next control point) and assigned
together with the free one to WFS, implying a reduction in
INCAR throughput and an increase in CPU load. In the third
snapshot, the RRM manages the arrival of the second instance
of INCAR by: a) maintaining the same resource quantity for
WFS, and b) reducing the FPGA slots given to the first INCAR
instance. We can note, in this case, an additional pressure on
the load of the CPU and an average throughput reduction for
INCAR. Finally, when WFS consumes its input data stream
and terminates, the two INCAR instances are assigned all the
FPGA slots, thus increasing the average INCAR application
throughput.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

INCAR INCAR+WFS 2INCAR+WFS 2INCAR

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

INCAR
WFS

(a) Applications Throughput

 0

 1

 2

 3

 4

 5

INCAR INCAR+WFS 2INCAR+WFS 2INCAR

F
P

G
A

 S
lo

ts

INCAR

WFS

(b) FPGA Slots Usage

 0

 10

 20

 30

 40

 50

 60

INCAR INCAR+WFS 2INCAR+WFS 2INCAR

P
P

C
 U

s
a
g
e
 [
%

]

INCAR
WFS

(c) PPC Usage

Fig. 6. System behavior in terms of (a) application throughput, (b) FPGA
slots usage and (c) PPC usage, for 4 different snapshots of the synthetic
workload composed by the following time sequence: INCAR only → INCAR
and WFS → WFS and 2 instances of INCAR → 2 instances of INCAR

V. CONCLUSIONS

In this paper, we introduced a fully automated design flow
that exploits multi-objective design space exploration to enable
run-time resource management for the Molen reconfigurable
architecture in a multi-application scenario.

We presented the experimental results where we applied
the proposed design flow to two reference audio applications
mapped on the Molen architecture. The analysis allowed us
to conclude that the overhead of the design space exploration
and operating points extraction with respect to the original
Molen flow is within reasonable bounds in that the synthesis
time still represents the major contribution (from 59% up to
69%). Besides, we have found that there is a high variance
(up to 3×) in terms of execution time speedup associated
with the operating points of the application, which can be
exploited by the run-time manager to increase/decrease the
quality of service of the application depending on the resources
allocation. Finally we have found that the number of optimal
(Pareto) operating points is rather small with respect to the
overall number of possible configurations (from 3 up to 6). The
latter feature allows us to speculate that the run-time selection

of the configuration will be rather small in terms of overhead.

REFERENCES

[1] A. George, H. Lam, and G. Stitt. Novo-g: At the forefront of scalable
reconfigurable supercomputing. Computing in Science Engineering,
13(1):82 –86, jan.-feb. 2011.

[2] T. M. Brewer. Instruction set innovations for the convey hc-1 computer.
30(2):70–79, 2010.

[3] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and
V. Zaccaria. Linking run-time resource management of embedded multi-
core platforms with automated design-time exploration. IET Computers
& Digital Techniques, 5(2):123–135, 2011.

[4] G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria. Arte: An
application-specific run-time management framework for multi-core
systems. In Application Specific Processors (SASP), 2011 IEEE 9th
Symposium on, pages 86 –93, june 2011.

[5] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. M. Panainte. The molen polymorphic processor. 53(11):1363–1375,
2004.

[6] B. Mei, B. Sutter, T. Aa, M. Wouters, A. Kanstein, and S. Dupont.
Implementation of a coarse-grained reconfigurable media processor for
avc decoder. Journal of Signal Processing Systems, 51(3):225–243,
2008.

[7] G. Ansaloni, P. Bonzini, and L. Pozzi. Egra: A coarse grained
reconfigurable architectural template. (99):1–13, 2010. Early Access.

[8] F. Ferrandi, L. Fossati, M. Lattuada, G. Palermo, D. Sciuto, and
A. Tumeo. Automatic parallelization of sequential specifications for
symmetric mpsocs. In Proc. IESS07 - International Embedded Systems
Symposium 2007, pages 179–192, May 2007.

[9] J.-Y. Mignolet, R. Baert, T.J. Ashby, P. Avasare, Hye-On Jang, and
Jae Cheol Son. Mpa: Parallelizing an application onto a multicore
platform made easy. Micro, IEEE, 29(3):31 –39, may. 2009.

[10] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt. Integrating physical
constraints in hw-sw partitioning for architectures with partial dynamic
reconfiguration. 14(11):1189–1202, 2006.

[11] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo. Ant
colony heuristic for mapping and scheduling tasks and communications
on heterogeneous embedded systems. 29(6):911–924, 2010.

[12] Y. M. Lam, J. G. F. Coutinho, and W. Luk. Integrated hardware/software
codesign for heterogeneous computing systems. In Proc. 4th Southern
Conf. Programmable Logic, pages 217–220, 2008.

[13] K. Bertels, V.-M. Sima, Y. Yankova, G. Kuzmanov, W. Luk, G. Coutinho,
F. Ferrandi, C. Pilato, M. Lattuada, D. Sciuto, and A. Michelotti. HArtes:
Hardware-software codesign for heterogeneous multicore platforms.
30(5):88–97, 2010.

[14] Ch. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal. Fast
multidimension multichoice knapsack heuristic for mp-soc runtime
management. ACM Trans. Embed. Comput. Syst., 10:35:1–35:16, May
2011.

[15] W. Luk, J. G. F. Coutinho, T. Todman, Y. M. Lam, W. Osborne, K. W.
Susanto, Q. Liu, and W. S. Wong. A high-level compilation toolchain
for heterogeneous systems. In Proc. IEEE Int. SOC Conf. SOCC 2009,
pages 9–18, 2009.

[16] Lawrence Livermore National Laboratory. Rose compiler, 2011.
http://www.rosecompiler.org.

[17] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Yi Lu, and
S. Vassiliadis. Dwarv: Delftworkbench automated reconfigurable vhdl
generator. In Proc. Int. Conf. Field Programmable Logic and Applica-
tions FPL 2007, pages 697–701, 2007.

[18] R. J. Meeuws, C. Galuzzi, and K.L.M. Bertels. High level quantitative
hardware prediction modeling using statistical methods. In Proceed-
ings of the International Conference on Embedded Computer Systems:
Architectures, Models, and Simulations, pages 140–149, July 2011.

[19] Vittorio Zaccaria, Gianluca Palermo, and Giovanni Mariani. Multicube
explorer, January 2008. http://www.multicube.eu.

[20] Marco Laumanns. Analysis and Applications of Evolutionary Multiob-
jective Optimization Algorithms. PhD thesis, Swiss Federal Institute of
Technology, Zurich, Switzerland, 2003.

[21] K. Brandenburg, S. Brix, and T. Sporer. Wave field synthesis. In 3DTV
Conference: The True Vision - Capture, Transmission and Display of
3D Video, 2009, pages 1 –4, may 2009.

[22] J. Kontro, A. Koski, J. Sjoberg, and M. Vaananen. Digital car audio
system. Consumer Electronics, IEEE Transactions on, 39(3):514 –521,
jun 1993.

[23] K. Bertels, F. Bettarelli, S. Cecchi, E. Ciavattini, F. Ferrandi, W. Luk,
F. Piazza, C. Pilato, A. Primavera, V. M. Sima, and R. Toppi. The
hartes carlab: A new approach to advanced algorithms development for
automotive audio. In Audio Engineering Society Convention 129, 11
2010.


