
Int J Parallel Prog
DOI 10.1007/s10766-012-0201-1

Addressing GPU On-Chip Shared Memory Bank
Conflicts Using Elastic Pipeline

Chunyang Gou · Georgi N. Gaydadjiev

Received: 17 August 2011 / Accepted: 14 June 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract One of the major problems with the GPU on-chip shared memory is bank
conflicts. We analyze that the throughput of the GPU processor core is often con-
strained neither by the shared memory bandwidth, nor by the shared memory latency
(as long as it stays constant), but is rather due to the varied latencies caused by memory
bank conflicts. This results in conflicts at the writeback stage of the in-order pipeline
and causes pipeline stalls, thus degrading system throughput. Based on this observa-
tion, we investigate and propose a novel Elastic Pipeline design that minimizes the
negative impact of on-chip memory bank conflicts on system throughput, by decou-
pling bank conflicts from pipeline stalls. Simulation results show that our proposed
Elastic Pipeline together with the co-designed bank-conflict aware warp scheduling
reduces the pipeline stalls by up to 64.0 % (with 42.3 % on average) and improves the
overall performance by up to 20.7 % (on average 13.3 %) for representative bench-
marks, at trivial hardware overhead.
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1 Introduction

The trend is quite clear that multi/many-core processors are becoming pervasive
computing platforms nowadays. GPU is one example that uses massive numbers of
lightweight cores to achieve high aggregated performance, especially for highly data-
parallel workloads. Although GPUs are originally designed for graphics processing,
the performance of many well tuned general purpose applications on GPUs have estab-
lished them among one of the most attractive computing platforms in a more general
context—leading to the GPGPU (General-purpose Processing on GPUs) domain [2].

In manycore systems such as GPUs, massive multithreading is used to hide long
latencies of the core pipeline, interconnect and different memory hierarchy levels. On
such heavily multithreaded execution platforms, the overall system performance is sig-
nificantly affected by the efficiency of both on-chip and off-chip memory resources.
As a rule, the factors impacting the on-chip memory efficiency have quite different
characteristics compared to the off-chip case. For example, on-chip memories tend
to be more sensitive to dynamically changing latencies, while bandwidth (BW) lim-
itations are more severe for off-chip memories. In the particular case of GPUs, the
on-chip first level memories, including both the software managed shared memories
and the hardware caches, are heavily banked, in order to provide high bandwidth for
the parallel SIMD lanes. Even with adequate bandwidth provided by the parallel banks,
applications can still suffer drastic pipeline stalls, resulting in significant performance
losses due to unbalanced accesses to the on-chip memory banks. This increases the
overhead in using on-chip shared memories, since the programmer has to take care of
the bank conflicts. Furthermore, often the GPGPU shared memory utilization degree
is constrained due to such overhead.

In this paper, we determine that the throughput of the GPU processor core is often
hampered neither by the on-chip memory bandwidth, nor by the on-chip memory
latency (as long as it stays constant), but rather by the varied latencies due to mem-
ory bank conflicts, which end up with writeback conflicts and pipeline stalls in the
in-order pipeline, thus degrading system throughput. To address this problem, we
propose novel Elastic Pipeline design that minimizes the negative impact of on-chip
memory bank conflicts on system throughput. More precisely, this paper makes the
following contributions:

• careful analysis of the impact of GPU on-chip shared memory bank conflicts on
pipeline performance degradation;

• a novel Elastic Pipeline design to alleviate on-chip shared memory conflicts and
boost overall system throughput;

• co-designed bank-conflict aware warp scheduling technique to assist our Elastic
Pipeline hardware;

• pipeline stalls reductions of up to 64.0 % leading to overall system performance
improvement of up to 20.7 % under realistic scenario.

The remainder of the paper is organized as follows. In Sect. 2, we provide the
background and motivation for this work. In Sect. 3, we analyze the GPU shared
memory bank conflict problem from latency and bandwidth perspective, and identify
the mechanism through which shared memory bank conflicts degrade GPU pipeline
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performance. Based on the findings, we discuss our proposed Elastic Pipeline design
in Sect. 4. The co-designed bank-conflict aware warp scheduling technique is elab-
orated in Sect. 5. Performance results of our proposed Elastic Pipeline for GPGPU
applications are evaluated in Sect. 6, followed by some general discussions of our
simulated GPU core architecture along with the Elastic Pipeline in Sect. 7. The major
differences between our proposal and related art are summarized in Sect. 8. Finally,
Sect. 9 concludes the paper.

2 Background and Motivation

GPU is a manycore platform employing a large number of lightweight cores to achieve
high aggregated performance, originally targeting graphics workloads. Nowadays, its
utilization has spanned far beyond graphics rendering, covering a wide spectrum of
general purpose applications (referred to as GPGPU [2]). GPGPUs often adopt bulk
synchronous programming (BSP) [3] programming models. BSP programs on GPUs
often employ barrel processing [4] due to its low pipeline implementation overhead.

2.1 Programming Model Properties

The BSP model has been widely adopted in programming languages and language
extensions targeting manycore accelerator architectures, e.g., CUDA[5], OpenCL[6]
and others [7]. In such languages, the parallelism of the application’s compute inten-
sive kernels is explicitly expressed in a single program multiple data (SPMD) manner.
In such explicitly-parallel, bulk-synchronous programming models, the programmer
extracts the data-parallel sections of the application code, identifies the basic working
unit (typically an element in the problem domain), and explicitly expresses the same
sequence of operations on each working unit in a SPMD kernel. Each kernel instance
(called threads in CUDA) normally operates on one single unit or a relatively small
group of units. Multiple kernel instances run independently on the execution cores.
During SPMD program execution, all threads execute in parallel, and perform barrier
synchronizations only when the results from threads need to be exchanged. Therefore,
fast local, shared memories to facilitate communicating the results among execution
cores is critical to guarantee high performance [3]. An important example is the GPU
shared memories, which are the main embodiment of the local memory in the BSP
model, when running GPGPU kernels.

In CUDA, the parallel threads are organized into a two-level hierarchy, in which
a kernel (also called grid) consists of parallel CTAs (cooperating thread array, aka
thread block), with each CTA composed of parallel threads, as shown in Fig. 1a.
Explicit, localized synchronization and on-chip data sharing mechanisms (such as
CUDA shared memory) are supported for threads belonging to the same CTA.

2.2 Baseline Manycore Barrel Processing Architecture

Figure 1 illustrates our baseline architecture. On the right the high-level system orga-
nization is shown. The system consists of a GPU node with K cores and a memory
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(a)

(c)

(b)

Fig. 1 a CUDA threads hierarchy; b thread execution in GPU core pipeline; c GPU chip organization

subsystem with L DRAM channels, connected by the on-chip interconnect. Depend-
ing on the implementation, the GPU node itself may form a chip (similar to discrete
GPUs), or the GPU node(s) and host CPU(s) can be integrated on the same die (e.g.,
[8]). The host processor offloads compute intensive kernels to the GPU node during
execution. The kernel code and parameters are transferred from host processor using
the host interface, and the workloads are dispatched at the CTA/block granularity.
Concurrent CTAs are executed on GPU cores independent of each other.

A microarchitectural illustration of the GPU pipeline is shown in Fig. 1b. During
execution, a batch of threads from the same CTA are grouped into a warp, the small-
est unit for the pipeline front-end processing. Each core maintains a set of on-chip
hardware execution contexts and switches at the warp granularity. The context switch-
ing, also called warp scheduling, is done in an interleaved manner, also known as
barrel processing [4]. Warps are executed by the core pipelines in a SIMD fashion
for improved pipeline front-end processing efficiency. In practical designs, the threads
number in a warp can be a multiple of the SIMD width. In this case, a warp is composed
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of multiple slices (called subwarps here), with each subwarp size equal to the SIMD
width. Subwarps are processed by the SIMD pipeline back-to-back.

