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Abstract—We study the scalability of multi-lane 2D Polymor-
phic Register Files (PRFs) in terms of clock cycle time, chip
area and power consumption. We assume an implementation
which stores data in a 2D array of linearly addressable memory
banks, and consider one single-view and four suitable multi-view
parallel access schemes which cover all basic access patterns
commonly used in scientific and multimedia applications. The
PRF design features 2 read and 1 write ports, targeting the
TSMC 90nm ASIC technology. We consider three PRF sizes -
32KB, 128KB and 512KB and four multi-lane configurations - 8
/ 16 / 32 and 64 lanes. Synthesis results suggest that the clock
frequency varies between 500MHz for a 512KB PRF with 64
vector lanes and 970Mhz for a 32KB / 8-lanes case. Estimated
power consumption ranges from less than 300mW (dynamic)
and 10mW (leakage) for our 8-lane, 32KB PRF up to 8.7W
(dynamic) and 276mW (leakage) for a 512KB with 64 lanes.
We also show the correlation among the storage capacity, the
number of lanes, and the chip overall area. Furthermore, we also
investigated customized addressing functions. Our experimental
results suggest up to 21% increase of the clock frequency, and up
to 39% combinational hardware area reduction (nearly 10% of
the total area) compared to our straightforward implementations.
Concerning power, we reduce dynamic power with up to 31%
and leakage with nearly 24%.

I. INTRODUCTION
Processor designs have reached a point where increasing

the clock frequency is no longer feasible due to power
and thermal constraints of the silicon technology. As more
transistors are available with each semiconductor generation,
two major trends are used to improve performance: i) Chip
Multiprocessor (CMP) designs, relying on multithreading and
ii) hardware acceleration of specific workloads. Examples of
specialized extensions of General Purpose Processors (GPPs)
include Single Instruction Multiple data (SIMD) facilities,
exploiting Data Level Parallelism, but also custom hardware
support for, e.g., encryption algorithms such as the Advanced
Encryption Standard (AES) [1]. This shift in recent processor
architectures also influenced the way maximum performance
is achieved: the designers balance between adequate single
threaded performance and multi-processor scalability, often
complicating the programming paradigms.

The Polymorphic Register File (PRF) [4] was proposed to
provide a relaxed view for the programmer of high perfor-
mance vector applications. Unlike in existing vector architec-
tures, such as IBM 370 [3] and the Synergistic Processor Units
in the Cell BE [9], the PRF storage is not divided in a fixed
number of equally sized registers. The PRF registers are mul-
tidimensional, with arbitrary sizes and can be created / resized
at runtime. Previous studies ([4], [14]) have demonstrated that
PRFs suit computationally intensive workloads such as Floyd,
the Conjugate Gradient (CG) method and dense matrix mul-
tiplication. Moreover, PRFs could improve performance and
efficiency in state of the art many-core computers, potentially

saving area and power as shown in [5]. The benefits of two-
dimensional (2D) PRFs are: i) improved storage efficiency,
as the number of registers and their dimensions / sizes are
dynamically following the workload requirements; and ii)
performance gain, due to the reduced number of committed
instructions. Previous work, however, did not study the PRF
designs scalability in terms of different storage sizes.

This paper provides a scalability study of multi-module,
multi-lane PRFs featuring 2 read and 1 write ports, targeting
the TSMC 90nm ASIC technology. Three storage capacities
are considered: 32KB, 128KB and 512KB along with four
multi-lane configurations: 8 / 16 / 32 and 64 lanes. More
specifically, the main contributions of this work are:

• Cycle time analysis, suggesting that the maximum clock
frequency varies between 500MHz for a 512KB PRF with
64 vector lanes and 970Mhz for a 32KB, 8-lanes PRF;

• Relative combinational hardware and total area analysis
indicate that for the 32KB and 128KB capacities, the
combinational area grows exponentially when increasing
the number of vector lanes. For 512KB PRF, the com-
binational area difference between the 8 and 16 lanes
versions is of approximately 50%;

