
Zero-Performance-Overhead Online Fault Detection
and Diagnosis in 3D Stacked Integrated Circuits

Saleh Safiruddin, Mihai Lefter, Demid Borodin, George Voicu, Sorin Dan Cotofana
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands

{s.safiruddin, m.lefter, d.borodin, g.r.voicu, s.d.cotofana}@tudelft.nl

Abstract—In this paper we present a zero-performance-
overhead online fault detection and diagnosis scheme that exploits
the vertical proximity of hardware inherent in 3D stacked
integrated circuits (3D-SIC). We consider a 3D stacked processor
executing independent instruction streams from different threads,
on each die. We propose the vertical clustering of functionally
identical computational blocks in order to enable the utiliza-
tion of the 3D specific low-latency interlayer communication
infrastructure. The clustering facilitates the parallel re-execution
of instructions on idle units located in the proximity of the
units which initially computed them and in this way creates the
means for fault diagnosis and detection. We detail the control,
interconnection communication infrastructure, instruction distri-
bution, and results processing policies required for our scheme.
To determine the effectiveness of the approach, we evaluate its
performance in terms of diagnosis latency and percentage of
verified operations on 3 to 8 core processors implemented on
3 to 8 tier 3D-SICs, respectively, by means of simulations. Our
experiments indicate that the diagnosis latency ranges from 9
to 5 cycles, for 3 to 8 cores, respectively. For transient fault
detection our simulations indicate that 86% to 94% of all
executed instructions are verified, for 3 to 8 cores, respectively.
When only one of the layers is protected against transient
faults the number of verified operations increases to 94% to
99%, for the same simulation conditions. This suggests that,
if certain conditions are fulfilled at design time, our approach
can completely protect one instruction stream identified as being
critical for the application. Our simulations clearly indicate that
the proposed scheme has the potential to improve the 3D stacked
integrated circuits dependability with no performance overhead
and at the expense of little area overhead.

I. INTRODUCTION

Modern semiconductor industry faces severe scaling prob-
lems while attempting to keep pace with Moore’s Law [1]. In
particular, major challenges include the increasing communi-
cation delay [2] due to long interconnect wires, and maintain-
ing the yield and lifetime of chips [3], [4]. Interference from
external physical phenomena starts becoming an important
failure factor, resulting in transient errors in logic circuits
becoming a concern [5], [6], [7]. For future technologies,
transient errors are expected to be very significant, and could
even last multiple cycles [8], [9].

The emerging three-dimensional stacked integrated circuit
(3D-SIC) technology [10] has the potential to alleviate some
of these problems as it significantly contributes to overcoming
the interconnect scaling barriers, by providing designers with
the third dimension [11], [12]. The third dimension enables

them to replace long intra-die interconnect wires with sig-
nificantly shorter inter-die (vertical) communication channels
implemented with, e.g., Through-Silicon Vias (TSVs). By
making use of the z-dimension the 2D circuits can be folded at
different granularities, such as stacking processors, functional
units, or splitting a functional unit across different dies1 [11].
Thus, a 3D stacked implementation of any wire-dominated
circuit can significantly outperform the 2D counterparts in
terms of performance [13] and energy consumption [14].

In addition to the straightforward benefits achievable by
replacing long wires with shorter ones in existing systems,
3D integration opens new design opportunities. These oppor-
tunities can be leveraged to even further improve the system
performance measured in terms of, e.g., latency, throughput,
energy, and reliability. For example, dies produced with dif-
ferent fabrication technologies can be stacked together. This
enables, for instance, energy effective and computationally
efficient 3D stacked hybrid platforms [15].

As another example, the low-latency vertical communica-
tion channels between dies with processors and dies with
caches allow for the placement of cache banks closer to the
processors which make use of them, and thus by implication,
for the reduction of the cache access time [16].