2.3 Shared Memory Access on GPGPU

GPUs rely mainly on massive hardware multithreading to hide off-chip memory laten-
cies. In addition, on-chip memory hierarchies are also deployed in GPUs in order to
provide high bandwidth and low latency, particularly for data sharing among SPMD
threads employing the BSP model (as discussed in Sect. 2.1). Such on-chip memories
include, software managed caches (shared memory), or hardware caches, or a combi-
nation of both [9]. To provide adequate bandwidth for the GPU parallel SIMD lanes,
the shared memory is heavily banked. However, when accesses to the shared memory
banks are unbalanced, shared memory bank conflicts occur. For example, with the
memory access pattern shown on top of Fig. 1b, data needed by both lanes 0 and 4
reside in the same shared memory bank 0. In this case a hot bank is formed at bank 0,
and the two conflicting accesses have to be serialized, assuming a single-port shared
memory design.1 As a result, the GPU core throughput may be substantially degraded.
Another motivating example is provided in [1], the original version of this paper.

3 Problem Analysis

In this section, we will first analyze the latency and bandwidth implications of GPU
shared memory bank conflicts, then identify and analyze the mechanism how shared
memory bank conflicts degrade GPU pipeline performance.

3.1 Latency and Bandwidth Implications

GPUs use a large number of hardware threads to hide both function unit and memory
access latency. Such extreme multithreading requires a large amount of parallelism.
The needed parallelism, using “Little’s law” [10], can be calculated as follows:

Needed_parallelism = Latency × T hroughput (1)

For GPU throughput cores, this means the required number of in-flight operations to
maintain peak throughput equals the product of pipeline latency and SIMD width. For
the strict barrel processing (Sect. 4.2) where all in-flight operations are from different
hardware thread contexts, this directly determines the required amount of concur-
rent threads. For other cases in general, the needed_parallelism is proportional to
the concurrent threads number. As a result, a moderate increase in pipeline latency
can be effectively hidden by running more threads. For example, the GPU core con-
figuration used in our evaluation employs a 24-stage pipeline with SIMD width of 8

1 Even with dual-port shared memory banks, such serialization can not be completely avoided when the
bank conflict degree is higher than two.
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(This is in line with a contemporary NVIDIA GTX280 architecture [11]. Similar pipe-
line configurations are also widely used in research GPU models [12,13].). Hence,
assuming 4 extra stages for tolerating shared memory bank conflicts, the pipeline depth
is increased from 24 stages to 28. In this case, the number of threads to hide the pipeline
latency (function unit/shared memory) is penalized, by an increment from 192 to 224,
according to Eq. 1. This is normally not a problem, for both the GPU cores (where
there are adequate hardware thread contexts), and the application domains targeted by
GPUs (with enough parallelism available).

It is also worth noting that, unlike CPUs, program control flow speculation is not
needed in GPUs thanks to the barrel processing model [4]. Therefore, the increase in
pipeline latency will not incur pipeline inefficiency associated to deeper pipelines [14].

On the other hand, the peak bandwidth of the shared memory is designed to feed the
SIMD core, as illustrated by the pipeline model shown in Fig. 1b, where the number
of shared memory banks equals simd_width.2 Therefore, bandwidth is naturally not
a problem when GPU shared memory works at peak bandwidth. However, intuitively,
when the shared memory bank conflicts are severe, the sustained bandwidth can drop
dramatically. Moreover, it may eventually become the bottleneck of the entire kernel
execution. In such cases no microarchitectural solution exists without increasing the
shared memory raw bandwidth.

To facilitate our discussion, we use the following definition of bank conflict degree
of SIMD shared memory access:
Bank conflict degree: the maximal number of simultaneous accesses to the same
bank during the same SIMD shared memory access from the parallel lanes. Following
this definition, the conflict degree of a SIMD shared memory access ranges from 1
to simd_width. For example, the SIMD shared memory access in Fig. 1b has a con-

flict_degree of 2. In general, it takes
⌈

conf lict_degree
nr_of _shared_memory_ports

⌉
cycles to read/write

all data for a SIMD shared memory access.
Naturally, it depends on an application’s shared memory access intensity and con-

flict degree whether or not it is shared memory bandwidth bound. Assume the available
shared memory bandwidth, BWavail , allows access of one data element per core-cycle
for all SIMD lanes. In this case, a single shared memory instruction’s bandwidth
requirement equals its conf lict_degree. This is due to the fact that this instruction
occupies the shared memory for conflict_degree cycles during the execution. Sup-
pose the ratio between number of executed shared memory access instructions and all
instructions is r . Then the shared memory bandwidth can become a bottleneck if and
only if the available bandwidth is smaller than required, for the entire GPU kernel
execution:

BWavail < BWreq

2 Note, in practical implementations, the number of shared memory banks can be a multiple of (e.g., 2X)
the SIMD width, all running at a lower clock frequency compared to the core pipeline. The bottom line is,
the peak bandwidth of the shared memory is at least be capable of feeding the SIMD core [11].
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Table 1 Benchmark shared memory bandwidth requirement

Benchmark name r(%) conf lict_degreeavg r × conf lict_degreeavg

AES_encypt 36.1 1.54 0.56

AES_decypt 35.9 1.53 0.55

Reduction 4.0 3.07 0.12

Transpose 3.7 4.50 0.17

DCT 21.6 3.33 0.72

IDCT 21.2 3.33 0.71

DCT_short 10.3 2.75 0.28

IDCT_short 10.3 2.75 0.28

i.e.,

1 < r × IPCnor × conf lict_degreeavg

Considering the normalized IPC per SIMD lane, IPCnor , is no larger than 1, we see
that the shared memory bandwidth is a bottleneck iff

r × conf lict_degreeavg > 1 (2)

Table 1 shows the values of r (denoted as “shared memory intensity” in Table 5)
and conf lict_degreeavg (“average bank conflict degree” in Table 5) in real kernel
execution. As can be observed in Table 1, Eq. 2 holds for none of the GPU kernels in
our experiments. This indicates we have large shared memory bandwidth margin, as
far as bank conflicts are concerned. In other words, we have sufficient shared memory
bandwidth to sustain peak IPC, even if bank conflicts.

This insight is very important, since it reveals the opportunity to improve overall
performance, without increasing the shared memory raw bandwidth. In the rest of the
paper, we will see how moderate microarchitectural refinement can be created to solve
the problem.

3.2 Pipeline Performance Degradation Due to Bank Conflicts

The baseline in-order, single-issue GPU core pipeline configuration is illustrated on
the top of Fig. 2a. The warp scheduling stage is not shown, and only one of the par-
allel SIMD lanes of the execution/memory stages is depicted in Fig. 2a for simple
illustration.3 Meanwhile, although only sub-stages of the memory stage (MEM0/1)
are explicitly shown in the figure, other stages are also pipelined for increased execu-
tion frequency. ti denotes execution time in cycle i, and Wi denotes warp instruction
fetched in cycle i.

3 Please refer to Fig. 1b for the pipeline details.
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(a)

(b)

Fig. 2 Baseline in-order pipeline: a unified memory stages and b split memory stages

As Fig. 2a shows, Wi is a shared memory access with a conflict degree of 2, and it
suffers from shared memory bank conflict in cycle i+3, at MEM0 stage. The bank con-
flict holds Wi at MEM0 for an additional cycle (assuming single port shared memory),
until it gets resolved at the end of cycle i + 4. In the baseline pipeline configuration
with unified memory stages, the bank conflict in cycle i +3 has two consequences: (1)
it blocks the upstream pipeline stages in the same cycle, thus incurring a pipeline stall
which is finally observed by the pipeline front-end in cycle i + 4; (2) it introduces a
bubble into the MEM1 stage in cycle i +4, which finally turns into a writeback bubble
in cycle i + 5.