• Study of the dynamic and leakage power trends. Dynamic
power varies between approximately 300mW for an 8-
lane, 32KB PRF and 8.7W for 512KB, 64 lanes. Leakage
power is between 10mW for a 32KB, 8 lanes PRF and
276mW for a 512KB, 64-lane PRF;

• Analysis of customized module addressing functions.
Experimental results suggest clock frequency and combi-
national area improvements of up to 21% and 39%, with
10% decrease of total chip area. Furthermore, we can
reduce dynamic power with 31% and leakage with nearly
24% compared to our straightforward implementations.

The remainder of this paper is organized as follows: the
background information and related work are presented in Sec-
tion II. The evaluation methodology is described in Section III,
and the results are evaluated in Section IV. Finally, the paper
is concluded in Section V.

II. BACKGROUND AND RELATED WORK
A PRF is a parameterizable register file, logically reorga-

nized under software control, by the system / application pro-
grammer or by the runtime system, to support multiple register
dimensions and sizes simultaneously [4]. Fig. 1 provides an
example of a 2D PRF with a physical register size of 8 by
8 elements, containing 5 registers, defined using the Special
Purpose Registers (SPR). Currently, only 1D and 2D operands
are supported, but the PRF can be extended for any number
of dimensions. Potential performance gains are due to multi-
axis vectorization, efficient register storage utilization, higher
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Fig. 1. The Polymorphic Register File, N = 8, M = 8

bandwidth utilization, customizable number of registers and
reduction of the program code size.

Previous works indicate possible reductions of the number
of executed instructions by three orders of magnitude due to
PRF [4]. Furthermore, PRFs allow performance benefits when
compared to the Cell processor for Floyd and the main kernel
of the CG Method - sparse matrix vector multiplication [4].
The PRF programming interface allows high performance
dense matrix multiplication with at least 35 times less instruc-
tions than a hand-crafted version for the Cell BE [14]. One of
the objectives of the PRF, as part of the Scalable ARChitecture
(SARC) project [14], is multi-core scalability. A CG case study
evaluated the PRF based system scalability in a heterogeneous
multi-core architecture and showed CG acceleration by two
orders of magnitude when using up to 256 PRF instances,
with 32 vector lanes each. Moreover, a similar performance
level could be achieved by fewer PRF instances than the
cores needed in a Cell BE-based system, potentially saving
area and power [5]. An FPGA implementation, prototyped
in [6], can adjust additional PRF parameters during runtime
(e.g., total storage size, number of lanes and ports), at the
expense of lower clock frequency compared to the ASIC
version presented here.

In all previous studies, up to 32 vector lanes were con-
sidered. All related studies indicate that the ability of the
PRF to provide data to multiple parallel vector lanes at high
rates is a key enabler of high performance computing. The
main goal of the work presented hereafter is to analyze the
scalability of the PRFs and identify the possible bottlenecks
of the considered implementation. In order to determine if even
higher performance PRFs than studied before are practically
feasible, we examine configurations with up to 64 parallel
lanes, and evaluate the clock cycle time, area and power.

We assume a PRF implementation containing N ×M data
elements, stored using p× q memory modules, which enables
efficient use of up to p · q parallel vector lanes [2], each
containing one or more vector functional units. Throughout
this paper, we will use ”×” to refer to a 2D matrix, and ”·”
to denote multiplication.

