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Abstract—This paper studies the implementability of perfor-
mance efficient multi-lane Polymorphic Register Files (PRFs).
Our PRF implementation uses a 2D array of p × q linearly
addressable memory banks, with customized addressing functions
to avoid address routing circuits. We target one single-view
and a set of four non redundant multi-view parallel memory
schemes that cover all widely used access patterns in scientific
and multimedia applications: 1) p × q rectangle, p · q row, p · q
main and secondary diagonals; 2) p× q rectangle, p · q column,
p · q main and secondary diagonals; 3) p · q row, p · q column,
aligned p× q rectangle; 4) p× q, q× p rectangles (transposition).
Reconfigurable hardware was chosen for the implementation due
to its potential in enhancing the PRF runtime adaptability. For a
proof of concept, we prototyped a 2 read, 1 write ports PRF on
a Virtex-7 XC7VX1140T-2 FPGA. We consider four sizes for the
16 lanes PRFs - 16×16, 32×32, 64×64 and 128×128 and three
multi-lane configurations, 8, 16 and 32, for the 128 × 128 PRF.
Synthesis results suggest clock frequencies between 111 MHz and
326 MHz while utilizing less than 10% of the available LUTs. By
using customized addressing functions, the LUT usage is reduced
by up to 29% and the clock frequency is up to 77% higher
compared to a straight-forward implementation.

I. INTRODUCTION

The number of transistors in current semiconductor devices
has increased at a sustained rate, and it is expected to continue
growing in the future [1]. However, new challenges such as
power and thermal constraints make it infeasible to further
increase the processors clock frequency. Therefore, in recent
years the industry turned to Chip Multiprocessor (CMP)
designs and to accelerators targeting specific workloads (e.g.,
Single Instructions Multiple Data (SIMD) extensions and hard-
ware support for encryption algorithms [2]). When designing
a new processor, predefined scenarios are used in order to
anticipate the requirements of the target workloads and meet
expectations. However offering a single best configuration is
often impossible since new workloads will emerge in the
future. The growing diversity of the computational tasks drives
the need for higher adaptability of future computer systems
which utilize technologies such as reconfigurable hardware
and runtime partial reconfiguration.

When targeting vector architectures, such as IBM 370 [3]
in the past, and more recent GPPs featuring SIMD extensions,
e.g., Altivec [9], or the Synergistic Processor Units in the Cell

BE [10], programmers are expected to optimize their code
according to the number and width of the Vector Registers. As
the available storage was divided in a fixed number of registers
of equal sizes and shapes, any change in the size or the
number of SIMD registers breaks programming compatibility
with the existing software. As part of the Scalable computer
ARChitecture (SARC) architecture [16], we have proposed a
Polymorphic Register File (PRF) [5], designed to adapt to
various data structures and to assist programming of high
performance vector algorithms. The goal is to enable the
programmers focus on the desired functionality of their code
instead of describing complex data operations and transfers.
The PRF is able to dynamically divide the available register
storage into multidimensional registers of arbitrary shapes
and sizes during runtime. Previous studies ([5], [16]) have
shown that such PRFs are suitable for computationally inten-
sive workloads such as Floyd, the Conjugate Gradient (CG)
Method and dense matrix multiplication. It was also suggested
that PRFs can improve the performance efficiency in state
of the art many-core computers, potentially saving area and
power [6]. More specifically, the potential benefits from using
a 2D PRF are: i) improved storage efficiency, as the number
of registers, their dimensions and sizes are customized to
the workload requirements, and ii) performance gain, as the
committed instructions number is greatly reduced.