Notice the fact that Wi+1 execution does not have to be blocked by Wi , if Wi+1 is
not a shared memory access. Thus a possible pipeline configuration which is able to
eliminate the above mentioned consequence (1) is possible, as Fig. 2b shows. With
the help of the extra NONMEM path, Wi+1 is now no longer blocked by Wi , instead
it steps into the NONMEM path while Wi is waiting at stage MEM0 for the shared
memory access conflict to be resolved, as Fig. 2b shows. Unfortunately, this cannot
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avoid the writeback bubble in cycle i + 5. Moreover, the bank conflict of Wi in cycle
i + 3 causes writeback conflict4 at the beginning of cycle i + 6, which finally incurs
a pipeline stall at fetch stage in the same cycle, as shown in Fig. 2b.

Our observation: Through the above analysis, we can see that the throughput of the
GPU core is constrained neither by the shared memory bandwidth, nor by the shared
memory latency (as long as it stays constant), but rather by the varied execution laten-
cies due to blocking memory bank conflicts. The variation in execution latency incurs
writeback bubbles and writeback conflicts, which further causes pipeline stalls in the
in-order pipeline. As a result of the above the system throughput is decreased.

4 Elastic Pipeline Design

To address the conclusions of the analysis of GPU shared memory bank conflicts, we
will introduce a novel Elastic Pipeline design in this section. Its implementation will
be presented, with emphasis on the conflict tolerance, hardware overhead and pipeline
timing impact.

The Elastic Pipeline design is able to eliminate the negative impact of shared mem-
ory bank conflicts on system throughput, as shown in Fig. 3. Compared to the baseline
pipeline with split memory stages in Fig. 2b, the major change is the added buses to
forward matured instructions from EXE and NONMEM0/1 stages to the writeback
stage. This effectively turns the original 2-stage NONMEM pipeline into a 2-entry
FIFO queue (we will refer to it as “NONMEM queue” hereafter). Note, the output
from the EXE stage can be forwarded directly to writeback only if it is not a mem-
ory instruction, whereas forwarding from NONMEM0 to writeback is always allowed.
Such non-memory instructions can bypass some or all memory stages, simply because
they do not need any processing by the memory pipeline. As Fig. 3 shows, by forward-
ing matured instructions in the NONMEM queue to the writeback stage, the writeback
conflict is removed, and thus the link between bank- and writeback conflicts is cut and
the associated pipeline stall is eliminated.

4.1 Safe Scheduling Distance and Conflict Tolerance

For ease of discussion, we first define the following warp types:
Memory warp: a warp which is ready for pipeline scheduling and is going to access
any type of memory (e.g., shared/global/ constant) in its next instruction execution.
Shared memory warp: a ready warp which is going to access on-chip shared memory
in its next instruction execution.
Non-memory warp: a ready warp which is not going to access any memory type
during its next instruction.

In Fig. 3 it is assumed that Wi+1 is a non-memory instruction. Otherwise, Wi+1
will be blocked at EXE stage in cycle i + 4, since Wi is pending at MEM0 in the same

4 Note the writeback throughput for a single issue pipeline is 1 instruction/cycle at maximum.
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Fig. 3 Elastic pipeline

cycle, due to its shared memory bank conflict. Such a problem exists even if Wi+1 is
not a shared memory access.5 To avoid this, we have the constraint of safe memory
warp schedule distance, defined as:
Safe memory warp schedule distance: the minimal number of cycles between the
scheduling of a shared memory warp and a following memory warp, in order to avoid
pipeline stall due to shared memory bank conflicts.

It is easy to verify the relationship between saf e_mem_dist (short for “safe mem-
ory warp schedule distance”) and the shared memory bank conflict degree, in the
following equation:

saf e_mem_dist =
⌈

conf lict_degree

nr_of _shared_memory_ports

⌉
(3)

The safe memory warp schedule distance constraint requires that memory warps
should not be scheduled for execution in next saf e_mem_dist − 1 cycles after a
bank-conflicting shared memory warp is scheduled. For example, saf e_mem_dist

for Wi in Fig. 3 is
⌈ 2

1

⌉ = 2, which means that in the next cycle, only non-memory
warps can be allowed for scheduling.

It is important to point out that, the Elastic Pipeline handles bank conflicts of any
degree without introducing pipeline stalls, as long as the saf e_mem_dist constraint
is satisfied. We will discuss this in more detail in Sect. 5.

5 Note, in such case, even if there exists a third path (with fixed number of stages) for that memory access
type, writeback bubbles cannot be avoided, due to the same phenomenon illustrated in Fig. 2b.
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4.2 Out-of-Order Instruction Commitment

In Fig. 3, the Elastic Pipeline shows the behavior of out-of-order instruction commit-
ment. This has important impact on the system design, as elaborated in the following.

As examined in Sect. 2.2, barrel processing [4] lays the basis for contemporary
GPGPUs execution models [15]. In barrel processing, an instruction from a different
hardware execution context is launched at each clock cycle in an interleaved manner.
Consequently, there is no interlock or bypass associated with the barrel processing,
thanks to the non-blocking feature of the execution model. Despite its advantages, strict
interleaved multithreading has the drawback of requiring large on-chip execution con-
texts to hide latency, which can be improved in some ways. One such improvement is
to allow multiple independent instructions to be issued into the pipeline from the same
execution context. In GPU cores, that is to allow multiple independent instructions
from the same warp to be issued back-to-back (instead of the strict barrel execu-
tion model in which consecutively issued instructions are from different warps). Such
execution is also adopted by some contemporary GPUs [16]. We call this extension
“relaxed barrel execution model”. The intention of the relaxed barrel processing in
GPUs is to exploit ILP inside the thread, in order to reduce the minimal number
of independent hardware execution contexts (active warps) required to hide pipeline
latency.

For GPU cores with strict barrel processing, it is not a problem since the in-flight
instructions are from different warps.

In the case of relaxed barrel processing in which consecutively issued instructions
may come from the same warp (but without data dependence), out-of-order instruction
commitment within the same execution context may occur. This breaks the sequential
semantics of the code and is penalized by the pipeline being unable to support precise
exception. In such case, there can be two choices to make our proposed Elastic Pipe-
line still work. First, we can still allow elasticity in the pipeline backend, which means
that the consecutively issued instructions from the same warp commit out of the pro-
gram order. This flexibility comes at the cost of the pipeline being unable to support
precise exception handling. This can be resolved by adding a re-order buffer (ROB),
however at extra hardware cost. A second choice is to forbid out-of-order writeback
for instructions from the same warp. In order to make Elastic Pipeline still effective in
reducing pipeline stalls, it is the responsibility of the scheduling logic not to execute
any more instruction from the same warp, if current shared memory instruction will
cause any bank conflict. This can be easily integrated into our bank-conflict aware
warp scheduling technique.

4.3 Extension for Large Warp Size

Above we have assumed warp_size=simd_width. In real GPU implementations,
however, the number of threads in a warp can be a multiple of GPU core pipe-
line SIMD width (as discussed in Sect. 2.2). In this case, a warp is divided into
smaller subwarps with the size of each equaling the number of SIMD lanes. All
subwarps from the same warp are executed by the SIMD pipeline consecutively.
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Fig. 4 Elastic pipeline logic diagram

Therefore, warp_size/simd_width free issue slots are needed for a warp to be com-
pletely issued into the pipeline. Moreover, each warp will occupy the SIMD pipe-
line for at least warp_size/simd_width cycles during execution. Consider for example
warp_size/simd_width = 2. In this case both Wi and Wi+1 in Fig. 3 will have to
execute the same shared memory access instruction for the first and second half of the
same warp, respectively. Since Wi is blocked at stage MEM0 in cycle i + 4,Wi+1 is
unable to step into MEM0 from the EXE stage at the beginning of the same cycle. This
results Wi+1 being blocked at EXE and all upstream pipeline stages being blocked in
cycle i + 4, thus incurring a pipeline stall.

To solve this problem, an extension has to be adopted in the Elastic Pipeline shown
at the top of Fig. 3. With this extension, we introduce another source of elasticity to the
MEM path, by placing before the MEM0 stage a (warp_size/ simd_width−1)-entry
FIFO queue (“PREMEM queue” in Fig. 4). With the help of the PREMEM queue,
the Elastic Pipeline can handle all consecutive, back-to-back issued bank-conflicting
SIMD shared memory accesses from the same warp, regardless of the conflict degree
of each.