We consider five parallel access schemes suitable for the
implementation of the PRF: the single-view Rectangle Only
(ReO) scheme, which supports conflict free accesses shaped as
p×q rectangles, suggested in [11], and a set of four multi-view
schemes, supporting conflict free access to the most common
vector operations for scientific and multimedia applications,
also used in [6]: 1) Rectangle Row (ReRo): p × q rectangle,

TABLE I
THE MODULE ASSIGNMENT FUNCTIONS

Scheme mv mh

ReO i%p j % q

ReRo
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⌊
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⌋)
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(⌊
i
p
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%q

ReTr, p < q i%p (i− i%p+ j)%q

p · q row, p · q main diagonals if p and q + 1 and co-prime,
p · q secondary diagonals if p and q − 1 are co-prime; 2)
Rectangle Column (ReCo): p× q rectangle, p · q column, p · q
main diagonals if p + 1 and q are co-prime, p · q secondary
diagonals if p−1 and q are co-prime; 3) Row Column (RoCo):
p · q row, p · q column, aligned (i%p = 0 or j%q = 0) p× q
rectangle; 4) Rectangle Transposed Rectangle (ReTr): p × q,
q × p rectangles (transposition) if p%q = 0 or q%p = 0.

The parallel access scheme assigns (i, j), the address of
an element stored in the 2D PRF, to a position in one of
the memory modules. The row and column of the memory
module are computed by the Module Assignment Functions
(MAFs) mv() and mh(), and the intra-module position by
the addressing function A(). MAFs for the five considered
schemes are shown in Table I.

For all the schemes considered, the standard linear address
assignment function [6] can be customized for accessing
blocks of p · q elements. In this case, the coordinates (i, j)
refer to the upper left corner of the accessed block:

A(i, j) =

(⌊
i

p

⌋
+ ci

)
·
(
M

q

)
+

⌊
j

q

⌋
+ cj (1)

The ci and cj coefficients are unique for each memory
scheme and access shape. For the standard, non-customized
addressing function, ci = cj = 0. Their complete mathemati-
cal definitions are provided in [11] and in [6].

Related Work: The efficient processing of multidimen-
sional matrices has been targeted by other architectures as
well. One approach is to use a memory to memory archi-
tecture, such as the Burrows Scientific Processor (BSP) [10].
Being optimized for executing Fortran code, the ISA com-
posed of high level vector instructions with a large number
of parameters. The arithmetic units were equipped with 10
registers which are not directly accessible by the programmer.
The Polymorphic register file also creates the premises for a
high level ISA, but can reuse data directly within the register
file. The Complex Streamed Instructions (CSI) [8] approach
did not make use of data registers. CSI allows the processing of
2D data streams of arbitrary length, but requires data caches to
benefit from data locality. Our approach suggests the register
file as a cost-effective alternative of high speed data caches.

The Vector Register Windows (VRW) [12] concept allows
grouping of consecutive vector registers in a 2D window.
However, one of the dimensions is fixed, contrary to our
proposal. The Matrix Oriented Multimedia (MOM) [7] also
uses a 2D register file, but with a fixed number of registers
which used sub-word parallelism in order to store up to
16x8 elements. The Polymorphic register file also supports
sub-word level parallelism but doesn’t restrict the number or
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Fig. 2. PRF block diagram, p=2, q=4

shapes of the two dimensional registers. A Modified MMX
(MMMX) [15] supports 8 multimedia registers, each 96 bits
wide, with matrix operations limited to only loads and stores.

The Register Pointer Architecture(RPA) [13] extends scalar
processors by adding two additional register files - Dereferen-
cible Register File (DRF) and the Register Pointers (RP). The
DRF provides the storage space, while the RP provide indirect
access to the DRF. The PRF also uses indirect accessing to a
dedicated register file, but the RPA maps scalar registers, while
in our proposal each indirection register points to a matrix,
being more suitable for vectors.

In order to adjust the number of registers and the total size of
the physical register file in a VLIW, FPGA partial reconfigura-
tion is used in [16]. Our approach assumes fixed physical reg-
ister file size, but at a higher level logical view, offers variable
fragmentation of the storage space, eliminating many overhead
instructions, potentially improving performance. While partial
reconfiguration is only available in FPGAs, the PRF does not
rely on any specific hardware technology, therefore it can be
successfully implemented in both ASICs and FPGAs.

