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Abstract—Multicore systems are not only hard to program
but also hard to test, debug and maintain. This is because the
traditional way of accessing shared memory in multithreaded
applications is to use lock-based synchronization, which is
inherently non-deterministic and can cause a multithreaded
application to have many different possible execution paths
for the same input. This problem can be avoided however
by forcing a multithreaded application to have the same lock
acquisition order for the same input.

In this paper, we present DetLock, which is able to run
multithreaded programs deterministically without relying on
any hardware support or kernel modification. The logical
clocks used for performing deterministic execution are inserted
by the compiler. For 4 cores, the average overhead of these
clocks on tested benchmarks is brought down from 20% to
8% by applying several optimizations. Moreover, the overall
overhead, including deterministic execution, is comparable to
state of the art systems such as Kendo, even surpassing it for
some applications, while providing more portability.

I. INTRODUCTION

Single threaded programs are much easier to test, debug
and maintain than their multithreaded counterparts. This is
because the only source of non-determinism in them are
interrupts or signals, which are rare. On the other hand,
multithreaded programs have a frequent source of non-
determinism in the form of shared memory accesses. Due
to this, multithreaded programs suffer from repeatability
problems, which means that running the same program with
the same input can result different outputs. This repeatability
problem makes multithreaded programs hard to test and
debug. Furthermore, it is also difficult to build fault tolerant
versions of these programs. This is because fault tolerance
systems usually depend upon replicas (identical copies of
redundant processes) to detect errors.

If access to shared data is not protected by synchroniza-
tion objects in a multithreaded program, we can have race
conditions, which may produce unexpected results. Running
a program with race conditions deterministically does not
avoid the problem of having unexpected results with those
race conditions, but just makes sure that we get the same
output with the same input.

The ideal situation would be to make a multithreaded
program deterministic even in the presence of race condi-

tions. This is not possible to do efficiently with software
alone though. One can use a relaxed memory model where
every thread writes to its own private memory, while data
to shared memory is committed only at intervals. However,
stopping threads regularly for committing to shared memory
degrades performance as demonstrated by CoreDet [2],
which has a maximum overhead of 11x for 8 cores. We
can reduce the amount of committing to the shared mem-
ory by only committing at synchronization points such as
locks, barriers or thread creation. This approach is taken by
DTHREADS [11]. Here one can still imagine the slowdown
in case of applications with high lock frequencies. Moreover,
since in this case committing to the shared memory is done
less frequently, more data has to be committed, thus also
making it slow for applications with high memory usage.
This is why hardware approaches have been proposed to
increase efficiency of deterministic execution. Two such
approaches are Calvin [4] and DMP [14]. They use the same
concept as CoreDet for deterministic execution but make use
of a special hardware for that purpose.

Since performing deterministic execution in software
alone is inefficient, we can relax the requirements to im-
prove efficiency. For example, Kendo [9] does this by only
supporting deterministic execution for well written programs
that protect every shared memory access through locks. In
other words, it supports deterministic execution only for
programs without race conditions. The authors of Kendo call
it Weak Determinism. Considering the fact that most well
written programs are race free and there exist tools to detect
race conditions, such as Valgrind [8], Weak Determinism
is sufficient for most well written multithreaded programs.
Therefore, DetLock also only supports Weak Determinism.

The basic idea of Kendo is that it uses logical clocks for
each thread to determine when a thread will acquire a lock.
The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from
portability problems. First of all, it requires deterministic
hardware performance counters for counting logical clocks.
Many popular platforms (including many x86 platforms)
do not have any hardware performance counter that is
deterministic [12]. Secondly, Kendo needs modification of



the kernel to allow reading from the hardware performance
counters for deterministic execution.

To overcome portability issues faced by Kendo, our tool
DetLock has a completely software-based approach of up-
dating the logical clocks. The code for updating the clocks is
inserted through an LLVM [5] compiler pass. Since, LLVM
is a popular open source compiler framework available on
many platforms, our approach is portable across a wide
range of platforms. Moreover, it requires no modification
of the kernel. We can sum up the contribution of this paper
as follows.

