
Evaluation of
Different Task
Scheduling Policies
in Multi-Core
Systems with
Reconfigurable
Hardware
Mahyar Shahsavari∗, Zaid Al-Ars∗,
Koen Bertels∗,1,

∗ Computer Engineering Group, Software & Computer Technology Department, Delft
University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

ABSTRACT

Multi-core processing technology is one of the best way of achieving high performance computing
without driving up heat and power consumption. In addition, reconfigurable systems are gaining
popularity due to the fact that they combine performance and flexibility. These systems allow
us to have software tasks running on a General Purpose Processor (GPP) along with hardware
task running on a reconfigurable fabric, such as FPGA. An important part of parallel processing
in multi-core reconfigurable systems is to allocate tasks to processors to achieve the best perfor-
mance. The objectives of task scheduling algorithms are to maximize system throughput by as-
signing a task to a proper processor, maximize resource utilization, and minimize execution time.
Task execution on such platforms is managed by a scheduler that can assign tasks either to the
GPPs or to the reconfigurable fabric. In this paper, we compare and evaluate different scheduling
policies which have been classified into descriptive categories. The various task scheduling algo-
rithms are discussed from different aspects, such as task dependency, static or dynamic policies,
and heterogeneity of processors.

KEYWORDS: Multi-Cores; Task Scheduling Policies; Evaluation

1 Introduction

During the last decades before second millennium, shrinking the transistor size and increas-
ing the number of transistors on a chip have responded to demand of fast and more efficient

1E-mail: {m.shahsavari,Z.Al-Ars,k.l.m.bertels}@tudelft.nl



processing performance. Increasing the number of transistors on a chip not only leads to
more heat increament but also causes more processor power consumption. In addition, re-
ducing transistor size is facing new challenges like physical constraints and high fabrication
cost. “ Multi-core chips are the biggest change in the PC programming model since Intel
introduced the 32-bit 386 architecture,′′ stated Gwennap [Gee05].

An important part of parallel processing in multi-core systems is assigning tasks to pro-
cessors due to best performance. The purpose of task scheduling in multiprocessor systems
are maximizing performance by assigning correct tasks to correct processors, optimizing re-
source application, minimizing computation time. Due to the wide variety of approaches to
different policies, it is complicated to compare various systems meaningfully since there is
no uniform means for evaluating them qualitatively or quantitatively. It is not also simple
to build upon existing work or identify areas valuable for additional effort without some
understanding of the relationships between past efforts. Classifying of approaches to the re-
source mapping is presented in [KA99] which try to provide a common classification mecha-
nism which is required for addressing this problem. Whether the system is static or dynamic,
multiprocessor systems are heterogeneous or homogeneous, and communication delay has
considered or not the algorithms will be categorized.

Recently reconfigurable platforms are gaining popularity due to the fact that they com-
bine performance and flexibility. Tasks implemented as a software programs, running on
GPP, have the characteristics of high performance. On the other hand, tasks implemented
as hardware modules placed on FPGA, demonstrate high performance, but low flexibility
and high cost. Task execution on such platforms is managed by a scheduler that can allocate
tasks either to the processors or to the reconfigurable platforms. In this paper, we evaluate
different scheduling policies for Multiprocessors with reconfigurable hardware. The rest of
the article is organized as follows. The next section presents scheduling policies. In Section 3
evaluation on the multi-core reconfigurable platform has been done. Summary and conclu-
sions discussed at the final section.

2 Scheduling Policies

Min-min: This type of heuristic can be applied to schedule a set of tasks without dependen-
cies onto a heterogeneous multiprocessor system. Min-min selects a task with the minimum
execution time on any processor from the set U of unmapped tasks, and schedules it onto
the processor on which it has the minimum completion time. The Min-min heuristic is very
simple, easy to implement and it was one of the fastest algorithms compared [CJW+10].

Chaining: Chaining distributes the task graph between the processors and it does not
allow duplication of the tasks. The algorithm begins with a partially scheduled task graph
which is the original task graph to which two proposed tasks with zero execution time, p
and q are added. Each processor starts by executing the task p and finishes by executing the
proposed task q. Other tasks will be executed only once.

HLFET: Highest Level First with Estimated Times algorithm is one of the simplest list
scheduling algorithm. First, we calculate the static b-level (bottom level) of each node. The
b-level of a node ni is the length of the longest path from ni to an exit node. Then, make a
ready list in a descending order of static b-level. Initially, the available list contains only the
entry nodes. Ties are broken randomly. In third step, schedule the first node in the ready list
to a processor that allows the earliest execution, using the non-insertion approach. Update



the ready list by inserting the nodes that are now ready. Go to third step until all nodes are
scheduled.

ISH: The Insertion Scheduling Heuristic (ISH) algorithm, improves the HLFET algorithm
by utilizing the idle time slots in the scheduling. Virtually, it uses the same approach as
HLFET to make available list based on static b-level and schedule the first node in the ready
list by using the non-insertion approach. The difference is that, once the scheduling of this
node creates an idle slot, ISH checks if any task in the available list can be applied in the idle
slot but cannot be scheduled earlier on the other processors. Schedule such tasks as many as
possible into the idle slot.