III. DESIGN UNDER STUDY

The block diagram of an 8 vector lanes PRF hardware
implementation, first proposed in [6], is depicted in Fig. 2
(SPR not shown). The data of the PRF is distributed among
p × q linearly accessible memory modules, organized in a
2D matrix with p rows. The Address Generation Unit (AGU)
computes the addresses of all involved PRF elements, denoted
as i+ α, j + β. The generated addresses are fed to the MAF
m(), which controls the read and write shuffles.

In the standard case, the AGU provides the input to the
regular addressing function, mapping each accessed element
to the location in the corresponding memory module. However,
the addresses need to be reordered according to the MAF
before being sent to the memory modules.

When using the customized addressing functions, the shaded
blocks in Fig. 2 are replaced by the ci, cj coefficients as well
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(c) 256x256(512KB) PRF
Size 64x64(32KB) 128x128(128KB) 256x256(512KB)

Scheme 8 16 32 64 8 16 32 64 8 16 32 64Lanes
ReO 1.9 0.9 6.0 21.1 0.0 9.0 0.0 21.3 -1.4 -14.3 5.5 11.6
ReRo 1.0 0.0 7.6 7.8 -0.9 0.9 -0.8 10 9.4 -0.8 0.7 9.9
ReCo -4.5 -3.5 7.9 10.9 7.3 7.8 2.2 1.2 -10.4 -3.9 15.4 7.0
RoCo 2.7 0.0 10.3 6.1 -0.9 6.8 12.2 7.4 9.2 1.7 2.3 9.3
ReTr 8.5 1.9 12.9 14.9 3.8 3.3 2.4 10.5 -9 -9.1 19.2 12.4

(d) Maximum Frequency Difference, CST vs. STD (%, − denotes decrease)

Fig. 3. Clock Frequency

as the customized addressing function (Eq. 1), eliminating the
need to shuffle the read and write intra-module addresses.

We implemented a PRF prototype design with 2 read and
1 write ports with 64-bit data path using SystemVerilog. For
synthesis, Synopsys Design Compiler Ultra version F-2011.09-
SP3 in topographical mode was used, which accurately pre-
dicts both leakage and dynamic power. As no particular work-
load was considered in this study, we did not use switching
activity traces for power estimations. In all experiments, the
tool was programmed to optimize for best timing, targeting
the TSMC 90nm technology. In all considered designs, the
shuffle networks have been implemented using full crossbars.
Using the Artisan memory compiler, a 1GHz 256x64-bit dual-
port SRAM register file was generated and used as the atomic
storage element for our PRF. When the required capacity of
the memory modules exceeded the available maximum of 256,
several SRAM modules were connected together. We coupled
two dual-port SRAMs and duplicated their data in order to
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(b) 128x128(128KB) PRF
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(c) 256x256(512KB) PRF
Size 64x64(32KB) 128x128(128KB) 256x256(512KB)

Scheme 8 16 32 64 8 16 32 64 8 16 32 64/ Lanes
ReO -8 -29 -14 -18 -18 -21 -34 -21 -6 -23 -20 -20
ReRo 8 -20 -7 -15 -14 -16 -20 -14 -1 -17 -15 -17
ReCo 4 -23 -17 -22 5 -22 -17 -18 6 -14 -30 -22
RoCo -28 -20 -5 -10 -22 -28 -6 -19 -3 -17 -22 -20
ReTr -14 -18 -10 -14 -17 -21 -29 -17 -20 -18 -39 -18

(d) Combinational Area Difference, CST vs. STD (%, − denotes decrease)
Fig. 4. Combinational Area

obtain 2 read ports. For all considered configurations, we label
the straightforward designs which use the regular addressing
function as STD, and the ones using the custom addressing
function and the ci and cj coefficients as CST.