Furthermore, 3D-SIC technology extends the design space
for integrated circuits [17], offering many new opportuni-
ties for dependable computing, to address the other major
semiconductor industry problem: chip yield and dependable
operation. 3D integration adds two new dimensions to the
design space: (i) the z-dimension, as now the application can
be mapped on parts of the circuit that are placed in different
planes, and (ii) the R-dimension as different planes can
be implemented with different reliabilities. Possible 3D-SIC
dependability related research avenues, identified in [17], are
3D enhanced verification, 3D critical system part protection,
3D vulnerable resource protection, 3D check-pointing, and
exploiting vertical proximity of hardware.

Following the 3D critical system part protection principle,
in [18], the authors adapt the DIVA approach [19] for 3D
systems. In [20] the vertical proximity of hardware is exploited
and functional unit sharing is proposed that makes use of fast

1In this paper, to specify one die in the 3D stacked IC, we use the terms
die, tier, and layer interchangeably.

vertical access between these resources in order to improve
the system reliability and/or performance.

In this paper we introduce a novel dependability improve-
ment approach, which builds upon the effective resource
sharing between 3D stacked processors. We consider a 3D
stacked processor executing an independent instruction stream
on each die. The instruction streams can originate from
different threads or tasks, for example. For improving system
dependability, we wish to verify whether these instructions
were executed correctly and if not to localize any permanent
or transient faults where required. In 2D processors, this was
achieved by introducing some sort of redundancy into the
system, e.g., space or time redundancy, incurring significant
area or performance overheads. In our 3D approach we do not
rely on redundant resources as we propose to take advantage of
the fact that in a 3D-SIC, identical resources, e.g., functional
units, can be made to reside in vertical proximity to each other.
Since the executed instruction streams are independent, they
do not have the same resource utilization (occupancy) profile.
This provides opportunities for the parallel re-execution of
instructions on idle units located in the proximity of the unit
which initially executed them. In this way the instruction
results can be used to detect and locate faults.

We propose a system level diagnosis scheme which applies
the above concept. The method does not require the pres-
ence of redundant hardware, and furthermore, no performance
penalty is incurred, since only idle resources are utilized.
The scheme runs online, i.e, it functions in the background
during normal application execution. The 3D-SIC has to be
organized so that we can make effective use of the available
resources. This includes 3D vertical clustering; a definition of
a global or local controller, and the necessary physical TSV-
based interconnection infrastrucure that should exist; policies
for instruction distribution; and policies for results selection
and collection.

To evaluate the implications of the proposed technique we
simulate our diagnosis scheme in the context of a 3D embodi-
ment of a multicore system, including all the infrastructure
and mechanisms required by our proposal. Our simulation
results indicate that the diagnosis latency ranges from 9 to
5 cycles, for 3 to 8 cores, respectively. For transient fault
detection our simulations indicate that 86% to 94% of all
executed instructions are verified, for 3 to 8 cores, respectively.
When only one of the layers is protected against transient
faults the number of verified operations increases to 94% to
99%, for the same simulation conditions. This suggests that, if
certain conditions are fulfilled at design time, our approach can
completely protect one instruction stream identified as being
critical for the application.

The paper is organized as follows. In Section II we present
the main concepts behind the proposed diagnosis scheme,
and the organization required for our scheme to function. In
Section III we discuss fault detection time theoretical bounds
of the scheme and in Section IV we evaluate the proposal for
a number of benchmarks, by applying our scheme for a case
study. Section V concludes the paper.

II. PROPOSED ONLINE DIAGNOSIS AND FAULT
DETECTION SCHEME FOR 3D-SICS

In this section we first describe the principle behind the
proposed online diagnosis and fault detection scheme. We then
detail the structure and requirements of the scheme.

Fig. 1. Composing clusters of functionally identical computing blocks to
which the diagnosis scheme can be applied. Interconnects are present but not
drawn.

A. Main Concept

Let us consider a 3D stacked processor executing an ap-
plication. The application can consist of multiple threads,
with each thread supplying an independent instruction stream
for each die. For improving system dependability, we wish
to verify whether these instructions were executed correctly.
The independent resource utilization of each thread provides
opportunities for the parallel re-execution of instructions on
idle units located in the proximity of the unit which initially
executed them. In this way the instruction results can be used
to detect and locate faults.