The logic diagram of the final Elastic Pipeline with the extension for large warp size
is shown in Fig. 4, for the case with 2 memory stages and 1-entry PREMEM queue.
The numbers inside the multiplexers denote the MUX inputs priority (smaller numbers
have higher priorities). For example, the data returned from interconnect is assigned
with the highest priority (it is loaded from the external main memory after hundreds
of cycles delay); whereas only when there is no available data from elsewhere can the
data output from stage EXE be written back (if it is not a memory access).

With the Elastic Pipeline configuration of Fig. 4, Wi+1 in Fig. 3 will be buffered in
the PREMEM queue in cycle i + 4, while Wi+2 will directly step into writeback stage
at the beginning of cycle i + 5.

To summarize, the Elastic Pipeline adds two FIFO queues to the baseline pipeline:
the NONMEM queue with a depth of M and the PREMEM queue with a depth of N,
where

M = nr_of _MEM_stages (4)

N =
⌈

warp_size

simd_width

⌉
− 1 (5)
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Table 2 Elastic pipeline hardware overhead per GPU core

Type Logic complexity Quantity

Pipeline latches simd_width M + N

(M + 3)-to-1 MUX M + 2 1

(N + 1)-to-1 MUX N 1

4.4 Hardware Overhead and Impact on Pipeline Timing

The additional hardware overhead as compared with the baseline pipeline is summa-
rized in Table 2. The metric for the logic complexity of pipeline latches is that of a
pipeline latch in a single SIMD lane. As we can see in Table 2, the area consumption
of the additional pipeline latches is in the order of (M +N) · simd_width. Consider-
ing small Ms and Ns in realistic GPU core pipeline designs (e.g. M = 4, N = 3 in our
evaluation), this additional cost is well acceptable. The hardware overhead of the two
multiplexers is negligible.

The control paths of the two multiplexers are not shown in Fig. 4, since they are
simply valid signals from relevant pipeline latches at the beginning of each stage, and
are therefore not in the critical path. Compared with the baseline pipeline, all other
pipeline stages’ timing is untouched, with only one exception of the EXE stage, as
illustrated in Fig. 4.6 There are two separate paths in which the EXE stage is prolonged:
path A and B, as marked by the two dash lines in Fig. 4. A is the (N + 1)-to-1 multi-
plexer and B is the (M + 3)-to-1 multiplexer listed in Table 2. With standard critical
path optimizations such as the priority on late arriving signal technique [17], both A
and B only incur an additional latency of 2-to-1 MUX for the EXE stage. Therefore,
the increased latency to stage EXE is that of a 2-to-1 MUX in total, which will not
noticeably affect the target frequency of the pipeline in most cases (assumed in our
experimental evaluation).

5 Bank-Conflict Aware Warp Scheduling

As discussed in Sect. 4.1, in order to completely avoid the pipeline stall due to shared
memory bank conflicts, the constraint of safe memory warp schedule distance must
be satisfied. Otherwise, two consequences will happen: (1) the PREMEM queue will
get saturated, which results in pipeline stalls; and (2) the NONMEM will get emptied,
which results in writeback starvation. In the end the pipeline throughput is degraded.
In order to cope with this problem, warp scheduling logic should prevent any memory
warp from being scheduled in the time frame of warp_safe_mem_dist (Eq. 7) cycles
after a bank-conflicting shared memory warp is scheduled for execution. This is called
“bank-conflict aware warp scheduling”, which will be discussed next.

6 Note, although not shown in Fig. 2a, there is a MUX at the end of MEM1 stage in the baseline pipeline,
since an arbitration to select writeback data from either inside the GPU core pipeline or from the interconnect
is needed.
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5.1 Obtaining Bank Conflict Information

In order to apply bank-conflict aware warp scheduling, we have to first find out which
instructions will cause shared memory bank conflicts, and their corresponding conflict
degree. This information may be obtained in two ways: (1) static program analysis;
(2) dynamic detection. We chose dynamic bank conflict detection instead of com-
pile-time analysis in our implementation for two reasons. First, some shared memory
access patterns (and therefore the bank conflict patterns) are only known at runtime.
This is the case for regular access patterns (e.g. 1D strided) whose pattern parameters
(e.g., the stride) are not known at compile time, or irregular accesses whose bank
conflict patterns can not be identified statically (such as the AES example). Second,
there is no additional hardware cost directly by the dynamic detection itself, as the
shared memory bank conflict detection logic is also needed in the baseline pipeline.7

Note, for warp sizes larger than the number of SIMD lanes, the bank conflict degree
of the entire warp is the accumulation of all subwarp SIMD accesses, as given by the
following equation:

warp_bkconf _degree =

⌈
warp_size

simd_width

⌉
−1∑

i=0

conf lict_degreei (6)

where conf lict_degreei is the shared memory bank conflict degree of subwarp i,
which is measured by the hardware dynamically. warp_bkconf _degree is obtained

by an accumulator and a valid result is generated at fastest every
⌈

warp_size
simd_width

⌉
cycles

(if there is no pipeline stall during that time).
Accordingly, the safe memory warp schedule distance in Eq. (3) is extended in the

following:

warp_saf e_mem_dist =
⎡
⎢⎢⎢⎢

∑
⌈

warp_size
simd_width

⌉
−1

i=0 conf lict_degreei

nr_of _shared_memory_ports

⎤
⎥⎥⎥⎥

(7)

And the safe memory warp schedule distance constraint now requires that the schedul-
ing interval between bank-conflicting shared memory warp and memory warp should
be no less than warp_ safe_mem_dist cycles.

It is very important to note that, the bank conflict degree of the last sched-
uled shared memory warp can not be obtained in time by simply checking the
warp_bkconf _degree accumulator on the fly. This is due to the fact that it may
have not reached memory stages or finished shared memory accesses yet when its
bank conflict information is needed by the warp scheduling logic. Therefore, we need
to predict warp_bkconf _degree for a shared memory warp before the real value

7 The shared memory has to identify the conflict degree of each SIMD shared memory access (i.e.,
conf lict_degreei in Eq. 6) in order to resolve it.
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Fig. 5 Bank-conflict aware warp ready signal generation

becomes valid, by only its shared memory instruction PC. In our design, we imple-
ment a simple prediction scheme which predicts the bank conflict degree of a shared
memory instruction to be the one measured during the last execution of the same
instruction.

5.2 Bank Conflict History Cache

In order to maintain the historic conflict degree information, we implement a small pri-
vate bank conflict history cache distributed among the GPU cores, as shown in Fig. 5.
Each time a new kernel is launched, both the bank conflict history cache and the
last_warp_bkconf_degree counter are cleared. The cache is updated whenever a warp
execution of shared memory instruction gets resolved and the warp_bkconf_degree
accumulator generates a valid value for it.8 Whenever a shared memory warp is sched-
uled, the last_warp_bkconf_degree counter is set to its last warp bank conflict degree
in history, by checking out the conflict history cache. If a cache miss occurs, then the
last_warp_bkconf_degree counter is set to a default value (0 in our design). The mem-
ory warp mask is generated by checking if the safe memory warp schedule distance
is violated.

Note, in our design we assume in the warp scheduling stage it is known whether or
not a ready warp is a shared memory access (the “warp_to_sched_is_ shmem_access”

8 Note, in our design the conflict degree value from the accumulator has been decreased by
⌈

warp_size
simd_width

⌉

before written to the conflict history cache, in order to align the value for instruction with no bank conflict
to zero.
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signal in Fig. 5), or a memory access (the “warp_is_memory_ access” signal). This
can be easily achieved with negligible hardware overhead. For example, a bit-vector
can be employed to maintain the instruction type of all (static) instructions in a kernel.
This type vector can be initialized at kernel launch time, and checked out during warp
execution.

