2012 41st International Conference on Parallel Processing Workshops

On Virtualization of Reconfigurable Hardware in
Distributed Systems

M. Faisal Nadeem, M. Nadeem, and Stephan Wong
Computer Engineering Laboratory, Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, The Netherlands
{M.F.Nadeem, M.Nadeem, J.S.S.MWong}@TUDelft.nl

Abstract—In the design of next-generation distributed and
high-performance computing systems, Reconfigurable Pro-
cessing Elements (RPEs) such as FPGAs and multi-core
heterogeneous computers will play an important role. FPGAs
are well-known for their programmability, power efficiency,
reasonably high performance, functional flexibility, and their
scalability. However, proper virtualization schemes at higher
software abstraction layers to utilize these RPEs are under
research. In this paper, we propose a virtualization frame-
work for distributed computing systems that supports RPEs.
First, we present various scenarios in terms of use-cases
to discuss the utilization of RPEs in distributed computing
systems. Secondly, we propose a scheme to virtualize RPEs
in distributed systems. Based on various virtualization levels,
we provide a general model for a computing node which
incorporates both General Purpose Processors (GPPs) and
RPEs. Thirdly, we present a typical application task model.
Finally, we present a case study of a large-scale application
from the bioinformatics domain, which demands different
types of processing elements in a distributed computing
system.

Index Terms—Resource virtualization; Reconfigurable pro-
cessing elements; Distributed computing systems; Use-case
scenarios; Case study.

I. INTRODUCTION AND MOTIVATION

Distributed computing systems, such as grid networks uti-
lize computing resources that are geographically distributed
over the globe to perform computations for large-scale sci-
entific applications that exceed the capabilities of clustered
desktop computer or even a supercomputer [1][2]. Generally,
the overall performance of a distributed computing system
greatly depends on the processing power of the employed
computing resources and till now, the main processing
elements in these systems were (programmable) general-
purpose (multi-/many-) core processors. However, due to
growing demands of new scientific applications, more perfor-
mance and power efficiency are required from the processing
elements [3]. Therefore, new possibilities are opening up in
order to utilize Reconfigurable Processing Elements (RPEs)
such as FPGAs, in distributed systems [4][5].

In recent decades, FPGAs have obtained growing attention
due to their flexibility, power efficiency, and ease of use
[6]. Some of the characteristics of reconfigurable hardware
include, adaptability and short design time, functional flex-
ibility, ease of use, extensible (adding new functionality),
power efficiency, reasonably high performance, hardware
abstraction, and scalability by adding more cores. Most
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significantly, the reconfigurable architectures are utilized as
hardware accelerators in order to increase performance. In
addition, the (re-)configurability of these architectures means
that they can be optimized for different applications without
overhead operations that are required when using traditional
architectures result in less resource waste and reduced en-
ergy consumption. Furthermore, they also provide the pro-
grammability of a general-purpose processor. Therefore, we
propose a generic virtualization framework for a computing
node in a grid system, that contains RPEs along with GPPs.

However, the design complexity and utilization of the RPEs
in a distributed grid system lead to innovative research and
open problems. One such problem in grid computing is the
virtualization of hardware by hiding the details of the un-
derlying hardware. Virtualization allows several application
tasks to utilize resources by putting an abstraction layer
between the tasks and resources.

The traditional grid systems are already virtualized for
GPPs; hence, they are often termed as Virtual Organization,
and there is a hardware independent layer between appli-
cation developers and resources [2]. Although many pre-
vious attempts have been made to virtualize reconfigurable
hardware in order to utilize them effectively for more than
one application tasks [7][8][9], but with many limitations.
Their main focus is on a single device [8][10] or a multi-
FPGA High Performance Reconfigurable Computing (HPRC)
system, and none of them discusses the virtualization for
RPEs in a distributed grid computing system.

In this paper, we propose a general framework to virtualize
a computing node in a grid system, which contains GPPs as
well as RPEs. The proposed virtualization framework can be
used to obtain and demonstrate the following objectives:

e More performance can be achieved by utilizing recon-
figurable hardware, at lower power.