Our proposed diagnosis scheme utilizes the above concept
and runs in the background simultaneously with the system
applications, being completely transparent from the software
perspective. Once the scheme raises a red flag, i.e, faulty
instruction execution is discovered, the system can take appro-
priate action. For transient faults, the application may require
execution verification of all the threads, or only for a specific,
critical one. It may only need fail-safe operation or guarantee
execution, by check-pointing for example. Furthermore, it may
be required to locate the thread in which the fault occurred.
For permanent faults, another execution on the faulty hardware
may have to be prevented. For example, the faulty hardware
can either be disabled, or self-repair can be applied, with a
built-in spare being activated.

Depending on what the application diagnosis requirements
are, the 3D-SIC has to be organized in a certain way so that
the scheme can make effective use of the available resources.
First, the identically functioning groups of hardware should

be placed in vertical proximity across a 3D stack. A physical
interconnect communication infrastructure is required through
which to distribute instructions and to collect results. 3D-SIC
offers us a low latency communication channel through TSVs.
Furthermore, each die requires additional hardware to interact
with the communication infrastructure and apply the diagnosis
scheme. The controller for each block can be global or local.
Protocols are defined for instruction distribution as well as for
results selection and collection.

B. 3D Vertical Clustering

Let us assume a 3D stacked organization composed of
multiple processing systems, e.g., System-on-Chip, possibly
with multicore processor, or a systolic array of processing
elements. We propose that during the floor-planning phase,
the organization is carefully partitioned across different layers
in such a way that computational blocks performing identical
operations are placed directly on top of each other. Multiple
clusters are formed in this manner, composed of blocks that
are spread over different layers, as it is presented in Figure 1.

It is important to mention that computational blocks are
grouped inside a cluster based only on their identical func-
tionality and location. Their hardware implementation can
be totally different. Moreover, these computational blocks
can be part of systems that perform different tasks, being
implemented using the same, or different type of technology.

C. Global/Local Diagnosis Control

The proposed clustering organization exploits the vertical
proximity advantage that is inherent in the 3D arrangement and
facilitates the application of different reliability techniques.
The generic structure of one vertical cluster based reliability
system, consisting of n layers, is depicted in Figure 2. The
main general blocks are highlighted.

The control of the applied reliability techniques can take
place at the global level, at the local level, or at both local
and global levels. The figure presents the general functional
description of the system. It can be noticed that both the locals
and the global controllers are present. However, in the case of a
system in which the control takes place only at the local level,
the global controller can be disregarded from the picture. The
same holds true for the local controllers in case the control
takes place only at the global level. Nevertheless, some special
blocks are required in all the cases.

The related reliability data and information, such as op-
erations and results, are transmitted through a common inter-
layer communication infrastructure. In each layer, a Dispatcher
is attached to this inter-layer communication infrastructure.
Its main role is to gather the originally executed operation
and to make sure that it is executed when the computational
block is idle. This involves some switching mechanism of the
usual inputs. Once the computational block has completed the
operation the relevant information is put on the communication
infrastructure by the Transmitter block.

In a system with global control unit, as the name suggests,
the entire reliability mechanism is controlled at the global

Fig. 2. Generic reliability framework required for diagnosis process.

level. The global controller determines what kind of techniques
are applied, and at which time. Furthermore, it can either
perform a reliability analysis of all the computational blocks
in the cluster, or the ones in specific dies. It distributes the
operations throughout the blocks in a vertical cluster, for
execution when the respective block is idle. Based on the
received results corrective actions can be taken.

In contrast to the global control, in the local control each
computational block has a reliability controller which takes
care only of its attached computational block.

D. Interconnect Infrastructure Requirements and Options

Communication inside clusters requires a TSV based infras-
tructure in order to assure a low latency interconnection for
our proposal. Two aspects need to be considered in terms of
infrastructure access: (i) how are the clusters connected to this
infrastructure, and, (ii) how is the sharing of the infrastructure
among the clusters implemented. For (i), the optimum wire
length delay penalty should be determined at the layout level.
For (ii), the interconnection can be seen as a bus or as a NoC
segment. Figure 3 presents the possible options.