When we use the bank conflict history cache to predict the conflict degree of sched-
uled shared memory access, the result is incorrect in two situations: (1) when a cache
miss happens (e.g., compulsory misses due to the cold cache after a new kernel is
launched) and unfortunately the default output value generated is different from the
actual conflict degree; (2) when the conflict degree of the same shared memory instruc-
tion varies among consecutive execution. Case (1) is unavoidable for any kernel.
Fortunately, its impact on overall performance is usually negligible. Case (2) occurs
only in kernels with highly irregular shared memory access patterns and dynamically
changing conflict degree (e.g., AES).

Note, incorrect prediction of the shared memory bank conflict degree in the Elastic
Pipeline will not always result in pipeline stalls. Indeed, the pipeline will be stalled
only when the predicted value is smaller than the actual conflict degree and, immedi-
ately after the incorrect prediction, there is at least one memory warp scheduled which
violates the safe memory warp schedule distance constraint. We will see the impact
of incorrect bank conflict degree prediction on pipeline stalls in Sect. 6.1.

5.3 Proposed Warp Scheduling Scheme

With the bank access conflict history for each shared memory instruction maintained
in the conflict history cache, bank-conflict aware warp scheduling can apply the same
scheduling scheme as the baseline pipeline to schedule the ready warps for execution.
The only difference is that if a previously scheduled warp will be/is still being blocked
at the memory stages due to shared memory bank conflicts, then all memory warps
are excluded from the ready warp pool, as Fig. 5 shows.

Once it is guaranteed by the warp scheduling logic that there is no memory warp vio-
lating the safe memory warp schedule distance constraint, then shared memory bank
conflicts incurred by a single warp can be effectively handled by the Elastic Pipe-
line design, as discussed in Sect. 4. Otherwise, the Elastic Pipeline will get saturated
and stalls due to bank conflicts will occur. We will see the impact of the bank-aware
warp scheduling on overall performance in Sect. 6.2. It should be noted that, warp
scheduling by itself is unable to reduce pipeline stalls caused by shared memory bank
conflicts, without the Elastic Pipeline infrastructure.

5.4 Hardware Overhead

As discussed above, our bank-conflict aware warp scheduling does not incur any
additional overhead in scheduling logic—it simply utilizes the same scheduling as
the baseline. However, the warp ready signal generation logic needs to be modified
to make it aware of in-flight bank-conflicting shared memory accesses and enforce
the constraint on following warps to be scheduled, as shown in Fig. 5. Table 3
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Table 3 Hardware overhead of bank conflict prediction and warp mask generation (per GPU core)

Type Logic complexity Quantity

Bank conflict history cache nr_of_cache_lines·(log2(warp_size)+
14-log2(cache_sets)) bits, dual port
(1R + 1W)

1

AND/NAND gate – 2×nr of warp
contexts per core

Accumulator log2(warp_size) bits 1

2-to-1 MUX – 1

Counter log2(warp_size) bits 1

Comparator log2(warp_size) bits 1

summarizes the hardware overhead incurred by the bank conflict degree prediction
and bank-conflict aware warp ready signal generation. The main contributor in Table 3
is the bank conflict degree history cache. Assuming 14 bits PC (which is able to han-
dle kernels with up to 16K instructions—large enough from our experience), this
turns to 14-log2(cache_sets) bits cache tag size. Remember, each conf lict_degreei

in Eq. (6) takes log2(simd_width) bits (Sect. 3.2), therefore the cache content
warp_bkconf_degree occupies log2(warp_size) bits. The total size of the bank con-
flict history cache is summarized in Table 3.

In our design, we implemented a 2-way set associative conflict history cache with
256 sets, which is capable of removing all capacity and conflict misses for all kernels
in our evaluation. In this case, the conflict history cache consumes only 704 bytes
(with warp_size = 32), which is quite trivial.

Regarding the timing impact, the increase in the warp ready signal generation delay
observed by the default warp scheduler is only that of one AND gate, as shown in Fig. 5.

6 Experimental Evaluation

Experimental Setup: We use a modified version of GPGPU-Sim [12], which is a
cycle accurate full system simulator for GPUs implementing ptx ISA [19]. We model
GPU cores with a 24-stage pipeline similar to contemporary implementations [11,13].
The detailed configuration of the GPU processor is shown in Table 4. The GPU proces-
sor with the baseline pipeline (“baseline GPU”) and the case with the proposed Elastic
Pipeline (“enhanced GPU”) are evaluated in this paper. They differ only in the core
pipeline configurations and warp scheduling schemes, as Table 4 shows. The num-
ber of memory pipeline stages and the warp_size/simd_width ratio is 4 (see Table 4).
Therefore the queue depth is set to 4 for the NONMEM queue, and 3 for the PREMEM
queue in the Elastic Pipeline, according to Eqs. (4) and (5).

We select 8 shared memory intensive benchmarks from CUDA SDK [20] and other
public sources [21]. Table 5 lists the main characteristics of the selected benchmarks.
The instruction count in columns total instructions and shared memory instructions
shows two numbers, with the first being the number of dynamic instructions executed
by all 128 scalar pipelines (i.e., SIMD lanes) of 16 GPU cores, and the second number
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Table 4 The GPU processor configurations

Number of cores 16

Core configuration 8-wide SIMD execution pipeline, 24 pipeline stages (with 4 memory stages);
32 threads/warp, 1024 threads/core, 8 CTAs/core, 16384 registers/core;
execution model: strict barrel processing (Sect. 4.2) warp scheduling policy:
Round-robin (baseline GPU) vs. bank-conflict aware warp scheduling
(enhanced GPU) pipeline configuration: baseline pipeline (baseline GPU)
vs. Elastic Pipeline (enhanced GPU)

On-chip memories 16 KB software managed cache (i.e., shared memory)/core, 8 banks, 1 access
per core-cycle per bank

DRAM 4 GDDR3 memory channels, 2 DRAM chips per channel, 2 KB page per
DRAM chip, 8 banks, 8 Bytes/channel/transmission (51.2 GB/s BW in total),
800 MHz bus freq, 32 DRAM request buffer entries memory controller
policy: out-of-order (FR-FCFS) [18]

Interconnect Crossbar, 32-Byte flit size

Table 5 Benchmark characteristics

Name Source Grid Dim CTA Dim CTAs/core Total Insns

AES_encypt [21] (257,1,1) (256,1,1) 2 35132928/534

AES_decypt [21] (257,1,1) (256,1,1) 2 35527680/540

Reduction CUDA SDK (16384,1,1) (256,1,1) 4 415170560/49

Transpose� CUDA SDK (16,16,1) (16,16,1) 4 3538944/54

DCT� CUDA SDK (16,32,1) (8,4,2) 7 7274496/222

IDCT� CUDA SDK (16,32,1) (8,4,2) 7 7405568/226

DCT_short� CUDA SDK (16,16,1) (8,4,4) 7 10223616/337

IDCT_short� CUDA SDK (16,16,1) (8,4,4) 7 10190848/336
Name Sh-mem Insns Sh-mem

Intensity (%)
Avg.
conf. degree

Theoretic
speedup

Irregular
Sh-mem
pattern

AES_encypt 12697856/193 36.1 1.54 1.19 Y

AES_decypt 12763648/194 35.9 1.53 1.19 Y

Reduction 16744448/5 4.0 3.07 1.09 Y

Transpose� 131072/2 3.7 4.50 1.13 N

DCT� 1572864/48 21.6 3.33 1.50 N

IDCT� 1572864/48 21.2 3.33 1.50 N

DCT_short� 1048576/40 10.3 2.75 1.18 N

IDCT_short� 1048576/40 10.3 2.75 1.18 N

being the ptx instruction count in the compiled program. Shared memory intensity is
the ratio of dynamic shared memory instructions to total executed instructions. The
average bank conflict degree field shows the average number of cycles spent on a SIMD
shared memory access for each benchmark application. This is collected by running
the benchmarks on the baseline GPU. Theoretic speedup calculates, assuming IPC = 1
(normalized to a single scalar pipeline/SIMD lane) for all instructions except shared
memory accesses (i.e., all pipeline inefficiency comes from pipeline stalls caused by

123



Int J Parallel Prog

shared memory bank conflicts), the speedup that can be gained by eliminating all pipe-
line stalls. CTAs per core denotes the maximal number of concurrent CTAs that can be
allocated on each GPU core. Letter Y in the Irregular shared memory patterns column
indicates kernels with shared memory instructions with irregular access patterns and
dynamically varied bank conflict degree.