Due to abstraction at a higher level, an application
program can be directly mapped to any of the RPE or
the GPP.

Reconfigurable hardware is expected to support recon-
figurability and different hardware implementations on
the same RPE are possible due to reconfigurable nature
of the fabric.

The resources can be utilized in a more effective manner
when the processing elements are both GPPs and RPEs.
Those grid applications which contain more parallelism
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can get more benefit if executed on the reconfigurable
hardware.
The proposed virtualization framework is adaptive in
adding/removing resources at runtime. Application tasks
can be seamlessly submitted to the grid system. The main
contributions of the paper are the following:

1) We present and describe a set of various use-case
scenarios of applications that can benefit from our
presented virtualization framework.

2) Based on the use-case scenarios and their virtualization

levels, we provide a generic model for a grid node
which incorporates both general-purpose and recon-
figurable processing elements. Similarly, we present
a typical task model representing an application task
which requires a specific processing element for its
execution.
Finally, we present a specific case study of a real
world large-scale application that takes benefit of the
proposed framework, and utilizes various processing
elements in a distributed system.

3)

The remainder of the paper is organized as follows. Section
1T presents related work. Section III presents possible use-
case scenarios of applications utilizing various processing
elements. It also discusses virtualization/abstraction levels on
distributed network with reconfigurable elements. In Section
IV, we explain our proposed virtualization framework. In
Section V, we present a case study to show the utilization of
reconfigurable processing elements in a distributed network.
Finally, Section VI discusses the conclusions and future work.

II. RELATED WORK

In this section, we provide some related work. In a survey
[7], the authors identified three different approaches of
hardware virtualization. In the first approach called temporal
partitioning, a large-scale application is divided into smaller
parts which can be mapped onto full FPGA. Then, each part
is run sequentially, until the whole application is executed.
In the second approach called virtualized execution, a certain
level of device-independence — for a particular family of
FPGAs — is achieved through a proposed programming
model that defines an application task as an atomic unit of
computation. In this way, a runtime system is developed to
ensure that the application can be executed on any FPGA
which is part of a device family. In the third approach, a
hardware virtual machine is proposed which can execute an
application on a general abstract FPGA architecture. This
provides an even higher abstraction level and is useful for
those reconfigurable systems which can be utilized in a
network of FPGAs. Similarly, [11] specified general method-
ologies for the virtualization of reconfigurable devices in
hardware and software systems. The authors adopted the
concepts used in the operating systems, such as partitioning
and overlaying.

In [8], two different hardware resource virtualization tech-
niques have been proposed, for dynamically partially recon-
figurable systems. In the first approach — logic virtualization
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technique — an FPGA is configured for a set of application
tasks at runtime. It is a many-to-one mapping which supports
many applications, dynamically. In the second approach —
hardware device virtualization — an FPGA is configured with
more than one hardware functions. In this one-to-many map-
ping, a single software application can utilize many functions
on a single device. Similarly, [10] proposed a virtualization
layer for dynamically allocating hardware functions on a
reconfigurable system, to execute any software application.
However, the techniques presented in these works are fo-
cused on a single FPGA device.

In [12], the authors proposed an approach to virtualize
and share reconfigurable resources in High-Performance Re-
configurable Computers (HPRCs) that contain multi-node
FPGAs. The main idea is to utilize the concept of wvirtual
FPGA (VFPGA) by splitting the FPGA into smaller regions
and executing different task functions on each region. The
validation process is carried out by using an HPRC system,
Cray XD1, and implementing a layer of OS virtualization to
manage the virtual regions. Although, this approach utilizes
a multi-FPGA system, but it does not focus on a distributed
system containing FPGAs.

All the above-mentioned works attempt the FPGA virtual-
ization for a single node or a multi-FPGA system. However,
in [9], an abstract model of hardware virtual machine is
proposed for the networked reconfiguration of FPGAs. The
main focus of the work is to propose a design flow model
by identifying the responsibilities of a client and a service
provider. In this model, both the client and the service
provider become aware of the FPGA mapping tools — which
they are required to maintain — in order to reconfigure
the device and execute the application tasks. But in their
approach, it is not discussed, how to manage the FPGA
resources in the resource management system.