In the first option, Figure 3(a), we consider that the existing
interlayer communication channels are utilized. Blocks from
each cluster are connected to the already present blocks that
perform data transfers between layers. The communication
scheduling mechanism needs to be modified and adapted to
the fact that a new data stream dedicated to the diagnosis has
to be accommodated. This approach would adversely affect
the performance of the fault detection and diagnosis methods
but would entail no TSV overhead.

Fig. 3. Different types of interconnection: (a) using the existing infrastructure; (b) new infrastructure shared by multiple clusters; (c) each cluster with its
own communication infrastructure.

The second option, Figure 3(b), assumes a dedicated TSV
bus that is to be shared by different clusters. As in the
previous option, an extra delay appears due to the fact that the
interconnection infrastructure is shared. However, this type of
sharing allows more access to the link than the previous option.

In the later option, Figure 3(c), each cluster has a dedicated
TSV-based bus through which to pass data. This obviously
requires a large overhead in TSVs. Nevertheless, it may be
the preferred choice in terms of performance.

Finally, there is also the possibility of combining the above
presented intercommunication strategies.

E. Instruction and Data Distribution and Collection

The data that are transferred onto the interconnection in-
frastructure consist of: (i) the data required by the clustered
blocks in order to be able to execute the diagnosis operation,
and (ii) the data that hold the diagnosis related information.
Therefore, two types of propagation can be distinguished,
namely “instruction data propagation”, that propagates the
former sort of data, and “‘diagnosis information propagation”
that propagates the latter. The instruction data propagation is
a one-to-many distribution, while the diagnosis information
propagation is usually a many-to-one distribution.

We introduce the concept of “initiator” block/die/layer,
whose purpose is to select a diagnosis instruction and to
acquire the data required by the instruction data propagation.
The selected diagnosis operation can be either an already
executed one or an instruction that is just to commence
executing. In Section II-F there is a more detailed discussion
about the implications of these types of instruction selecting
methods. The “initiator” die can be static, where it is always
the same die, or dynamic, where periodically the “initiator die”
is cycled among all the dies.

We propose in Figure 4 two methods by which the data can
be distributed.

Fig. 4. Instruction data sending by (a) broadcasting to the entire vertical
block; instruction data accepted only by idle functional units, and (b) cascad-
ing outwards.

• Broadcast - Consists in sending in the same moment
the data to all the involved computational blocks in the
cluster. Both the instruction data propagation and the
diagnosis information propagation are finished each in
one shot. The broadcast frequency period depends on
the diagnosis requirements. In terms of communication
infrastructure, a dedicated TSV-bus as in Figure 3 suits
the method the best. The broadcast method is depicted
schematically in Figure 4(a).

• Cascade - Consists in propagating the data to computa-
tional blocks in the vertical cluster on adjacent dies. If
the hardware is available at the time the data are received,
then the operation is performed, otherwise the data are
propagated to the next block in the cluster. In terms of
communication infrastructure, cascading does not have
such great demands as broadcasting. A shared channel

such as in Figure 3(a,b) can usually accommodate the
requirements. The cascading method is depicted schemat-
ically in Figure 4(b).

The diagnosis information propagation from Figure 4 is
directed towards the initiator, but this may not always be the
case. The reason is that the initiator is not always the die that
also processes the diagnosis information.

F. Results Processings Policy

Our approach consists in making idle computational blocks
execute identical instructions. Later on, the produced results
need to be compared in order to be able to assess the faulty
behavior of the involved blocks. Regarding the comparison
operation, we can distinguish two possibilities: either the
comparison operation is performed locally and its result in
the form of an agree bit is propagated to the initiator block
(therm introduced in Section II-E), or the result of the checked
operation is propagated to the initiator, which needs to perform
a global comparison itself.