IV. EVALUATION RESULTS

We study clock frequency, chip area and dissipated power.
Clock Frequency: The clock frequency evaluation results

are presented in Fig. 3. The first five configurations use the
regular addressing function, while the last five use customized
ones. As suggested by Fig. 3(a), for a 32KB PRF, the highest
clock frequency - 970MHz - is estimated for the 8 lanes ReO
CST scheme. The clock frequency decreases as more vector
lanes are added to the design, and the slowest 32KB con-
figuration is RoCo STD, clocked at 574MHz. The difference
between 8 and 16 vector lanes is less than 50MHz for all
the configurations, increasing to around 100Mhz - 150MHz
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(b) 128x128(128KB) PRF
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(c) 256x256(512KB) PRF
Size 64x64(32KB) 128x128(128KB) 256x256(512KB)

Scheme 8 16 32 64 8 16 32 64 8 16 32 64/ Lanes
ReO -0.2 -3.6 -3.3 -7.3 -0.3 -0.8 -5 -8.5 -0.1 -0.4 -0.8 -3.2
ReRo 0.3 -2.5 -1.7 -6.2 -0.2 -0.6 -3.4 -5.9 0 -0.3 -0.7 -2.9
ReCo 0.2 -3.3 -4.1 -9.6 0.1 -1.1 -2.5 -7.4 0.1 -0.2 -1.8 -3.9
RoCo -1.4 -3 -1.1 -4.2 -0.4 -1.5 -1.2 -8.3 0 -0.3 -1.2 -3.4
ReTr -0.5 -2.4 -2.4 -5.8 -0.3 -1 -4.5 -7.1 -0.3 -0.3 -2.3 -3.1

(d) Total Area Difference, CST vs. STD (%, − denotes decrease)
Fig. 5. Total Area

between 16 and 32 lanes. The largest drop in clock speed, of
approximately 200 MHz is when 64 lanes are available. The
same trend holds for the 128KB and 512KB configurations
(Fig. 3(b) and 3(c)), with the slowest design being ReCo STD,
which runs at 500MHz. For a 512KB PRF, the fastest STD
scheme is ReO, which has the simplest MAF and custom
addressing functions, with a minimum operating frequency
of 578MHz, up to 15% faster than the multi-view designs.
The results suggest that the number of vector lanes influences
the clock frequency stronger than the storage size. Had larger
SRAM modules been utilized, storage size influence would
probably be further reduced.

Fig. 3(d) depicts the relative difference when utilizing
the customized addressing functions. Positive values indicate
frequency increase, while negative - frequency decrease. If 8 or
16 lanes are used, customizing the addressing functions does
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(c) 256x256(512KB) PRF
Size 64x64(32KB) 128x128(128KB) 256x256(512KB)

Scheme 8 16 32 64 8 16 32 64 8 16 32 64/ Lanes
ReO 4 -12.7 -9.4 -7 -4.8 2.9 -16.7 -8.6 -6.4 -9.4 -3.5 -2.9
ReRo 1.5 -1.9 -7.1 -5.9 -2.9 -3.4 -14.1 -7.7 -2.1 -1.2 -2.9 -11.2
ReCo 4.8 -2.8 -11.9 -17.3 -0.3 -18.6 -5.6 -7.9 5.4 1 -30.9 -11.1
RoCo -12.4 -12.5 -5.4 -6.4 -12.9 -20.4 -7.7 -9.5 -17.2 -12.7 -11.6 -17.5
ReTr -4.7 -0.2 -17 -10.2 -2.3 -6.9 -9.5 -4.9 -7 -6.9 -30.7 -8.4

(d) Dynamic Power Difference, CST vs. STD (%, − denotes decrease)
Fig. 6. Dynamic Power

not necessarily enhance performance. However, for 32 or 64
lanes, the increase in clock frequency is as high as 21% for
the 32KB ReO design, and 19.2% for the 512KB ReTr one.
The shuffle networks are on the critical path of the design.
For a small number of lanes, the increased complexity of the
customized addressing functions cancels out the advantage of
eliminating the address routing circuits. However, the com-
plexity of the full crossbars increases drastically for 32 and
64 ports and the elimination of the address shuffles leads to
reduced clock cycle times for 32 and 64 lanes PRFs.