Note, the kernels marked by a � denote the CUDA code which has originally been
hand-optimized to avoid shared memory bank conflicts, by changing the layout of the
data structures in shared memory (e.g., by padding one additional column to a 2D
array). We adopt the code but undo such optimizations in our evaluation of the Elastic
Pipeline performance in Sects. 6.1 and 6.2. There are two reasons for this. First, we
found that in practice if the shared memory bank conflict is a problem, the programmer
will either remove it (by the above mentioned hand-optimizations), or simply avoid
using the shared memory. Due to this we were unable to find many existing codes with
heavy shared memory bank conflicts. That is why we manually roll back the shared
memory hand-optimizations for these kernels and use them in our initial evaluation
presented in this paper. Second, assuming the Elastic Pipeline is adopted in the GPU
core, we also want to inspect how it performs for these kernels, without specific shared
memory optimizations from the programmer.

We use the NVCC toolchain [19] to compile the CUDA application code. The
toolchain first invokes cudafe to extract and separate the host C/C++ code and device
C code from the CUDA source, then it invokes two stand-alone compilers: gcc to
compile the host C/C++ code running on the CPU and nvopencc to compile the device
code running on the GPU. All benchmarks are compiled with -O3 option.

It has to be pointed out that, although we use CUDA code and the corresponding
toolchain in our experiments, our proposed Elastic Pipeline and bank-conflict aware
warp scheduling do not rely on any particular GPGPU programming model. Further,
the application of our proposal is not limited to GPGPU applications—graphics kernels
can also benefit from it where on-chip shared memory bank conflict is a concern.

6.1 Effect on Pipeline Stall Reduction

Figure 6 shows the proposed Elastic Pipeline and the bank-conflict aware warp sched-
uling effect on reducing pipeline stalls. The results are per kernel, with the left bar
of each group showing the number of pipeline stalls in the baseline GPU, and the
right bar showing the stalls in the enhanced GPU. The number of stalls is normalized
to the baseline GPU. Inside each bar, the pipeline stalls are broken down into three
categories (from bottom to top): warp scheduling fails, shared memory bank conflicts,
and other reasons (i.e., writeback conflicts incurred by data returned from intercon-
nect). Note, GPU core warp scheduling fails if the ready warp pool is empty, which
can be incurred by: (1) the core pipeline latency or other long latencies (e.g., due to
main memory access) which are not hidden by the parallel warp execution (i.e., not
enough concurrent CTAs active on chip); (2) the barrier synchronization; (3) warp
control-flow re-convergence mechanisms [15].

As discussed in Sect. 3, shared memory bank conflicts create writeback bubbles
which finally incur pipeline stalls. Note, although the portion of shared memory
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Fig. 6 Pipeline stall reduction. In each group, left bar baseline GPU. right bar Elastic pipeline enhanced
GPU

instructions is small for some kernels (such as Reduction and Transpose, with less
than 5 % as shown in Table 5), some of the involved SIMD shared memory accesses
result in very high bank conflict degrees (up to 8). Therefore the total number of bank
conflicts and pipeline stalls is quite significant in the baseline, as shown in Fig. 6.

As Fig. 6 shows, the number of pipeline stalls are significantly reduced by the
Elastic Pipeline. In all kernels except AES encrypt/decrypt, the pipeline stalls caused
by bank conflicts are almost completely removed in the enhanced GPU. Remember,
the bank conflict stalls in the Elastic Pipeline may occur, only if the conflict degree
prediction made by the bank conflict history cache is incorrect (Sect. 5.2). The bank
conflict history cache was unable to produce constantly precise conflict degree pre-
diction for the highly irregular shared memory access patterns in the AES kernels.
This results in a large number of bank conflict stalls. Figure 6 also confirms that the
impact of compulsory misses in bank conflict history cache is negligible in the Elastic
Pipeline.

On the other hand, the number of pipeline stalls due to warp scheduling failures is
increased for some kernels. This is expected, since the bank-conflict aware warp sched-
uling masks off the ready warps which violate the constraint of safe memory warp
schedule distance. Contrary to our expectation, the number of warp scheduling fails is
actually reduced for Transpose and DCT/IDCT_short kernels. Detailed investigation
reveals that this is related to the inter operation between our Elastic Pipeline design
and the rest of the GPU processor, such as the on-chip synchronization and control
flow re-convergence mechanisms, and off-chip DRAM organizations. For example,
drastic DRAM channel conflicts are observed during the Transpose kernel execution
on the baseline GPU. Whereas in the GPU enhanced by the Elastic Pipeline and the
bank-conflict aware warp scheduling, such channel conflicts are substantially reduced
and DRAM efficiency is improved.
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Fig. 7 Performance improvement

The last type of pipeline stalls (other pipeline stalls in Fig. 6) is caused by writeback
conflicts incurred by data returned from interconnect. The number is slightly increased
in the Elastic Pipeline as shown in Fig. 6. This is because the number of such conflicts
is relatively small, and a large portion of them are well hidden by the large amount of
bank conflict stalls at the upstream of the pipeline, in the baseline GPU.

6.2 Performance Improvements

Figure 7 compares the performance of the baseline GPU, the enhanced GPU with
pure elastic pipe design (with default warp scheduling), the enhanced GPU with Elas-
tic Pipeline augmented by bank-conflict aware warp scheduling, and the theoretical
speedup. We can see that the performance is improved by the pure Elastic Pipeline
only slightly (3.2 % on average), without the assistance of proper warp scheduling.
While with the co-designed bank-conflict aware warp scheduling, an additional 10.1 %
improvement is gained, leading to the average performance improvement of the Elastic
Pipeline design by 13.3 %, as compared to the baseline. This confirms our analysis in
Sect. 5. For AES encrypt/decrypt, the achieved speedup by the Elastic Pipeline is sub-
stantially smaller than the theoretical bound, mainly because a large portion of bank
conflict stalls still remains in the Elastic Pipeline, as shown in Fig. 6. DCT and IDCT
see a huge gap between the actually achieved performance gain by Elastic Pipeline
and the theoretical bound. This is due to the number of pipeline stalls caused by warp
scheduling fails is significantly increased, also shown in Fig. 6. It is interesting to
see that the speedup of our Elastic Pipeline design exceeds the theoretical bound, for
kernels Transpose and DCT/IDCT_short. This results from the fact that the number of
warp scheduling fails is reduced, thanks to the positive interaction between the Elastic
Pipeline and the rest of the system in these cases, as discussed in Sect. 6.1.
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Fig. 8 Performance of
un-optimized code execution on
Elastic pipeline (IPC normalized
to hand-optimized code
execution on baseline)

In order to find out how our Elastic Pipeline performs in relieving the overhead
of reducing shared memory bank conflicts from the software side, we compared the
performance of un-optimized code (i.e., CUDA SDK code with shared memory bank
conflict optimizations removed by us) running on the enhanced GPU versus the hand-
optimized code (i.e., the original CUDA SDK code) running on the baseline GPU,
as shown in Fig. 8. As we can see from the figure, on average the performance of
un-optimized kernel running on Elastic Pipeline cores is on par with the optimized
kernel running on baseline cores (the average normalized IPC is close to 1). However,
we also found that for the DCT/IDCT kernels, the performance gap is quite large (e.g.,
14.9 % less performance with the Elastic Pipeline/un-optimized kernel combination
for IDCT, as compared to the baseline execution of hand-optimized code).