Various different Workflow Management Systems in grid
computing to match tasks with different computing re-
sources, have been surveyed in [13]. Most important of such
systems is the Condor project [14]. It supports a mix of
various GPP resource and matches computing jobs accord-
ingly. However, there is no previous work about the efficient
utilization of RPEs in such system. It is expected that the
future distributed systems will contain RPEs as their main
processing elements, along with the GPPs. Therefore, the grid
managers seek new methods for the virtualization of RPEs
along with existing computing resources. In this paper, we
propose a general virtualization approach for a computing
node which contains both RPEs and GPPs.

III. USE-CASE SCENARIOS

In this section, we discuss all possible use-case scenarios
of applications that utilize RPEs. Each of these scenarios
have certain characteristics that need to be translated to spe-
cific requirements. Therefore, we present our virtualization
framework that includes provisions to map the requirements
of all possible scenarios to the required RPEs. Figure 1
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Figure 2: Different virtualization/abstraction levels on a reconfigurable grid system.

depicts a taxonomy of enhanced processing elements in high-
performance domain. The framework focuses on virtualiza-
tion of a computing node in a grid system, which contains
GPPs as well as RPEs. However, it is extendable to add more
types of processing elements. In the Section III-A, we discuss
a scenario with already existing software-only applications,
whereas in the Section III-B, we describe hybrid applications
which can be executed on either GPPs or RPEs.

A. Software-only applications

Many existing applications are already developed for GPP-
based grid networks. Therefore, there is a need to provide
mechanism on the next-generation polymorphic grid net-
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works to provide backward compatibility and support such
applications. Their performance on the new grid network
should be similar if not better. Therefore, this use-case sce-
nario covers all the software-only applications already exist-
ing for the grid networks. These applications are executed
on the GPP nodes and are not aware of the reconfigurable
fabric in the grid. However, if the grid system can not provide
the required GPP node to an application at some instance, it
should be able to configure a soft-core CPU on a currently
available RPE to obtain similar if not better performance.
This use-case scenario is depicted in Figure 1 under the pre-
determined hardware configuration.



Table I: Parameters of different processing elements.

Processing Element | Parameter Description

Logic cells, Slices, LUTs, Gates, Designed to implement user-defined combinatorial and
Macrocells, ALMs sequential functions.
BRAM, Memory Blocks, Additional memory blocks available in terms of distributed
Embedded Memory RAM.

FPGA DSP Slices Pre-configured multiplier, adder, and accumulator required

for high-speed filtering.

Speed Grades Maximum frequency at which a device can operate.
Reconfiguration Bandwidth Speed (in MB/s) to reconfigure a device
I0Bs Support different I/O Standards
Ethernet MAC Embedded MAC for Ethernet applications
CPU Type/Model Type of CPU
MIPS ratings Million Instructions per Second processing capability

GPP oS Operating System
RAM Main Memory
Cores Total number of cores
FU Type Multipliers, ALUs
Issue Width Number of Issues
Memory Instruction and Data memory

Softcores (VLIW) Register File Register file size

Pipeline Number and Size of Pipelines
Clusters Number of Clusters
Model GPU Model
Shader Cores Number of Data Parallel cores

GPU Warp Size Number of SIMD threads grouped together
SIMD Pipeline Width Size of SIMD Pipeline
Shared Memory/Core Shared Memory per Core
Memory frequency Maximum clock rate of memory

B. Hybrid applications

In this scenario, the application is aware of the reconfig-
urable fabric on the grid network. Therefore, the application
makes use of such computing nodes that contain both GPPs
and RPEs. In this way, the performance of the application
can be improved. This use-case scenario can be divided into
further parts, explained as follows:

1) Pre-determined Hardware Configuration: There could be
a situation where some of the compute-intensive tasks in a
certain application, are implemented in an optimized way
to improve the performance. These optimizations for speed
are specific to some particular architecture, for example,
software kernels (FFTs, filters, multipliers etc.) optimized for
VLIW, RISC, uBLAZE, etc. Therefore, these tasks need to
be executed on those particular architectures. One example
of such architecture is a soft-core p-VEX VLIW processor
(Ptype) implemented on an FPGA [15]. Depending upon the
requirements of an application, it can be adopted to several
parameters such as, the number of issue slots, cluster cores,
the number and types of functional units, or the number of
memory units.