The key to high performance allowed by the PRF lies in
the capability of the latter to deliver aligned data elements
to the computational units at high rates, allowing multiple
vector lanes to operate in parallel and efficiently utilize the
available bandwidth. Accessing rectangular blocks of data is
widely used in linear algebra, as well as in multimedia and
scientific applications. Reconfigurable hardware was chosen
for the implementation due to its potential in enhancing
the runtime adaptability of the PRF. This paper provides
an implementability study of multi-module, multi-lane PRFs
targeting state of the art FPGAs. More specifically, the main
contributions of this paper are:

• A generic design of multi-lane, multi-port PRFs suitable
for hardware implementations in FPGAs and ASICs;

• Proof of concept demonstration of a practical FPGA
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Fig. 1. The Polymorphic Register File, N = 11, M = 8

TABLE I
THE MODULE ASSIGNMENT FUNCTIONS

Scheme mv mh
rectangle only i%p j % q

rect&row
(
i+
⌊
j
q

⌋)
%p j%q

rect&col i%p
(⌊

i
p

⌋
+ j
)
%q

row&col
(
i+
⌊
j
q

⌋)
%p

(⌊
i
p

⌋
+ j
)
%q

rect&trect, p < q i%p (i− i%p+ j)%q
rect&trect, q < p (i+ j − j%q)%p j%q

design. Synthesis results for a prototype with 2 read and 1
write ports with 64-bit data path using the selected Mod-
ule Assignment Functions (MAFs) targeting a Virtex-7
XC7VX1140T-2 FPGA. We consider four sizes for the
16 lanes PRFs and three multi-lane configurations for
the 128 × 128 PRF. Results suggest a maximum clock
frequency between 111 MHz and 326 MHz while only
using less than 10% of the available LUTs;

• Customized addressing functions and their evaluation.
The LUT usage is reduced by up to 29% and the
maximum clock frequency is increased by up to 77%
compared to the baseline, suboptimal implementation.

The remainder of this paper is organized as follows: the
background information and related work are presented in
Section II. The theoretical basis are defined in Section III.
Section IV describes the evaluation methodology, and evalu-
ates the results. Finally, the paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

When designing a processor, the requirements of the target
applications have to be anticipated in order to meet expecta-
tions, using predefined scenarios. However, the system require-
ments may change as new workloads become relevant, making
it impossible to forecast all requirements of all workloads,
especially in the age of ubiquitous computing [18]. Therefore,
offering a single best configuration is often impossible. The
growing diversity of tasks which need to be accomplished by
the processors drives the need for higher flexibility of future
computer systems. To a certain extent, software may mask
the low level architectural details, but in domains such as

TABLE II
CUSTOMIZED ADDRESSING FUNCTION - RECT&ROW SCHEME

Acc. Customized addressing functionType

p
×
q

ci,rect&row,p×q =

⌊
i%p+

(
k−
⌊

j
q

⌋
%p−cj,rect&row,p×q−i%p

)
%p

p

⌋

cj,rect&row,p×q =

{
1, l < j%q

0, otherwise

ci,rect&row,1×p·q = 0

1
×
p
·q cj1 =

{
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0, otherwise

cj,rect&row,1×p·q = cj1 +
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)
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cj1 =
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0, otherwise

δm.d. = k − i%p− ((l − j%q)%q)%p− cj1 −
⌊
j
q

⌋
%p

cj2 = ((δm.d.%p) · ωq+1)%p

ci,rect&row,md =
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i%p+(l−j%q)%q+q·cj2

p

⌋
cj,rect&row,md = cj1 + cj2
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D
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g.

cj1 =

{
−1, l > j%q

0, otherwise

δs.d. = k − i%p− ((j%q − l)%q)%p− (cj1%p)−
⌊
j
q

⌋
%p

cj2 = ((δs.d.%p) · ωq−1)%p

ci,rect&row,sd =
⌊
i%p+(j%q−l)%q+q·cj2

p

⌋
cj,rect&row,sd = cj1 − cj2

high performance computing or embedded systems, hardware
support is preferable to meet the performance and efficiency
constraints.

A PRF is a parameterizable register file, logically reorga-
nized under software control (by the system / application pro-
grammer or by the runtime system) to support multiple register
dimensions and sizes simultaneously [5]. Fig. 1 provides an
example of a two-dimensional PRF with a physical register
size of 11 by 8 basic elements. In this example, the available
storage has been divided into 7 logical registers, each with
different location and dimensions, defined using the Register
File Organization (RFORG) Special Purpose Registers (SPRs).
For each logical register it is required to specify the location
of the upper left corner (Base), the shape (REctangular, Main
or Secondary Diagonals), and the dimensions (Horizontal and
Vertical Lengths).