The global comparison scheme proves to be more expensive
in terms of interconnection requirements. The number of
results that need to be propagated increases with the number
of layers in the cluster, counterbalancing the fact that only the
operands are sent in the instruction data propagation phase.
Another drawback of the global comparison scheme arises
from the computational complexity pressure that is put on the
initiator to perform all the comparisons when the broadcast
distribution mechanism is utilized. However, with cascading
distribution the global comparisons can be serialized and the
hardware requirements are thus reduced. According to Figure
4(b) at most two results are coming each cycle.

To be able to detect the faulty block in the case in which
the initiator was not the targeted one, some identification needs
to be attached to the propagated reliability information. This
can be achieved with the global comparison scheme and it
adds even more to the communication infrastructure. Different
protocols that employ encoding schemes can be derived in
order to minimize the communication requirements.

Once the results processing is complete, the system can
take steps to remedy the problem. In diagnosis mode, if a
permanent error is detected and located, some action has to
be taken to prevent another execution on the faulty hardware.
A number of actions can be undertaken, for example, the
faulty hardware can either be disabled, or a spare which was
chosen to be built in, can be activated. In detection mode, if
a transient error is detected, some sort of recovery will have
to take place. This could be in the form of Forward Error
Recovery, e.g., some sort of redundancy, or in the form of
Backward Error Recovery, e.g., utilizing check-pointing, or
program re-execution.

G. Example: 3D Multicore Processor Functional Unit Clus-
tering

Let us consider a cluster composed of n-bit integer Arith-
metic Logic Units (ALU). In order for those to function
in the 3D diagnosis context they have to be augmented as

indicated in Figure 5 for the i die. We assume that local
comparison is applied, as presented in Section II-F. Thus, the
ALU instruction, the operands, and the computed result have
to be send over the ALU cluster.

From the figure it can be noticed that the usual ALU inputs
coming from the register file are multiplexed with the received
operands. At the same time, the usual instruction opcode
coming from the instruction decoder is also multiplexed with
the received opcode. The muxes are controlled by the newly
introduced control logic which, in addition, stops the pollution
of the register file by selecting the right output of the ALU.
Typically, an ALU already contains a built-in comparator
which can be used to perform the comparison required by
our proposed mechanism. The agree bit is thus generated with
no comparison hardware overhead. In the case of cascading
data propagation, the required receiver outputs are forwarded
to the transmitter. Furthermore, the block in the figure can also
act as an initiator.

Fig. 5. Appended hardware for n-bit integer ALU clustering

Essentially, TSV lines need to accommodate sending three
n-bit data (two operands and the result), as well as the opcode
and finally the outputs from the comparison of the two results.
The amount of TSV links required between 2 dies is equal to
3n +m + 1, where n is the number of bits for the operands
and result, m is the number of bits for the opcode.

III. THEORETICAL ANALYSIS

In this section we model our scheme to analyze the perfor-
mance upper bounds given varied hardware occupancy.

A. Utilizing 3D Vertical Clustering for System Diagnosis

In this subsection, we present a theoretical evaluation for the
utilization of our scheme to detect and locate permanent faults.

In order to guard against a misdiagnosis of a transient fault
as a permanent fault, each computational block is assigned
a so-called error counter. As the diagnosis runs its course,
each time a computational block is found to have executed an
operation incorrectly, the error counter is incremented. The
counter can be implemented as hardware, or as a variable
in the operating system kernel. After a certain threshold the
computational block is flagged to be faulty. This technique
ensures that the probability of a misdiagnosed transient error
is negligible. Thus, in the event of a permanent fault finally
being diagnosed, the time required to diagnose the fault will
depend on the chosen threshold value.

We model our scheme, with dedicated infrastructure for
each vertical cluster and the broadcast method to distribute in-
structions and collect results. We model the best case scenario,
and thus we get upper bound results. The hardware resource
occupancy is varied from 1% to 99% with the occupancy being
randomly distributed. The proposed mechanism is then applied
and the amount of cycles required to diagnose the fault is
measured. Figure 6 depicts the relation between the occupancy
of resources and the time required to diagnose a fault. In the
graph we observe that the more layers there are in the 3D
stack, the faster the diagnosis of the fault. Furthermore, at 90%
occupancy the diagnosis time is 13 cycles for 4 layers and 5
cycles for 64 layers, respectively, and substantially increases
for occupancies larger than 99%.