Such applications consist of generic and the user-selected
soft-core specific tasks. The generic tasks are mapped onto
the GPPs, whereas the other specialized tasks are executed
on the corresponding user-defined soft-cores. In this scenario
(see Figure 1), the architecture becomes more general purpose
in nature, allowing temporal execution of wide range of
applications. It is normally low-power and low-frequency
design which is more flexible, but with less performance.
Figure 2 depicts different virtualization/abstraction levels for

a user. In this scenario, a grid user can view soft-core CPUs,
along with the grid nodes.

2) User-defined Hardware Configuration: Open-source (e.g.,
the OpenCores IPs [16]) hardware are already available for
specific tasks in many applications. Therefore, these designs
— which are available in generic HDLs — can be reused, while
developing the system applications. As depicted in Figure 1,
this use-case scenario represents applications which are com-
plex, and cycle (or performance) and/or data hungry. Hence,
they consume a lot of time to finish their processing and
provide results. For such applications, the performance can
be significantly improved by application-specific accelerators
which can greatly reduce the time overhead and therefore,
an application designer would like to provide such hardware
accelerator to be configured on the fabric in the grid. Here,
the application developer provides the hardware accelerator
specifications in generic hardware description languages,
such as VHDL and Verilog. On one hand, this scenario creates
opportunities for the grid managers to map the generic
hardware accelerators on any of the available reconfigurable
fabric in the grid to improve the utilization of its hardware
resources. On the other hand, it also provides important grid
services, such as mechanism and tools to generate device
specific bitstreams for the user. In this use-case, the service
provider is required to possess the synthesis CAD tools. A
certain degree of device independence is achieved due to
generic nature of user application specifications. However,
the design is limited to a specific range of applications. On
this virtualization level (see Figure 2), the reconfigurable fabric
is visible to the grid user.
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3) Device-specific Hardware: This is the lowest level of
virtualization (see Figure 2) where the user is aware of
the device specifications available in the grid. In case the
user wants to make use of his own hardware design or IP
for a particular device. Therefore, the grid should provide
opportunity for such user to submit his/her applications.
This scenario is suitable for the users with applications
which require higher performance. In this case, the grid user
can make use of a hardware of his/her own choice. The
hardware is directly visible to the user. The cost of the high
performance is long application development time. In this
scenario, the service providers are not required to possess the
CAD tools. However, they are expected to provide the specific
device targeted by the application developer.

C. Different Virtualization/Abstraction levels

All these use-case scenarios lead to different virtualiza-
tion/abstraction levels in a grid system, as depicted in Figure
2. It can be noted that, as we go to a lower abstraction level,
the user should add more specifications along with his/her
tasks and get more performance, and vice versa. For instance,
at the lowest abstraction level, a user must provide device
specific hardware along with application tasks.

IV. THE PROPOSED VIRTUALIZATION FRAMEWORK: OUR
APPROACH

Based on the use-case scenarios discussed in the Section
III, we discuss our proposed framework for reconfigurable
hardware virtualization in distributed systems. We propose
models for a general grid node and a generic application
task which can incorporate both GPPs and RPEs in a grid
network.

A. A typical node model

Figure 3 depicts our proposed grid node model to incorpo-
rate RPEs, along with GPPs. It contains a list of all processing
elements (GPPs and RPEs) and their attribute, and can be
defined as follows:

Node (NodeID,GPP Caps, RPE Caps, state) (1)

A typical grid node contains a list of resources as depicted
in Figure 3. Each resource consists of a null terminated list
of GPPs, RPEs, and their current state. Each data member
in the list of GPPs (or RPEs) is characterized by GPP Caps
(or RPE Caps), which represents a set of parameters.