The additional flexibility of the PRF is achieved by adding
one level of indirection (the RFORG SPRs) when accessing
the vector registers. The benefits of a 2D PRF are:

• Potential performance gain, as the number of elements
processed with a single instruction is increased due to
multi-axis vectorization, greatly reducing the number of
committed instructions;

• Improved storage efficiency, as the number of vector
registers, their dimensions and sizes are dynamically set
during runtime follow the workload requirements;

• Reduced static code footprint, as the target algorithm may
be expressed with fewer, higher level instructions. The
same binary instructions may be used regardless of the
shapes, dimensions and data types of the operands. The



TABLE III
CUSTOMIZED ADDRESSING FUNCTION - RECT&COL SCHEME

Acc. Customized addressing functionType
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ci,rect&col,sd = ci1 + ci2

cj,rect&col,sd =
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j%q−(k−i%p)%p−p·ci2

q

⌋

microarchitecture resolves the operands compatibility.

One of the main goals of the PRF is to facilitate pro-
cessor scalability. The customization process is shifted from
the design time to runtime. The higher level instruction
set offers binary instruction compatibility between software
implementations with different data types or vector operand
dimensions, potentially reducing the development costs. The
PRF is dynamically adjustable during runtime, making it an
Adaptable architecture. With proper compiler and runtime
support, it can be easily integrated in Self-Adaptable and
Autonomic Computing Systems [8].

Previous works show reductions of the number of executed
instructions by three orders of magnitude due to PRF [5]. Fur-
thermore, PRFs allow performance benefits when compared to
the Cell processor for Floyd and the main kernel of the CG
Method - sparse matrix vector multiplication [5]. The PRF
programming interface allows high performance dense matrix
multiplication with at least 35 times less instructions than a
hand-crafted version for the Cell BE [16]. A CG case study
evaluated the PRF based system scalability in a heterogeneous
multi-core architecture and showed CG acceleration by two
orders of magnitude using up to 256 PRF cores, with 32 vector
lanes each. Moreover, a similar performance level could be
achieved by fewer PRF cores compared to a Cell BE-based
system, potentially saving area and power [6].

In all previous studies, up to 32 vector lanes were used,
proving that the ability of the PRF to deliver data to mul-
tiple parallel vector lanes at high rates is the key to high
performance. The main goal of our work hereafter is to study
the implementability of the PRFs and identify the possible

TABLE IV
CUSTOMIZED ADDRESSING FUNCTION - ROW&COL SCHEME

Acc. Customized addressing functionType

p
·q
×

1 ci,row&col,1×p·q = 0

cj1 =

⌊
j%q+

(
l−
⌊

i
p

⌋
%q−j%q

)
%q

q

⌋
cj2 =

(
k − i%p−

⌊
j
q

⌋
%p− cj1

)
%p

cj,row&col,1×p·q = cj1 + cj2

1
×
p
·q ci1 =

⌊
i%p+

(
k−
⌊

j
q

⌋
%p−i%p

)
%p

p

⌋
ci2 =

(
l − j%q −

⌊
i
p

⌋
%q − ci1

)
%q

ci,row&col,p·q×1 = ci1 + ci2
cj,row&col,p·q×1 = 0

p
×
q

ci,row&col,p×q =

⌊
i%p+

(
k−i%p−

⌊
j
q

⌋
%p
)
%p

p

⌋

cj,row&col,p×q =

⌊
j%q+

(
l−j%q−

⌊
i
p

⌋
%q
)
%q

q

⌋

bottlenecks of the considered implementation. We examine
configurations with up to 32 parallel lanes, and evaluate the
clock frequency and FPGA resources utilization.