Silicon Chip Area: Fig. 4 and 5 present the combinational
and total area of the PRF. When the number of lanes is
increased, the combinational area increases exponentially for
the 32KB and 128KB configurations (Fig. 4 (a) and 4 (b)),
at a rate of approximately 4 times for doubling the number
of vector lanes. For the 512KB configuration (Fig. 4 (c)), the
difference in terms of combinational area for the 8 and 16
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(b) 128x128(128KB) PRF
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(c) 256x256(512KB) PRF
Size 64x64(32KB) 128x128(128KB) 256x256(512KB)

Scheme 8 16 32 64 8 16 32 64 8 16 32 64/ Lanes
ReO 0.3 -16.5 -8.1 -15.2 -1.7 -4.1 -22.1 -18 -0.3 -2.7 -4 -10.4
ReRo 3.4 -10.6 -2.3 -13.1 -2.2 -2.8 -12.5 -11.1 -0.2 -1.7 -2.6 -10.4
ReCo 2.6 -12.4 -10.5 -23.5 0.8 -6.8 -8.2 -15.1 1.1 -1 -11.9 -13.5
RoCo -9.3 -9.4 1.5 -8.1 -2.9 -8.4 -1.8 -15.7 -0.5 -1.8 -6.5 -11.4
ReTr -1.3 -9.1 -5.1 -12.4 -2.1 -5.1 -15.8 -13.7 -3.1 -2.5 -14.4 -10.4

(d) Leakage Power Difference, CST vs. STD (%, − denotes decrease)
Fig. 7. Leakage Power

lanes versions is of approximately 50%, significantly smaller
than between 16 to 32 lanes. For the 32 and 64 lanes versions,
the exponential trend is maintained.

In Fig. 4(d), the relative reduction of combinational area
obtained by using customized addressing functions is shown.
For the ReTr scheme, savings of up to 39% can be observed,
while for the ReO scheme the highest combinational area
savings amount to 34% for the 128KB configuration.

When also factoring in the non-combinational area, for
the 32KB configuration (Fig. 5(a)), using 16 lanes consumes
approximately 10% more total area than the 8 lanes version.
However, when vector lanes are added an exponential increase
in total area is observed. Compared to the 16 lanes configura-
tion, total area more than doubles when using 32 lanes, and it
increases by a factor of approximately 6 for the 64 lanes PRF.

If the storage capacity of the PRF is increased to 128KB
(Fig. 5(b)), the differences between the different multi-lane
configurations are reduced. The area overhead of the 16 lanes



configuration compared to one with 8 lanes is less than 5%,
while the 32 lanes configuration consumes less than 20%
more. The total area of the 64 lanes version is approximately
70% larger than the 8 lanes baseline. When the storage
grows to 512KB (Fig. 5(c)), the difference regarding total
area between 64 lanes and 8 lanes is less than 22%. When
correlating with the combinational and total area results, it
is clear that the relative area of the SRAM blocks becomes
dominant as the total size of the PRF increases. Therefore,
our results suggest that it would be most efficient to design a
small (e.g., 32KB) PRF with a small number of vector lanes
(8 or 16). Moreover, if a large storage space is required, the
relative cost of additional vector lanes is significantly reduced.

Fig. 5(d) indicates that the exponential growth of the combi-
national area when the number of lanes is increased translates
into higher total area savings if using customized addressing
functions: the largest total area savings are observed for the 64
lanes versions: 7.3% for the 32KB ReO scheme, and 9.6% for
the 32KB ReCo one. As the total size of the PRF is increased
and the proportion of the combinational circuits is reduced,
the total area savings also decrease: 3.2% of the 512KB ReO
scheme and 3.9% for the ReCo configuration.