Fig. 6. Permanent fault diagnosis latency

B. Utilizing 3D Vertical Clustering for Fault Detection

In this subsection, we present a theoretical evaluation for the
utilization of our scheme to detect transient faults. We model
our scheme, with dedicated infrastructure for each vertical
cluster and the broadcast method to distribute instructions and
collect results. The best case scenario is modelled, and thus
we get upper bound results. The hardware resource occupancy
is varied from 1% to 99% with the occupancy being randomly
distributed. The proposed mechanism is then applied and the
percentage of operations that are verified by re-execution is
measured. First. we model for the case where all threads
are protected. In Figure 7 the relation between occupancy
of resources and the percentage of protected operation is

presented. In the graph we observe that for an occupancy
of 20% almost all instructions can be verified, irrespective
of the amount of layers in the stack. For 60% occupancy,
the percentage ranges from 54% to 66%, for 3 to 64 layers,
respectively. For occupancies greater than 70% the amount of
layers does not affect the percentage of protected executions.

Next, we model for the case where one layer, designated as
critical, is selected for protection by other layers. In figure
8 we observe that for 60% hardware occupancy, 63% to
98% of operations are verified, in a stack with 3 to 16
layers, respectively. In both cases we observe that the more
layers there are in the 3D stack, the higher the percentage of
operations that can be verified.

Fig. 7. Percentage of computations protected against transient errors

Fig. 8. Percentage of computations protected against transient errors for
dedicated layer

IV. CASE STUDY: FUNCTIONAL UNIT DIAGNOSIS AND
FAULT DETECTION IN A 3D MULTICORE PROCESSOR

In this section we evaluate the potential practical impli-
cations of our proposal by means of a simple case study.
We consider a multicore processor composed of identical
cores. The multicore is split across several dies, such that
one core is placed on each die, and the identical functional
units are in vertical proximity. Each vertical stack of functional
units constitutes a group and each stacked group functions

Fig. 9. Wiring difference between (a) 2D multicore arrangement and (b) 3D
vertically placed multicore arrangement

TABLE I
BASE PROCESSOR CONFIGURATION

Issue out-of-order
Fetch/Dec./Issue Width 4
of Int. ALUs 4
of Int. Mult./Div. 1
of FP ALUs 1
of FP Mult./Div. 1
RUU Size 64
LSQ Size 32
Memory Latency 112 cycles (first chunk),

2 cycles (subsequent chunks)
L1 Instruction Cache 32 KB, 2-way set associative
L1 Data Cache 32 KB, 2-way set associative
L2 Unified Cache 512 KB, 4-way set associative

independently from other stacked groups, for our purpose.
Furthermore, each stacked group utilizes the results internally
for determining which units are faulty. In Figure 9 we can see
an example of a quad-core processor, with two arrangements.
The layout is based on the micrograph die photo of the 65nm
AMD Opteron processor [21]. In the figure, the blocks that
include the functional units are highlighted with black squares.

To be able to determine the applicability of our aproach
in the case of functional unit clustering, we have initially
performed an evaluation of their occupancy behaviour. This

evaluation consisted of determining the total numer of cycles
when the functional units are busy/idle, as well as determining
the distribution of the consecutive busy/idle cycles within the
entire execution time.

The evaluation was performed on a modified version of the
SimpleScalar tool set [22], with the base processor configura-
tion being described in Table I. Several benchmarks were run
from both the Mediabench [23] and SPEC2000 [24] suites:
JPEG compression, MPEG2 video compression, GSM sound
(voice) compression, GCC compiler, BZIP compression, ART
image recognition, MCF combinatorial optimization, MESA
3-D graphics, and VORTEX database. In the chosen out-of-
order processor configuration four integer Arithmetic Logic
Units (ALUs) are present. Computations are being allocated
to each ALU in a round-robin manner.