DSH: Duplication Scheduling Heuristic (DSH) differs from the HLFET and ISH algo-
rithms that allow no task cloning or duplication. DSH algorithm duplicates some predeces-
sors in different processors so that each child can start as earlier as possible by eliminating
communication delay. Once a node creates an idle slot, the algorithm attempts to duplicate
as many predecessors as possible into the slot solely if the duplicated predecessors can im-
prove the start time of this node.

Genetic Algorithm: Genetic Algorithm (GA) is a heuristic search technique which allows
for large solution spaces to be heuristically searched in polynomial time, by applying evo-
lutionary techniques from nature. It starts with an initial population of individuals, which
can either be generated randomly or based on some other algorithm. Each individual is an
encoding of a set of parameters that similarly identify a potential solution of the problem.
In each generation, the population goes through the processes of crossover, mutation, fit-
ness evaluation and selection. During crossover, parts of two individuals of the population
are exchanged in order to create two entirely new individuals which replace the individu-
als from which they evolved. Each individual is selected for crossover with a probability of
crossover rate. Mutation alters one or more genes in a chromosome with a probability of
mutation rate [JST08].

Tabu Search (TS): TS is a neighborhood search technique that tries to avoid local minimal
and attempts to guide the search towards a global minimum. Tabu search starts with an
initial solution, which can be obtained by applying a simple one-pass heuristic, and scans
the neighborhood of the current solution. For the multiprocessor task-scheduling problem, a
move consists of moving a task from one processor to some other processors, or changing the
order of execution of a task within the list of tasks scheduled to a processor. This technique
considers all the moves in the immediate neighborhood, and accepts the move which results
in the best makespan.

Simulated Annealing (SA): Simulated Annealing is a search method based on the physi-
cal process of annealing, which is the thermal process of getting low energy crystalline states
of a solid. Firstly, the temperature is increased to melt the solid. If the temperature is slowly
reduced, particles of the melted solid arrange themselves locally, in a stable ground state of
a solid. SA theory proposes that if temperature is lowered sufficiently slowly, the solid will
reach thermal counterbalance, which is an optimal state. The thermal balance is an optimal
task-machine mapping (optimization goal), the temperature is the total completion time of
a mapping (cost function), and the change of temperature is the process of mapping change.
We use this physical based technique as a solution in task scheduling problems.

A* Search Algorithm: The A* algorithm is a best-first search algorithm, originally from
the area of artificial intelligence. It is a tree search algorithm that starts with a null solution,
and proceeds to a complete solution through a series of partial solutions. The root or the
null solution means none of the tasks are allocated to any processor. The tree is expanded



Figure 1: Makespans and execution time of variable task sizes of scheduling algorithms.

by selecting a task and allocating it to all possible processors. Each allocation is a different
partial solution; therefore, each node has p children. At any node, the partial solution has
one more task mapped than its parent node. The total number of nodes in the tree is limited
to a predetermined constant in order to avoid an exponential execution time.

3 Evaluation

We have run all the algorithms on various sizes of factorization problem. In our simulation,
we assume the number of processors is four. The computations and communication time
are 40 s/task and 100 s respectively. The number of tasks that we choosed are 15, 20, 30,
and 40. For GA implementation Population size, Mutation rate, and Crossover rate are 30,
0.01, and 0.7 respectively. The makespan of the obtained solutions and execution time of the
algorithms are represented on Figure 1.

4 Summary

In this report, we presented a survey of algorithms for task scheduling problem. In the DAG
model, a node represents an atomic program task and an edge represents the communica-
tion beside data dependency. Each node is labeled a weight to show the amount of execution
time that tasks require. An edge is also labeled a weight, presents the amount of commu-
nication time required. It is notable as a comparison output that most of recent algorithm



literatures refer to list heuristic algorithms. Duplication Scheduling Heuristic (DSH) had
provided short scheduling time and schedules with the shortest makespan. We conclude
that DSH and ISH are the best solution, but their deployment need to be subject of a careful
cost-benefit analysis. The next group, scheduling algorithms based on iterative search such
as genetic algorithms, simulated annealing, tabu search, and A* require an order of longer
execution time, but have better solutions with a shorter makespan. In this group, the best
solutions were obtained by genetic algorithms and tabu search.

References

[CJW+10] Haijun Cao, Hai Jin, Xiaoxin Wu, Song Wu, and Xuanhua Shi. Dagmap: efficient
and dependable scheduling of dag workflow job in grid. J. Supercomput., 51:201–
223, February 2010.

[Gee05] David Geer. Industry trends: Chip makers turn to multicore processors. Com-
puter, 38:11–13, 2005.

[JST08] Shiyuan Jin, Guy A. Schiavone, and Damla Turgut. A performance study of mul-
tiprocessor task scheduling algorithms. The Journal of Supercomputing, 43(1):77–97,
2008.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv., 31:406–471, Decem-
ber 1999.


	Introduction
	Scheduling Policies
	Evaluation
	Summary