In-depth analysis reveals that this is due to the change of warp execution order
by the Elastic Pipeline interacts poorly with the global memory access which results
in degraded DRAM access efficiency. This actually leaves room for further optimi-
zations. For example, a simple variant of our bank-conflict aware warp scheduling
allows issuing of memory instructions violating the safe memory warp schedule dis-
tance, if there are no ready warps to execute non-memory instruction.9 This variant
essentially trades more bank conflict stalls for fewer scheduling fails. Theoretically,
the performance should not change since the number of total pipeline stalls is kept
the same. However, the performance of IDCT with the variant is increased by 5.1 %
as compared with the original bank-conflict aware warp scheduling, simply due to
the change of warp execution order.10 This could be further improved by taking into
account the main memory bandwidth efficiency in our design. For example, it may
be possible to create more efficient warp scheduling schemes which are aware of not
only on-chip shared memory bank-conflict, but also global memory efficiency. More
details about such interactions between on/off-chip memory accesses at system level
are discussed in Sect. 6.4.

Nonetheless, the results in Fig. 8 suggest the strong potential of our Elastic Pipe-
line design to relieve the burden of avoiding shared memory bank conflicts from the
programmer. Note also, static program analysis and optimizations are unable to avoid

9 In the original bank-conflict aware warp scheduling, the ready warp pool is masked to empty in this case
and pipeline will be stalled due to scheduling fails.
10 We did not adopt this variant as it degrades the performance for other kernels.
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bank conflicts caused by irregular conflict patterns, which can be effectively handled
by our proposal as demonstrated by the substantial performance improvement by Elas-
tic Pipeline for the AES and Reduction kernels in Fig. 7. Therefore, we can safely draw
the conclusion that, our Elastic Pipeline proposal is capable of relieving the shared
memory bank conflict issue for both regular and irregular access patterns, and thus
enables more GPGPU applications to exploit the on-chip shared memory for improved
performance and efficiency which is otherwise not possible without our proposal.

6.3 Performance of Non-Conflicting Kernels

Besides benefiting bank-conflicting kernels, our Elastic Pipeline is also expected (at
least) not to degrade the performance of normal kernels without on-chip shared mem-
ory bank conflicts. In this case, the bank-conflict aware warp scheduling behaves
exactly the same as the default warp scheduling, since the conflict degree predicted
by the bank conflict history cache is constantly zero (Fig. 5). The non-conflicting
kernels examined in this section are the five kernels marked by a � in Table 5, with
the hand-optimization to avoid shared memory bank conflict (i.e., the original CUDA
SDK code is used).

The performance of the non-conflicting kernels execution on Elastic Pipeline is
shown in Fig. 9 (with IPC normalized to the baseline execution). As we can see in the
figure, the performance difference exists but is rather small in general (all normalized
IPC values are close to 1). The performance difference between the baseline pipe-
line and the Elastic Pipeline for kernels without any bank conflict is due to: (1) the
Elastic Pipeline can hide some of the writeback conflicts caused by the competition
between core pipeline instructions (e.g., non-global memory instructions) and global
memory loads (Fig. 1); (2) the writeback MUX in the Elastic Pipeline (Fig. 4) changes
the default warp completion order of baseline in some cases (e.g., when the MEM
and NONMEM paths compete for writeback, or, when there is a pipeline bypass in
the NONMEM path Fig. 3), which will further affect warp scheduling and execution
order later. Factor (1) is always beneficial while factor (2) can contribute either posi-
tively or negatively to overall performance, depending on other subtle conditions (e.g.
varied global memory access efficiency, synchronization efficiency and control flow
re-convergence efficiency, under different warp execution orders).

Fig. 9 Elastic pipeline
performance for non-conflicting
kernels (IPC normalized to
baseline execution)
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6.4 Interaction with Off-chip DRAM Access

At first glance, it seems that on-chip shared memory access is decoupled from off-
chip DRAM access. Counterintuitively, however, we have already observed quite some
inter-operation between them, is the warp execution order (and the subsequent DRAM
access patterns): as discussed in Sects. 6.1 and 6.2. Indeed, it would be interesting to
inspect the relationship between our proposed Elastic Pipeline and the kernel DRAM
access behavior. Figure 10 tries to unveil it in a quantitatively way. The graph at the
top shows the ratio between theoretical speedup and the speedup actually gained by
our Elastic Pipeline design (data from Fig. 7). And the one at the bottom shows the
required DRAM bandwidth by each kernel, normalized to GPU DRAM peak band-
width (Table 4). The required bandwidth is calculated by dividing the total amount of
global memory data access by the execution time assuming IPC = 1 for each SIMD
lane. We choose the required bandwidth as the metric instead of the actual bandwidth
utilization, since the latter has already been coupled with the interaction between the
core pipeline behavior and external DRAM access patterns.

Interestingly, the two graphs in Fig. 10 show quite strong correlation between each
other. Roughly speaking, the higher off-chip bandwidth is required, the larger the
gap between the speedup of our Elastic Pipeline and the theoretical bound—in other
words, the more difficult to reclaim the performance loss due to bank-conflict pipe-
line stalls. For the benchmarks examined in our experiments and the off-chip DRAM
configuration in our GPU processor, we can see that some rough threshold, say, the
50 % DRAM peak bandwidth bar, separates the benchmarks into high bandwidth group
(DCT/IDCT) and low bandwidth group (the other kernels), as illustrated in Fig. 10. For
the low bandwidth group, the performance loss due to bank conflict stalls is relatively
easy to be reclaimed by our proposed Elastic Pipeline design (indeed the theoretical
bound is even surpassed in cases of Transpose and DCT/IDCT_short). While for the
high bandwidth group, the Elastic Pipeline performance gain is far from ideal. The
reason seems to be that, standalone core pipeline techniques (such as our Elastic Pipe-
line proposal) oblivious to the main memory access efficiency are unable to exploit
the full potential of the hardware and the parallelism inherent in the software. This

Fig. 10 DRAM bandwidth
impact
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also explains the relatively large performance loss for DCT/IDCT kernels in Fig. 8
with our Elastic Pipeline.

To summarize, it can be anticipated that, cooperative optimization schemes which
take care of both core pipeline optimization and off-chip DRAM bandwidth efficiency
are highly desirable, to further improve the overall performance for kernels with both
heavy on-chip shared memory bank conflicts and off-chip bandwidth requirement.

7 Discussions

Typical throughput-oriented architectures (such as GPUs) exploit massive thread-
and/or data-level parallelism to hide long latencies and achieve high throughput using
in-order pipelines. Introducing out-of-order execution capability to such architectures
is generally not preferable due to its limited performance gain at significant hardware
cost. This paper proposed Elastic Pipeline (EP) design to avoid pipeline stalls due
to GPU shared memory bank conflicts. Although EP also employs an out-of-order
(OoO) pipeline, it deviates from OoO schemes in typical superscalar processors in the
context, design objective and implementation.

OoO in superscalar processors intends to tolerate both core pipeline and off-core
memory latencies by exploiting instruction-level parallelism of a single execution con-
text. On contrast, OoO in EP is designed to tolerate varied SIMD pipeline latencies
due to on-chip memory bank conflicts, by exploiting thread/warp-level parallelism in
a platform with thousands of hardware execution contexts. The different contexts and
design objectives boil down to two major simplifications in EP implementation: (1)
it allows instructions from different warps to be committed out of order—therefore
no reordering at pipe writeback stage; and (2) out-of-order execution/commitment is
enabled only between two instruction categories (memory/non-memory)—effectively
forming a partial out-of-order scheme. Due to these simplifications, efficient hardware
designs with low overhead are achieved (Sects. 4 and 5). To the best of our knowledge,
EP is the first partial out-of-order GPU core pipeline scheme proposed in the literature
(interestingly, the AMD next generation GPU architecture, named “Graphics Core
Next” [22], adopted limited out-of-order completion similar to our proposal).