The obtained results show an average occupancy of 42%,
for all the considered benchmarks, with a standard deviation
of 18.2%. The maximum occupancy was 64.4%, while the
minimum was 13.4%. This indicates that there is a sufficient
number of underutilized integer ALUs to assure redundant
execution of operations received from remote CPUs. By
corroborating these results with the ones from Figure 7, we
observe that on the average more than 80% of the instructions
can be protected against transient errors by utilizing our
proposed mechanism.

In Figure 10 the distribution of different consecutive
busy/idle cycles is presented. This part of the figure is quite
revealing in several ways. First, it can be noticed that func-
tional units are busy between 1 and 4 consecutive cycles for
the majority of the time (85% on average). Therefore, it is
apparent that there is enough room for redundant operations
to be executed in a relatively short time interval. Secondly, a
functional unit is for the majority of the time idle for more than
two consecutive cycles (65% on average). This leaves space
for redundant operations from different layers to be executed
in those consecutive cycles.

In a real multicore system, cores can run different appli-
cations concurrently, and the occupancy rates in each core

Fig. 10. Distribution of consecutive idle/busy cycles

depends heavily on which application is running. We simulate
a multicore running different applications and run above
mentioned benchmarks on the cores. In Figure 11 we can see
the results for the broadcast mechanism. For the benchmarks
executed on 3 to 8 cores, the range of the hardware occupancy
was between 34% and 42%. We can see in Figure 11(a) that
our scheme detects and locates the fault within 9 cycles on
average, for 3 cores, and approaches 4 cycles for increasing
amount of cores. In Figure 11(b) the percentage of protected
instructions reaches 94% for 8 cores , where the entire system
is being protected; and in Figure 11(c) this percentage rises to
99% for 8 cores, where one critical die is being protected.

Fig. 11. Performance of our diagnosis scheme for (a) permanent fault
diagnosis, (b) protection of all threads, and (c) dedicated thread protection

V. CONCLUSION

In this paper we proposed a 3D system dependability
improvement approach which leverages the vertical proximity
of identical resources. Idle resources in vertical clusters are
utilized to verify the performed operations. Based on the
results from redundant execution the online error detection and
location is enabled. No performance overhead is introduced,
because only idle resources execute redundant operations.

We evaluated by theoretical analysis and simulation the
permanent error detection latency, as well as the transient
fault coverage, achieved by the proposed approach. With the
resource occupancy indicated by the used benchmarks, the pro-
posed approach is feasible both for detection and location of
permanent faults (enabling online fault diagnosis and graceful
system degradation) and for transient fault detection (enabling
a fail-safe operation).

REFERENCES

[1] G. E. Moore, “Cramming More Components Onto Integrated Circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, April 1965.

[2] R. Ronen, S. Member, A. Mendelson, K. Lai, S. lien Lu, F. Pollack,
John, and J. P. Shen, “Coming Challenges in Microarchitecture and
Architecture,” in IEEE Proc., 2001, pp. 325–340.

[3] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in International Conference on
Dependable Systems and Networks, 2004, pp. 177–186.

[4] ——, “Lifetime reliability: Toward an architectural solution,” IEEE
Micro, vol. 25, no. 3, pp. 70–80, 2005.

[5] J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, and T. Turflinger,
“Digital single event transient trends with technology node scaling,”
IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3462–3465,
Dec. 2006.

[6] I. Polian, J. Hayes, S. Reddy, and B. Becker, “Modeling and mitigating
transient errors in logic circuits,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 4, pp. 537–547, 2011.

[7] P. Dodd, M. Shaneyfelt, J. Felix, and J. Schwank, “Production and
propagation of single-event transients in high-speed digital logic ICs,”
IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3278–3284,
Dec. 2004.

[8] H. Yu, X. Fan, and M. Nicolaidis, “Design trends and challenges
of logic soft errors in future nanotechnologies circuits reliability,”
in 9th International Conference on Solid-State and Integrated-Circuit
Technology, 2008, pp. 651–654.

[9] C. Lisboa, M. Erigson, and L. Carro, “System level approaches for
mitigation of long duration transient faults in future technologies,” in
12th IEEE European Test Symposium, 2007, pp. 165–172.