Related Work: The efficient processing of multidimen-
sional arrays has been targeted by other architectures as well.
One approach is to use a memory to memory architecture, such
as the Burrows Scientific Processor (BSP) [12]. Being opti-
mized for executing Fortran code, the ISA composed of high
level vector instructions with a large number of parameters.
The arithmetic units were equipped with 10 registers which are
not directly accessible by the programmer. The Polymorphic
Register File also creates the premises for a high level ISA, but
can reuse data directly within the register file. The Complex
Streamed Instructions (CSI) [11] approach also did not make
use of any data registers. CSI allows the processing of two-
dimensional data streams of arbitrary length, but requires data
caches to benefit from data locality. Our approach can use the
register file to avoid high speed data caches.

The Vector Register Windows (VRW) [14] concept allows
the grouping of consecutive vector registers in a 2D window.
However, one of the dimensions is fixed, contrary to our
proposal. The Matrix Oriented Multimedia (MOM) [7] also
uses a 2D register file, but with a fixed number of registers
which used sub-word parallelism in order to store up to 16x8
elements. The Polymorphic Register File also supports sub-
word level parallelism but doesn’t restrict the number or shape
of the two dimensional registers. Modified MMX [17] supports
8 multimedia registers, each 96 bits wide. However, the matrix
operations are limited to only loads and stores.

The Register Pointer Architecture(RPA) [15] provides extra
storage to a scalar processor by adding two additional register
files - Dereferencible Register File (DRF) and the Register
Pointers (RP). The DRF provides the extra storage space,
while the RP provide indirect access to the DRF. The PRF
also uses indirect accessing to a dedicated register file, but
the RPA maps scalar registers, while in our proposal each
indirection register maps to a matrix, being more suitable for



TABLE V
CUSTOMIZED ADDRESSING FUNCTION - RECT&TRECT SCHEME

Acc. Customized addressing functionType

p
×
q

ci,rect&trect,p<q,p×q =

{
1, k < i%p

0, otherwise

δp×q = l − (ci,rect&trect,p<q,p×q · p)%q −
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%q − j%q

cj,rect&trect,p<q,p×q =
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j%q+δp×q%q
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0, otherwise
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(
l−ci1·p−
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·p
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%q−j%q−(l%p−j%p)%p

)
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p
ci,rect&trect,p<q,q×p = ci1 + ci2

cj,rect&trect,p<q,q×p =
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j%q+(l%p−j%p)%p

q

⌋
TABLE VI

THE ω CONSTANTS

p/q 2 4 8
2 1 1 1
4 3 1 1

(a) ωq+1

p/q 2 4 8
2 1 1 1
4 1 3 3

(b) ωq−1

p/q 2 4 8
2 1 3 3
4 1 1 5

(c) ωp+1

p/q 2 4 8
2 1 1 1
4 1 3 3

(d) ωp−1

vector processing.
In order to adjust the number of registers in a VLIW, in [19]

FPGA partial reconfiguration is used to adjust the size of the
physical register file. Our approach assumes fixed physical
register file, but offers a higher level view of the available
storage space, eliminating many overhead instructions, possi-
bly improving performance.

III. THEORETICAL BASIS

We propose a generic PRF implementation containing
N ×M data elements, stored using p × q memory modules,
organized in a 2D matrix with p rows. Throughout this paper,
we will use ”×” to refer to a 2D matrix and ”·” to denote
scalar multiplication. We also assume that N%p =M%q = 0.
Depending on the parallel memory scheme employed, such an
organization allows the efficient use of up to p ·q vector lanes.