We have shown in prior sections that on-chip bank conflicts can be tolerated if the
reduced (effective) memory bandwidth is not a problem. Similarly, it is also possible
to cut the number of on-chip memory banks, if the reduced bandwidth due to fewer
banks is not a problem for the bandwidth requirement of “common” GPU kernels. Our
Elastic Pipeline proposal tolerates on-chip memory latencies with low hardware cost.
As such, it has the potential to further simplify the on-chip memory design by reducing
the bank number, while still maintaining system performance. This is attractive for
GPUs with high memory banking cost (e.g., NVIDIA Fermi employs 32-way banked
on-chip memories to feed its SIMD pipelines [9]).

In this paper we have assumed GPU barrel processing [4], where out-of-order
instruction commitment is not a problem since the in-flight instructions are from dif-
ferent warps. In the case of relaxed barrel execution, our proposed Elastic Pipeline can
still work with straightforward microarchitectural extensions, as described in Sect. 4.2.
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Alternative solutions for GPU shared memory bank conflicts may include program-
ming practices to avoid conflicts/reduce the conflict degree, by changing the data layout
at source code level (e.g., zero padding to restructure data in shared memory) [11,23].
While such optimizations are widely adopted, bank conflict resolution is not always
possible in software. More specifically, when memory access patterns are highly irreg-
ular and/or dependent on input data (such as the memory indirection/pointer-chasing
pattern in AES), it is very difficult (if possible at all) to identify the conflict pattern by
static analysis (being either compile-time GPU kernel code analysis or GPU runtime
running on the CPU).

In addition, in such cases both our EP hardware and its corresponding (hypothetic)
GPU core runtime11 face the problem similar to branch prediction in a scalar pro-
cessor: the access pattern of a scheduled warp memory instruction (A) must be used
to decide the type of following warps to be scheduled (Sect. 4.1); but A’s pattern is
available only after it arrives at the pipeline memory stages (few cycles after A is
scheduled). That’s why the historic information has to be used to predict A’s pattern
in order to avoid any pipeline bubble. This type of job is best to be done by hard-
ware (similar to CPU branch prediction), rather than runtime. To summarize, software
bank conflict resolution is either impossible or inappropriate for highly irregular GPU
on-chip shared memory accesses.

Even for GPU kernels with less irregular memory access patterns, manual data lay-
out optimizations put nontrivial burden on programmers since (1) knowledge about
memory hardware configurations of specific GPU platforms is necessary; (2) carefully
restructuring the data and/or changing the access patterns are required. Optimizations
based on static code analysis can automate this process, however, source level bank
access optimizations also create portability issues when the code is to be deployed on
platforms with different shared memory configurations. Delegating the optimizations
to runtime eliminates the portability problem, but they can still be constrained by the
extra memory space often required by data restructuring (e.g., when the kernel uses up
GPU shared memory and thus zero padding is not possible). As such, we believe that
hardware solutions with low implementation overhead (such as Elastic Pipeline) are
superior to software solutions, for the GPU on-chip memory bank conflict problem.

This paper also assumes the execution stages and memory stages are not overlapped,
therefore our proposed Elastic Pipeline design can make use of the existing “spare”
(for non-memory instructions) MEM pipeline latches as the source of elasticity to
tolerant the varied pipeline latency due to shared memory bank conflicts. However,
this is not a mandatory requirement of our Elastic Pipeline proposal. For example, in
the pipeline configuration with parallel execution/memory stages, we can insert some
additional spare pipeline stages between the end of the parallel execution/memory
stages and the beginning of writeback stages. With the extra stages as the source of
elasticity our proposal can still work. Note the extra spare stages do not introduce any
additional pipeline latency for ordinary execution without bank conflicts, thanks to the
bypass buses (Fig. 2b). The only overhead is the hardware cost of the pipeline stage
latches of the additional pipeline stages.

11 In fact, current GPU SIMD cores do not support such low-level “GPU runtime” and they are not likely
to support it due to their inefficiency in running scalar codes.
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Besides GPUs, our Elastic Pipeline can also be applicable to a wide range of in-
order pipeline designs adopting barrel processing and SIMD data path. The motivation
is that the bank conflict problem exists generally in such architectures. Furthermore,
although we target the varied execution latencies caused by on-chip shared mem-
ory bank conflicts in this paper, Elastic Pipeline can also be applied to cope with
execution latency variation due to other shared resource conflicts (e.g., accelerator
(such as FPU) port access, interconnect buffers allocation, miss status holding regis-
ters (MSHRs) allocation, etc.). In such cases, pipeline elasticity can be exploited to
tolerate the resource conflicts and maximize the SIMD data path throughput.

8 Related Work

Bank conflict is an important problem in vector processors and has been studied inten-
sively in the past. To cope with bank conflicts of vector access across stride families,
several techniques have been proposed, including the use of buffers [24], dynamic
memory schemes [25–28], memory modules clustering [24], and intra-stream out-of-
order access [29], just to name a few. Some of the existing techniques may be com-
plementary to our Elastic Pipeline proposal, however subject to certain limitations.
For example, one possible solution based on existing techniques is to add buffers in
front of each shared memory bank to create a small access window. Subsequently, out-
of-order scheduling techniques may be applied to resolve the bank conflicts, within
such window. Similar techniques have been successfully used in other scenarios, such
as the DRAM memory controller scheduling [18]. However, in the context of GPU
fine-grain multithreaded SIMD processing, this technique is not applicable, because
distributed our-of-order accesses in parallel shared memory banks create diverged
execution orders for threads inside a warp/subwarp, effectively breaking the subwarp
boundaries in the SIMD data path. This often leads to conflicts in the register file banks
at the writeback stage, which stall the pipeline in the end. In this case, the problem
of shared memory bank conflicts is not resolved but just postponed to later pipeline
stages.

Regarding bank conflicts in GPU shared memories, there have been some program-
ming practices to avoid or relieve the conflict degree, by changing the data layout at
source code level (e.g., zero-padding for data structures in shared memory) [11,23].
Recently we also see some work in automating such manual optimizations [30,31].
Such high-level optimizations from the software side are complementary to our Elastic
Pipeline proposal, albeit with the limitation discussed in Sect. 7.

Current GPGPUs computing platforms suffer significantly from the relatively low
bandwidth between the host CPU and the accelerator GPU attached to the CPU through
system bus [23]. The research and development efforts can be classified into two cate-
gories: (1) to improve the efficiency of the CPU-GPU communication based on existing
loosely-coupled system bus configuration [32]; and (2) to integrate the CPU and GPU
into the same die [8,33]. Besides, the DRAM memories attached to GPUs become
a bottleneck for memory intensive kernels, and plenty of recent work on optimizing
GPU off-chip memory access exists [34–38]. Our work addresses the problem of GPU
on-chip shared memory bank conflicts, which seems largely orthogonal to the GPU
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off-chip memory access work. However, the interaction and coordination between both
on- and off-chip memory accesses may deserve investigation for further performance
improvement, as suggested in Sect. 6.4.

9 Conclusions and Future Work

In this paper, we analyzed shared memory bank conflicts, and indicated how bank
conflicts are translated into pipeline performance degradation. Based on our observa-
tions, we proposed a novel Elastic Pipeline design that minimizes the negative impact
of on-chip memory conflicts on system throughput, by decoupling bank conflicts from
pipeline stalls. Simulation results show that our Elastic Pipeline with the co-designed
bank-conflict aware warp scheduling significantly reduces the pipeline stalls by up
to 64.0 % and improves overall performance by up to 20.7 %, with trivial hardware
overhead.

In our future work, we will evaluate the effect of the proposed Elastic Pipeline
on GPUs with L1 hardware caches. The heavily-banked caches also suffer from the
dynamically varied access latencies in case of irregular memory access patterns, sim-
ilar to the shared memory case. Besides, we also intend to improve the accuracy of
bank conflict degree prediction for irregular memory access patterns. Since the Elastic
Pipeline also interacts with off-chip DRAM accesses, we would also like to investigate
co-optimization opportunities to improve the efficiency of both on- and off-chip mem-
ory accesses, for applications constrained by both on-chip bank conflicts and off-chip
bandwidth.
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