• A portable mechanism to update logical clocks for
Weak Deterministic execution that depends upon the
compiler rather than using hardware performance coun-
ters, since many platforms have no such deterministic
counters available.

• A User-space approach to update the logical clocks that
does not require modifying the kernel.

• A number of optimization steps to reduce the overhead
of the code used to update the logical clock and improve
the performance of deterministic execution.

This paper is organized as follows. In Section II, we dis-
cuss the background and related work, while in Section III,
we give an overview of DetLock’s architecture. This is
followed by Section IV where we present the optimization
methods used to improve the performance of DetLock. In
Section V, we evaluate the performance of our scheme. We
finally conclude the paper with Section VI.

II. BACKGROUND AND RELATED WORK

Single threaded programs are mostly deterministic in
behavior. We say mostly because interrupts and signals
can introduce non-determinism even in single threaded pro-
grams. However, these non-deterministic events are rare.
On the other hand, in multithreaded programs running on
multicore processors, shared memory accesses are a frequent
source of non-determinism.

One way to ensure determinism of multithreaded pro-
grams is to write code for them in a deterministic parallel
language. Examples of such languages are StreamIt [10],
SHIM [3] and Deterministic Parallel Java [1]. The disad-
vantage of this approach is that porting programs written in
traditional languages to deterministic languages is difficult
as the learning curve is high for programmers used to pro-
gramming in traditional languages. Moreover, in languages
which are based on the Kahn Process Network Model, such
as SHIM, it is difficult to write programs without introducing
deadlocks [7].

Deterministic execution at runtime can be done either
through hardware or software. Calvin [4] is a hardware
approach that executes instructions in the form of chunks
and later commits them at barrier points. It uses a relaxed
memory model, where instructions are committed in such a
way that only the total store order (TSO) of the program has
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Figure 1: DetLock modifies the LLVM IR code by inserting
code for updating logical clocks

to be maintained. DMP [14] uses a similar relaxed memory
approach. The disadvantage of hardware approaches is that
they are restricted to the platforms they were developed for.

Besides hardware methods, software only methods for
deterministic execution also exist. One such method is
CoreDet [2] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve deter-
minism. Therefore, it is similar to Calvin, but implemented
in software. Logical clocks are used for deterministic exe-
cution. Since CoreDet is implemented in software, it has
a very high overhead, possibly upto 11x for 8 cores, as
compared to the maximum 2x for Calvin. Another similar
approach is DTHREADS [11]. It runs threads as separate
processes, so that memories which are modified can be
tracked down through the memory management unit. Only
at synchronization points such as locks, barriers and thread
creation for example, it updates the shared memory from
the local memories of the threads. Therefore, it avoids the
overhead of using bulk synchronous quantas like CoreDet
and also does not have the need to maintain logical clocks
like CoreDet. However, the overhead for programs with high
lock frequency or large memory usage is still very high.

Since performing deterministic execution in software
alone is inefficient, Kendo [9] relaxes the requirements by
only working for programs without race conditions (Weak
Determinism). It does not use any hardware besides deter-
ministic hardware performance counters found in some pro-
cessors. It executes threads deterministically and performs
load balancing by only allowing a thread to complete a
synchronization operation when its clock becomes less than
those of the other threads, with ties broken with thread
IDs. Clock is calculated from retired stores, is paused when
waiting for a lock and resumed after the lock is acquired.
Kendo still suffers from portability problems as it requires
hardware performance counters which are deterministic.
Many platforms, including many x86 platforms, do not
have any deterministic hardware performance counter [12].
Moreover, Kendo requires modification of the kernel to read
from such hardware performance counters.

One technique related to deterministic multithreading is
record/replay. In this method, all interleaving of shared
memory accesses by different cores/processors are recorded
in a log, which can be replayed to have a replica which
follows the original execution. Examples of schemes using
this method are Rerun [16] and Karma [15]. These schemes
intercept cache coherence protocols to record inter-processor
data dependencies, so that they can be replayed later on,
in the same order. While Rerun only optimizes recording,



Karma optimizes both recording and replaying, thus making
it suitable for online fault tolerance. It shows good scalability
as well. The disadvantage of record/replay approaches as
compared to deterministic multithreading is that they require
a large memory for recording. Moreover, when used for fault
tolerance, the redundant processes need to communicate
with each other, as one replica records the log while the
other reads from it.