We consider five parallel access schemes suitable for the im-
plementation of the PRF: a single-view scheme which supports
conflict free accesses shaped as to p× q rectangles, suggested
in [13], and referred hereafter as the rectangle only scheme,
and a set of four well selected, non redundant multi-view
schemes, supporting conflict free access to the most common
vector operations for scientific and multimedia applications,
which we proposed in [4]. The multi-view parallel access
schemes are denoted as rect&row, rect&col, row&col and
rect&trect, each of them supporting at least two conflict-free
access patterns: 1) rect&row: p× q rectangle, p · q row, p · q
main diagonals if p and q + 1 and co-prime, p · q secondary
diagonals if p and q − 1 are co-prime; 2) rect&col: p × q
rectangle, p · q column, p · q main diagonals if p + 1 and q
are co-prime, p · q secondary diagonals if p− 1 and q are co-
prime; 3) row&col: p · q row, p · q column, aligned (i%p = 0
or j%q = 0) p × q rectangle; 4) rect&trect: p × q, q × p
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Fig. 2. PRF block diagram, p=2, q=4. Special Purpose Registers are not shown.

rectangles (transposition) if p%q = 0 or q%p=0.
The mathematical operators used later in this section are:
Definition 1: The floor function (round to −∞):

bxc = max {z ∈ Z|z ≤ x} (1)

and has the following property:

bx+ zc = bxc+ z,∀z ∈ Z (2)

Definition 2: The “%” modulo operator is defined as:

x%n = x− n ·
⌊x
n

⌋
, n ∈ N, x%n < n (3)

The parallel access scheme assigns (i, j), the address of
an element stored in the 2D PRF, to a position in one of
the memory modules. This one-to-one mapping is performed
by the module assignment functions mv() and mh(), and the
intra-module linear addressing function A(). The row of the
memory module is computed by mv() and the column by
mh(). The module assignment functions for the five consid-
ered schemes are presented in Table I.

In practical designs, the dimensions of the PRF as well as
the number of memory modules are powers of 2, therefore
the multiplications, divisions and modulo operations required
by the memory schemes are simplified to shifts or bit select
operations, and the conditions imposed on p and q for the
rect&trect scheme, as well as regarding the diagonal accesses
for rect&row and rect&col schemes are satisfied. Without
loss of generality, we assume p < q when further referring to
the rect&trect scheme.

For all the schemes considered, the standard linear address
assignment function [4] is defined as:

Astandard(i, j) =

⌊
i

p

⌋
·
(
M

q

)
+

⌊
j

q

⌋
, j < M (4)



PRF Vector rect only rect&row rect&col row&col rect&trect
Size Lanes std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%]

16 × 16 2 × 8 191.6 205.0 +7.0 183.6 189.7 +3.3 167.1 167.4 +0.2 163.4 168.3 +3.0 177.1 170.3 -3.8
32 × 32 2 × 8 190.4 194.5 +2.2 182.6 185.4 +1.5 164.8 163.5 -0.8 153.2 169.3 +10.5 174.1 178.1 +2.3
64 × 64 2 × 8 186.5 184.5 -1.1 176.4 187.8 +6.5 166.3 174.0 +4.6 155.9 169.0 +8.4 167.0 183.2 +9.7

128 × 128 2 × 8 153.6 195.0 +27.0 146.3 177.1 +21.1 148.0 170.8 +15.4 147.8 165.4 +11.9 151.6 178.4 +17.7
128 × 128 2 × 4 183.9 326.3 +77.4 186.1 246.0 +32.2 193.9 205.4 +5.9 175.0 194.0 +10.9 183.4 239.8 +30.8
128 × 128 4 × 8 111.5 141.3 +26.7 124.0 116.8 -5.8 114.9 122.5 +6.6 111.6 118.9 +6.5 113.0 141.7 +25.4

Avg. ∆ 2 × 8 - - +8.8 - - +8.1 - - +4.9 - - +8.5 - - +6.5
128 × 128 Avg. ∆ - - +43.7 - - +15.8 - - +9.3 - - +9.8 - - +24.6

(a) Maximum Clock Frequency [MHz]

PRF Vector rect only rect&row rect&col row&col rect&trect
Size Lanes std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%] std. cust. ∆[%]

16 × 16 2 × 8 18034 15846 -12.1 18438 16350 -11.3 19585 18840 -3.8 20059 18227 -9.1 19308 17588 -8.9
32 × 32 2 × 8 18941 16075 -15.1 19326 16601 -14.1 20830 18755 -10.0 20791 18216 -12.4 20807 18042 -13.3
64 × 64 2 × 8 20008 15860 -20.7 20308 16714 -17.7 21860 19078 -12.7 21698 17808 -17.9 21807 17924 -17.8