These parameters provide information about the capabili-
ties of the GPP (or RPE). A typical list of these parameters is
given in Table I. Similarly, state represents the current states
of different elements. It is a dynamically changing attribute
of the node. For instance, the state can provide the current
available reconfigurable area or maintains the information of
current configuration(s) on an RPE.

The proposed node model is generic and adaptive in
adding/removing resources at runtime. Furthermore, a grid
manager can add more parameter specifications of a partic-
ular processing element.
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NULL NULL

Figure 3: A typical grid node to virtualize RPE.

B. A typical application task model

Figure 4 depicts the proposed model for a typical applica-
tion task. It is represented by the following tuple:

Task (TaskID, Data;y,, Dataout, ExecReq, testimated)
&)
In tuple (2), TaskID provides the ID of a task. Data;y,
and Data,,: identify the input and output parameters of the
task. Whereas, the ExecReq gives the execution requirements
of the task. Data;, is completely identified by the ID of the
source task (TaskID), DatalD, and data size (DSize). Similarly,
Dataey: provides the information about the output generated
by the current task and again, it is identified by the DatalD
and DSize. TaskID, Data;, and Data,,: provide enough
information to the scheduler in a grid system to assign this
task to a node.

|
TaskiD DatalN || DataOUT ' Task;
‘
|

ExecReq

i
|
| Testimated
|

NodeType

0 ParamType, ParamValue

0 TaskID(Sourcey) DatalD | DSize 0 DatalD, DSize

1| ParamType; ParamValue

1 TaskID(Source,) DatalD DSize E Da‘taIDl DSi‘ze

A A
™M DatalD,, DSize

4 A4 4

2| ParamType, ParamValue
H i n TaskID(Source,) DatalD DSize

4
ParamValue

A4
k ParamTypey

DatalN DataOUT

ExecReq

Figure 4: Application task virtualization for grid system with
RPEs.

ExecReq provides the list of resources required by the
task for its execution. This list is composed of the node
type and its parameters. Fach parameter is followed by its
value. These parameters completely identify the architectural
requirements by the current task. Finally, testimated is the
estimated time for completion of this task, when it is executed
on a particular processing element, identified by its ExecReq.
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Figure 5: Specifications of 3 grid nodes in the case study.
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Figure 6: Execution requirements for task specifications in the case study.
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Figure 7: An application task graph.
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Figure 8: An example of application tasks execution given in
tuple 4.

A typical task is illustrated by Figure 4. The input data is
represented by DataIN and it can be initiated by n number
of sources. Similarly, a task can produce m number of
different outputs represented by DatalD and DSize. Finally,
the ExecReq provides list of k parameters which define a
typical NodeType required to execute the task. The data
dependencies among different tasks are represented by an
application task graph in Figure 7. From example, it can be
noticed that inputs to 7y are the outputs of tasks 7,75,
and T5. Similarly, DataIN(T11) — DataOUT (17, Ty, T13),
DataIN(T13) — DataOUT(T7,Ts), and DataIN(Ti7) —
DataOUT(T7, T13).

The user provides its application in form of tasks and
their dependencies. A typical application is represented by
the following tuple.

Application; (< Keyword >,Task list, < Keyword >)
®)
Each application is identified a keyword followed by a
task list. Whereas, a keyword shows whether the tasks can
be executed in series or parallel. For example, a particular
application is given as follows:
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)

In this example, the task T, should be executed sequen-
tially, along with the parallel execution of the task list 77,
Ty, Tr followed by the task list 75, T79. The keywords Seq
and Par show that the task lists followed by these keywords
should be executed sequentially or in parallel manner, re-
spectively. Each task list is terminated by next keyword. The
sequence of task execution in this example is illustrated in
Figure 8.

Figure 9 depicts different user service levels in a grid
system. The minimum level of services required by a user
is to submit his application tasks and get results. But more
services can be added to satisfy the Quality of Service (QoS)
requirements. These services include cost, monitoring, and
other user constraints. With these services, a user is able
to submit his/her queries and get a response as depicted in
Figure 9.