Respec [6] is a record/replay software approach that
only logs synchronization objects rather than every shared
memory access. If divergence is found between the replicas,
it rolls-back and re-executes from a previous checkpoint.
However, if divergence is found again on re-execution, a race
condition is assumed. At that point, a stricter deterministic
execution is performed, which can induce a large overhead.

III. OVERVIEW OF THE ARCHITECTURE

In this section, we discuss the architecture of DetLock and
the application programming interface (API) that it provides
to the programmer.

A. Architecture

We use Kendo’s algorithm to perform deterministic exe-
cution. However, unlike Kendo which requires deterministic
hardware performance counters, which are not available on
many platforms, we insert code to update logical clocks at
compile time. This also means we do not need to modify the
kernel which is required by Kendo to read from performance
counters. Figure 1 shows the point of compilation where the
DetLock pass executes, which is between the point where the
LLVM IR (Intermediate Representation) code is translated
to the final binary code by the LLVM backend.

The unit of our logical clock is one instruction. For in-
structions which take more than one clock cycles, the logical
clock is updated according to the approximate number of
clock cycles they take. However, to keep our discussion
simple, in this paper, for DetLock one instruction equals one
logical clock count.

The Kendo’s method of acquiring locks deterministically
is illustrated in Figure 2. In this figure, an example is given
for a process with two threads. If Thread 1 is trying to
acquire a lock when its logical clock is 1029, it will not
be able to do if Thread 2’s clock is at 329, because of being
less than 1029. But, as soon as Thread 2’s clock get past
1029, Thread 1 will acquire the lock.

So basically our purpose is not only to reduce the code
that updates the clocks but also to update the clocks as
soon as possible. In fact, at compile time it is possible to
increment the clock even before instructions are executed.
For example, if we know that a leaf function (a function
with no function calls) executes fixed amount of instructions,
we can increment the logical clock before executing any
instruction of that function. So for example, if Thread 2 in
Figure 2 has logical clock of 329 and is about to execute
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Figure 2: Kendo’s method of acquiring locks for determin-
istic execution

a leaf function with 701 instructions, we can add 701 right
away to its logical clock, making it 1030 from 329. In this
way, Thread 1, whose clock is at 1029, can acquire the lock
without waiting for Thread 2 to actually have executed that
amount of instructions.

Therefore in all optimizations we apply, besides trying to
reduce the clock update overhead, we also try to increment
the clock as soon as possible. Without any optimization, we
update the clock at start of each of the basic block of LLVM
IR. If there is a function call inside that block, we split that
block, such that each block either contains no function call
or starts and end with a function call. Then we update the
clock at the top of each block if that block contains no
function calls, otherwise we update the clocks in between
the function calls. By splitting blocks in such a way, we can
more easily apply optimizations.

To illustrate the effect of our optimizations, we are going
to show how the optimizations change the example function
shown in Figure 3. This function is taken from the Radios-
ity benchmark of SPLASH 2 [13]. The clocks associated
with each block are shown at the right of the assignment
operators.

B. Application Programming Interface

We provide our own functions for locks, barriers and
thread creation for deterministic execution. They internally
use the pthread library. However, it is not necessary for
the programmer to modify the code to use them. A header
file is provided by us that replaces the definition of these
functions with ours. The header file can be specified in the
makefile, thus making it unnecessary to modify source code
files. Moreover, the code to initialize the clock for the main
thread is inserted by the compiler.