128 × 128 2 × 8 21129 15965 -24.4 20873 16893 -19.1 22307 19670 -11.8 22459 18207 -18.9 22236 17868 -19.6
128 × 128 2 × 4 5538 6169 +11.4 5154 4243 -17.7 5644 5152 -8.7 5934 4699 -20.8 5979 4730 -20.9
128 × 128 4 × 8 64526 45719 -29.1 66811 49622 -25.7 92952 78811 -15.2 92529 76406 -17.4 93971 74511 -20.7

Avg. ∆ 2 × 8 - - -18.1 - - -15.6 - - -9.6 - - -14.6 - - -14.9
128 × 128 Avg. ∆ - - -14.0 - - -20.8 - - -11.9 - - -19.0 - - -20.4

(b) Total Area [LUTs]

TABLE VII
VIRTEX-7 XC7VX1140T-2 SYNTHESIS RESULTS FOR 2 READ PORTS, 1 WRITE PORT, 64 BIT DATA WIDTH

The linear address function can be customized for accessing
blocks of p · q elements. In this case, the coordinates (i, j)
refer to the upper left corner of the accessed block, and (k, l)
to the coordinates of the memory module in the p×q memory
module array:

Acustomized(i, j) =

(⌊
i

p

⌋
+ ci

)
·
(
M

q

)
+

⌊
j

q

⌋
+ cj (5)

The ci and cj coefficients are unique for each memory
scheme and parallel access shape, and for the multi-view
schemes [4] they are defined in Tables II, III, IV and V. The
coefficients for the rectangle only scheme [13] are defined as:

ci,rect.only =

{
1, k < i%p

0, otherwise
cj,rect.only =

{
1, l < j%q

0, otherwise

In order to compute the coefficients for the main and
secondary diagonals, the ω constants are to be computed,
which represent the multiplicative inverses of the pairs (q +
1; p), (q−1; p), (p+1; q) and (p−1, q). Table VI contains the
ω constants for p = 2 . . . 4 and q = 2 . . . 8.

IV. EXPERIMENTAL SET-UP AND RESULTS

In this section, we propose the generic PRF design, describe
the methodology used for the FPGA evaluation and present the
synthesis results.

Generic PRF design: The block diagram of an 8 vector
lanes PRF hardware implementation is shown in Fig. 2. The
data of the PRF is distributed among p× q linearly accessible
memory modules, organized in a 2D matrix with p rows.
Depending on the parallel memory scheme employed, such
an organization allows the efficient use of up to p · q lanes.

The input of the Address Generation Unit (AGU) consists
of the upper left coordinates of the accessed vector (i and j)
and the access type (e.g., rectangle, row, column or diagonal),

and computes the addresses of all PRF elements which are
accessed, denoted as i + α, j + β. The generated addresses
are fed to the module assignment function, which controls the
read and write shuffles. Since accessing the memory modules
introduces a delay of one cycle, it is also necessary to delay
the control signals for the data shuffle block when performing
a read operation.

In the standard case, the AGU provides the input to the
regular addressing function (Eq. 4), mapping each accessed
element to the location in the corresponding memory module.
However, the addresses should be reordered according to the
MAF before arriving at the memory modules.

When using the customized addressing functions, the shaded
blocks in Fig. 2 are replaced by the ci, cj coefficients as well
as the customized addressing function (Eq. 5), eliminating the
need to shuffle the read and write intra-module addresses. This
is possible because the ci and cj coefficients are computed
only using the upper left coordinates of the accessed vector (i
and j) and the coordinates of the memory module (k and l).