[10] G. Katti, A. Mercha, J. Van Olmen, C. Huyghebaert, A. Jourdain,
M. Stucchi, M. Rakowski, I. Debusschere, P. Soussan, W. Dehaene
et al., “3D stacked ICs using cu TSVs and die to wafer hybrid
collective bonding,” in Electron Devices Meeting (IEDM), 2009 IEEE
International, 2010, pp. 1–4.

[11] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, “Design Space Explo-
ration for 3D Architectures,” J. Emerg. Technol. Comput. Syst., vol. 2,
no. 2, pp. 65–103, 2006.

[12] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D) Mi-
croarchitecture,” in MICRO-39: Proc. of the 39th Annual IEEE/ACM Int.
Symp. on Microarchitecture. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 469–479.

[13] A. Rahman and R. Reif, “System-Level Performance Evaluation of
Three-Dimensional Integrated Circuits,” IEEE Trans. on Very Large
Scale Integration Systems, vol. 8, no. 6, pp. 671–678, 2000.

[14] J. W. Joyner and J. D. Meindl, “Opportunities for Reduced Power
Dissipation Using Three-Dimensional Integration,” in Proc. of the IEEE
2002 Int. Interconnect Technology Conf., Burlingame, CA, USA, Jun
2002, pp. 148–150.

[15] M. Enachescu, G. Voicu, and S. D. Cotofana, “Is the Road Towards
Zero-Energy Paved with NEMFET-based Power Management?” in (To
appear in) IEEE International Symposium on in Circuits and Systems,
2012., May 2012.

[16] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kan-
demir, “Design and Management of 3D Chip Multiprocessors Using
Network-in-Memory,” SIGARCH Comput. Archit. News, vol. 34, no. 2,
pp. 130–141, 2006.

[17] S. Safiruddin, M. Lefter, D. Borodin, G. Voicu, and S. D. Cotofana, “ Is
3D Integration the Way to Future Dependable Computing Platforms?”
in (To be published in) 13th International Conference on Optimization
of Electrical and Electronic Equipment, 2012., May 2012.

[18] N. Madan and R. Balasubramonian, “Leveraging 3D Technology for Im-
proved Reliability,” in MICRO-07: Proc. of the 40th Annual IEEE/ACM
Int. Symp. on Microarchitecture. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 223–235.

[19] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microar-
chitecture Design,” in MICRO-32: Proc. 32nd Annual ACM/IEEE Int.
Symp. on Microarchitecture, Washington, DC, USA, Jun 1999, pp. 196–
207.

[20] D. Borodin, W. Siauw, and S. D. Cotofana, “Functional Unit Sharing
Between Stacked Processors in 3D Integrated Systems,” in IC-SAMOS
XI: Proc. Int. Conf. on Embedded Computer Systems: Architectures,
Modeling, and Simulation, July 2011, pp. 311–317.

[21] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,
M. Braganza, S. Meyers, E. Fang, and R. Kumar, “An integrated Quad-
Core opteron processor,” in IEEE International Solid-State Circuits
Conference, 2007, pp. 102–103.

[22] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure
for Computer System Modeling,” IEEE Computer, vol. 35, no. 2, pp.
59–67, 2002.

[23] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool for
evaluating and synthesizing multimedia and communicatons systems,”
in Proceedings of the 30th annual ACM/IEEE international symposium
on Microarchitecture, 1997, pp. 330–335.

[24] J. Henning, “SPEC CPU2000: measuring CPU performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

	Introduction
	Proposed Online Diagnosis and Fault Detection Scheme for 3D-SICs
	Main Concept
	3D Vertical Clustering
	Global/Local Diagnosis Control
	Interconnect Infrastructure Requirements and Options
	Instruction and Data Distribution and Collection
	Results Processings Policy
	Example: 3D Multicore Processor Functional Unit Clustering

	Theoretical Analysis
	Utilizing 3D Vertical Clustering for System Diagnosis
	Utilizing 3D Vertical Clustering for Fault Detection

	Case Study: Functional Unit Diagnosis and Fault Detection in a 3D Multicore Processor
	Conclusion
	References