Power: Dynamic power evaluation results are shown in
Fig. 6. For 32KB PRF (Fig. 6 (a)), the dynamic power
increases exponentially from less than 0.3W for 8 lanes up
to 6.3W for the ReCo STD scheme - an increase of more
than 20 times. When the PRF capacity is increased to 128KB
(Fig. 6 (a)), dynamic power consumption of 8 lane PRF
increases by approximately 150mW, varying between 350mW
to 443mW depending on the memory scheme. The highest
power consumption for the 128KB, 64 lanes PRF remains
6.3W (RoCo STD). For the 512KB PRF, dynamic power
consumption ranges from less than 1.2W for 8 lanes up to
8.7W for RoCo STD version, and Fig. 6 (c) suggests that the
dynamic power increases by approximately 35% between 8
and 16 lane cases. The results show that for smaller PRFs
(e.g., 32KB), dynamic power increases exponentially with the
vector lanes, while for 512KB, the dynamic power penalty
between 8 and 16 vector lanes is moderate.

Fig. 6 (d) shows that dynamic power can be reduced by
customizing the addressing functions by up to 17.3% for the
32KB ReCo scheme with 64 lanes, 18.6% for the 128KB 16-
lane ReCo scheme and 30.9% for 32-lane ReCo.

For the 32KB PRF, leakage power increases exponentially
as vector lanes are added (Fig. 7 (a)), from less than 10mW for
8 vector lanes up to 178mW for 64 lanes. For larger capacity
PRFs, the leakage from the SRAM blocks has a larger impact
(Fig. 7 (b) and (c)). Therefore, there is a significant increase
in leakage power for the 8 lanes PRF, which grows from less
than 10mW for 32KB to approximately 30mW for 128KB and
up to 125mW for the 512KB variant. However, the growth rate
for the 64 lanes PRF is smaller: the highest leakage power for
32KB PRF is 178mW (STD ReCo), compared to 276mW for
the 64-lane version. The results suggest a similar trend for the
leakage as for the the dynamic power: the penalty of adding
more lanes reduces as the capacity of the PRF increases.

Fig. 7 (d) reveals that using customized addressing functions
can reduce leakage power by up to 23.5% for the 32KB PRFs
with 64 lanes, 22.1% for the 128KB version with 32 lanes and
14.4% for the 512KB version with 32 vector lanes, the highest
benefits being observed for the 32 and 64 lanes configurations.

V. CONCLUSIONS AND FUTURE WORK

We evaluated the scalability of 2D Polymorphic Register
Files with 2 read and 1 write ports, using TSMC 90nm
technology. We considered one single-view and four multi-
view parallel memory schemes, three storage capacities: 32KB
/ 128KB / 512KB and four versions in terms of parallel
vector lanes number: 8 / 16 / 32 and 64. Synthesis results
suggest practically feasible clock frequencies, varying from
500MHz to 970MHz, and power consumption within imple-
mentable limits, ranging from less than 300mW dynamic and
10mW leakage up to 8.7W dynamic and 276mW leakage.
Our results also indicate the correlation between the storage
capacity, number of lanes and the combinational and total area.
Using customized addressing functions further increases the
maximum clock frequency by up to 21% and reduces by up
to 39% the combinational area, and by nearly 10% the total
chip size. We could reduce dynamic power with up to 31%
and leakage with nearly 24% compared to our straightforward
implementations. The evaluation results suggest that the PRF
can be employed in both embedded and high performance
computers. We have identified the full crossbar shuffle net-
works as the main implementation bottleneck. Therefore, in
our future work, we will investigate customized interconnects.

REFERENCES

[1] K. Akdemir et al. Breakthrough AES Performance with Intel AES New
Instructions. White paper, June 2010. Available online (12 pages).
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