Experimental Set-Up: The PRF mitigates some of the
restrictions imposed by previous vector architectures, regard-
less of the implementation technology used, allowing variable
number of runtime adjustable vector registers of arbitrary
shapes and sizes. Generally, ASIC implementation offers the
highest performance, but by using reconfigurable hardware the
runtime adaptability may be further enhanced. ASIC PRF will
have the total storage size as well as its aspect ratio fixed.
Using FPGAs, this limitation may be removed using runtime
partial reconfiguration. Further enhancements such as runtime
adjustment of the number of vector lanes, register file ports
and data width may allow the PRF to scale with performance,
power and thermal constraints.

As a proof of concept, we implemented a PRF prototype
design (excluding the Special Purpose Registers) with 2 read



and 1 write ports with 64-bit data path, using Synplify Premier
F-2011.09-1, and targeting a Virtex-7 XC7VX1140T-2 device.
This prototype implementation uses full crossbars as read and
write address shuffle blocks. We have coupled two dual-port
BRAMs and duplicated the data in order to obtain 2 read and
1 write ports.

Experimental Results: The FPGA synthesis results are
presented in Table VII. We consider four sizes for the 16 lanes
PRFs - 16 × 16, 32 × 32, 64 × 64 and 128 × 128 and three
multi-lane configurations for the 128× 128 PRF - 8 / 16 / 32
lanes. We label the columns for the standard designs as std.,
the custom ones as cust., and the difference - by ∆ [%].

The highest clock frequency for the rectangle only scheme
is 326 MHz, and 246 MHz for the multi-view schemes. The
clock frequency and total area is mainly influenced by the
number of lanes. By increasing the capacity from 16 × 16
up to 128× 128, area increases by up to 3095 LUTs and the
clock frequency is reduced by up to 38 MHz. For PRFs smaller
than 64 × 64, storage capacity has little impact on the clock
frequency. By doubling the number of lanes, the total area
increases by a factor of around four, an exponential increase.

By customizing the addressing function, we can increase the
clock frequency up to 77% for rectangle only and 32% for the
multi-view schemes. On average, the frequency is increased by
nearly 9% for 16-lanes PRFs and up to almost 25% for multi-
view, 128 × 128 PRFs. The largest area savings are 29% for
the 32-lane, 128 × 128 rectangle only PRF and nearly 26%
for the 32-lane rect&row scheme.

The results show that even without optimized shuffle blocks,
PRFs are implementable on FPGAs using the selected parallel
access schemes, with a minimum clock frequency of 111 MHz
and area usage of less than 94000 LUTs (10% of the available
LUTs). By analyzing the detailed area and timing reports, we
observed that the full crossbars consume a significant amount
of the total area, and, being part of the design critical path
they represent the main performance bottleneck in our PRF
implementation. Therefore, the crossbars are the immediate
candidates for further design optimizations.

V. CONCLUSIONS AND FUTURE WORK

We proposed a design employing a 2D array of p × q
memory modules and a parallel access memory scheme for a
PRF implementation, connected to multiple vector lanes. We
selected one single-view and a set of four complementary, non
redundant multi-view Module Assignment Functions suitable
for implementations of a PRF providing the following widely
used conflict free patterns: 1) p× q rectangle, p · q row, p · q
diagonals if (p, q + 1) and (p, q − 1) are co-prime; 2) p × q
rectangle, p·q column, p·q diagonals if (p+1, q) and (p−1; q)
are co-prime; 3) p ·q row, p ·q column, aligned p×q rectangle;
4) mutually transposed p×q, q×p rectangles. Reconfigurable
hardware was chosen for the implementation due to its ability
to adapt the PRF at runtime. Synthesis results of a 2 read and 1
write ports PRF prototype for a Virtex-7 FPGA implementing
the selected MAFs indicate feasible clock frequencies with
trivial hardware area utilization. Using customized addressing

functions further reduced the hardware area and the clock
cycle time by avoiding address routing circuits. We have
identified the full crossbar shuffle networks as the main
bottleneck of our hardware implementation. Therefore, we
will investigate the potential of employing custom solutions,
or even dynamic runtime customization of the interconnect
using partial reconfiguration. Furthermore, we plan to evaluate
in more details the performance, energy consumption and
hardware complexity of the proposed schemes.
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