App{SEq(T2)7 PU/I“(T4, Tla T7)7 Seqa (T57 TlO)}

User Applications

_> Queries i %

1 — > |2 .

: < ' Distributed Network
User { I 3

| Response <_ ‘

D E— ‘

—
Results

Figure 9: User services in a typical grid system.

V. A CASe-STUDY

In this section, we describe a generic case study to provide
the concept of virtualization of reconfigurable elements in a
grid system. We give an example of a simple application and
a grid network consisting of 3 different nodes. Furthermore,
we elaborate on the role of resource management system and
application task scheduling.

In Figure 2, a general view of a grid network is illustrated.
It contains different computing resources in the form of
nodes. Each node is characterized by different parameters
as depicted in Figure 3. The grid network contains various
Resource Management Systems (RMS) along with the Job
Submission System (JSS). A grid user submits his application
tasks through a JSS. Each application task is part of a large
application and it is depicted by Figure 4. The RMS updates
the statuses of all nodes in the grid. It also implements a
task scheduler which assigns the user application tasks to
different nodes in the network. The scheduling decisions are
governed by a task scheduling algorithm and the availability
of nodes.

For our case study, we consider a grid network which
contains 3 different nodes, denoted by Nodey, Node;, and
Nodesy, as depicted by Figure 2. Figures 5a, 5b, and 5c
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Figure 10: Time profiling of the top 10 compute-intensive
kernels in the ClustalW (BioBench) benchmark using gprof
tool.

depict the specification of these nodes. It can be noticed that
Nodeg contains 2 GPPs and 2 RPEs. The Statey and State;
provide information that both RPEs are currently available
and idle. Moreover, they are not configured with any pro-
cessor configuration. Each GPP and RPE is defined by a list
of parameters which completely provide its characteristics.
Similarly, Node; contains one GPP and 2 RPEs, and Nodes
consists of only one RPE.

We consider a large-scale application in the bioinformatics
domain, from a famous benchmark suite, known as BioBench
[17]. We choose and analyze ClustalW from the suite, which
is a representative multiple-sequence alignment application.
For an analysis of ClustalW, we first identified compute-
intensive methods in the application using gprof [18], which
is a GNU software tool for profiling. Figure 10 depicts gprof
profiling graph of the top 10 most compute-intensive kernels
in the ClustalW application. Secondly, for possible mapping
of ClustalW application on an RPE, we used a tool a quan-
titative prediction model for hardware/software partitioning,
called Quipu [19]. It is a linear model based on software com-



Table II: Possible node mappings for tasks T'askg, T'asky, Tasks, and Tasks.

Task Possible mappings User-selected abstraction levels

Tasky | GPPy <> Nodey, GPPy <+ Nodeg, GPPy <+ Node. Software-only application OR Predetermined hardware configuration
Task1 RPEy < Nodey, RPE, +» Node1, RPEy <+ Nodes. User-defined hardware configuration OR Device-specific hardware
Tasks RPFE1 < Nodey, RPEy <> Nodes. User-defined hardware configuration OR Device-specific hardware
Tasks | RPFEg < Nodeg. Device-specific hardware

plexity metrics (SCMs), and can estimate the number of slices,
memory units, and look-up tables (LUTs) within reasonable
bounds in an early design stage. Furthermore, such a model
can make predictions in a relatively short time, as required
in a hardware/software partitioning context. We identified
that two main functions pairalign and malign contribute to
the 89.76% and 7.79% of the total time consumption of the
application. Using Quipu tool, we estimated that pairalign
requires 30,790 slices, whereas, malign requires 18707 slices
on Virtex 5 devices.

Based on the analysis using profiling information, we
consider that the ClustalW application can be divided into
three generic tasks, as depicted in Figure 10. The execution
requirements (ExecReq) of each task are depicted in Figures
6a, 6b, and 6c. Similarly, we consider that an application de-
veloper implements a device-specific hardware of the whole
ClustalW application as one hardware task and submits its
ExecReq which are represented by Figure 6d. These tasks are
submitted to a certain JSS which analyzes the requirements of
each task and forwards it to the RMS. The RMS implements a
task scheduler that takes decisions to assign each task onto a
particular node specified by some task scheduling algorithm.
In our case study, we analyze the mapping options for each
task (given in Table II) in the following:

Taskg: Since the profiling information in Figure 10 shows
that this task only distributes data to the malign and pairalign
functions, so it can be considered as a task requiring a GPP
only. Tt can be noticed that any of the GPFP, and GPP; in
the Nodeg and GPP, in the Node; contain the minimum
processing requirements by the T'asky. Consequently, the
scheduler can assign it to any of Nodey or Node;. The user
provides the application code and required input data. T'askg
is a typical example of use-case scenario mentioned in Section
11I-A.

Task;: requires a Virtex-5 FPGA device with minimum of
18,707 slices. It is evident from Figure 5 that RPE, and
RPE{ in Node; and RPEy in Nodes all contain Virtex-5
type devices with more than 24,000 slices, so the T'ask; can
be assigned to any of Node; or Nodes. The user provides the
configuration details (HDL specifications or bitstream), along
with application code and input data, to the RMS. Task; is
an example of use-case scenarios given in the Sections I1I-B2
and ITI-B3.

Tasksy: is similar to Task; and requires at least 30,790
Virtex-5 slices. These requirements can only be met by the
RPE; in the Node; and RPE;y in the Nodes. Similar
to Task,, it also represents use-case scenarios given the
Sections III-B2 and III-B3.
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Taskag: in this scenario, the task requires a particular device-
specific hardware (Virtex XC6VLX365T). The application
developer designs and implements its design on a particular
targeted hardware device and provides its bitstream. The user
submits the application along with the specific bitstream and
data. In this case, T'asks can be assigned to RPEj in the
Nodeg only.

All possible mapping options and user-selected abstraction
levels are given in Table II. The mapping decisions are based
on a particular scheduling strategy implemented inside the
scheduler in the RMS, that takes into account various param-
eters, such as area slices, reconfiguration delays, and the time
required to send configuration bitstreams, the availability
and current status of the nodes. By considering parameters
as well as the right scheduling strategy, more performance
gain can be achieved by utilizing reconfigurable fabric for
particular applications. Moreover, the recent and future re-
configurable devices are expected to support dynamic partial
reconfigurability, and different hardware implementations on
the same RPE are possible. With the proposed virtualiza-
tion framework, the resources can be managed in a more
efficient manner when the available processing elements are
both GPPs and RPEs. Those grid applications which contain
more parallelism can get more benefit if executed on the
reconfigurable hardware. For the purpose of testing task
scheduling strategies and resource management for dynamic
reconfigurable processing nodes in a distributed environ-
ment, we have developed a simulation framework, termed as
Dynamic Reconfigurable Autonomous Many-task Simulator
(DReAMSim) [20]. Moreover, we incorporated partial recon-
figurable functionality to the nodes in the DReAMSim, in
[21]. The design offers to model complex reconfigurable
computing nodes, processor configurations, and tasks along
with GPPs. A number of different reconfiguration parameters
can be exploited to model the processor configurations. The
DReAMSim can be used to investigate the desired system
scenario(s) for a particular scheduling strategy and a given
number of tasks, grid nodes, configurations, task arrival
distributions, area ranges, and task required times etc.

VI. ConcrLusioNs AND FUTURE WORK

This paper presented a virtualization framework for RPEs
in distributed grid systems. We presented various scenarios in
terms of use-cases to discuss the utilization of RPEs in grids.
Based on different virtualization levels, we provided a general
model for a computing node which incorporates both GPPs
and RPEs in grids. We also presented a typical application
task model. Finally, we presented a case study of a scientific



application which can take benefit from our virtualization
framework. The proposed framework is generic in nature
and provides backward compatibility for existing software
applications in grid network. Moreover, it is adaptive in
dynamically adding or removing resources. Independent of
the virtualized hardware, the framework can be extended
different types of services to the user, such as monitoring and
status updates etc. Currently, the framework does not support
streaming applications. In our future work, we will propose
a virtualization scenario for streaming applications. We will
discuss a more case studies based on our virtualization
approach.
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