It has to be noted that since our method depends upon
the compiler to insert clocks for deterministic execution, it
is not possible to increment the clocks in functions which are
implemented in a library (Since they have not been compiled
with our pass). This problem also exists for functions which
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Figure 3: Example function for discussing the optimizations

are built in the compiler, as LLVM generates no code
for them at IR level. For many built-in functions such as
memset and math functions, we just keep an estimate of the
instructions they take and increment the clock accordingly.
For memset and other functions which depend upon the
size parameter, we increment the clock considering the size
parameter. Since most built-in functions are simple, we can
use an estimate for them. We provide a text file (instructions
estimate file) for such purpose, where these functions can
be defined with the approximate number of instructions
they take along with their dependency on input parameters.
However, this is not always possible for functions in shared
libraries. One way is to ignore them and the other way
is to add them in the instructions estimate file if possible
(If the instructions count for them can be approximated
satisfactorily).

Another concern are functions which internally use locks,
such as malloc. For such functions, we provide our own
implementation which replaces the locks with our own
deterministic locks.

IV. PERFORMANCE OPTIMIZATIONS

We apply several optimizations to reduce the clock updat-
ing overhead. Moreover, we try to increment clocks as soon
as possible so that waiting time for threads who are waiting
for other thread’s clocks to go past them is reduced. Clock
updating code is removed from the blocks whose clocks are
made zero by our optimizations. In this paper, we highlight

provided by us that replaces the definition of these functions
with ours. The header file can be specified in the makefile, thus
making it unnecessary to modify source code files. Moreover,
the code to initialize the clock for the main thread is inserted
by the compiler.

It has to be noted that since our method depends upon
the compiler to insert clocks for deterministic execution, it
is not possible to increment the clocks in functions which are
implemented in a library (Since they have not been compiled
with our pass). This problem also exists for functions which
are built in the compiler, as LLVM generates no code for them
at IR level. For many built-in functions such as memset and
math functions, we just keep an estimate of the instructions
they take and increment the clock accordingly. For memset
and other functions which depend upon the size parameter,
we increment the clock considering the size parameter. Since
most built-in functions are simple, we can use an estimate for
them. We provide a text file (instructions estimate file) for
such purpose, where these functions can be defined with the
approximate number of instructions they take alongwith their
dependency on input parameters. However, this is not always
possible for functions in shared libraries. One way is to ignore
them and the other way is to add them in the instructions
estimate file if possible (If the instructions count for them can
be approximated satisfactorily).

Another concern are functions which internally use locks,
such as malloc. For such functions, we provide our own imple-
mentation which replaces the locks with our own deterministic
locks.

IV. PERFORMANCE OPTIMIZATIONS

We apply several optimizations to reduce the clock updating
overhead. Moreover, we try to increment clocks as soon as
possible so that waiting time for threads who are waiting
for other thread’s clocks to go past them is reduced. The
optimizations are discussed below.

A. Optimization 1 (Clocking Functions)

As discussed in Section III-A, the sooner the clocks are
updated, the better, and leaf functions with only one basic
block are a perfect candidates for such an optimization. Inside
the blocks that call those functions, the clock can just be
incremented by the number of instructions these functions
take. Besides functions with only one blocks, our method also
considers leaf functions with multiple blocks, given that no
block in that function has a function call. If our pass sees
that all possible paths taken by that function do not differ by
much, we calculate the mean value for all possible paths and
put the clock only once at the entry block for that function.
The criteria we have set is that the mimimum and maximum
clock difference of all possible paths should not be more
than the mean value divided by 2.5. Moreover the standard
deviation between all the different paths should not be greater
than one tenth of the mean value. This is checked by calling
the isClockable function shown in Figure 4.
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Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function ISCLOCKABLE(out Int avg, ref Function f)
2: if hasLoops(f) or hasUnclockedFunctions(f) then
3: return false
4: end if
5: clocks = getClocksOfAllPaths(f)
6: avg = mean(clocks)
7: s = std(clocks)
8: r = range(clocks)
9: if r > (m / 2.5) or s > (m / 10) then

10: return false
11: end if
12: return true
13: end function

14: function UPDATECLOCKABLEFUNCLIST
15: modified = true
16: while modfied do
17: modified = false
18: for all f in Program do
19: if (not clockableList.find(f)) and isClockable(avg, f) then
20: setClock(f.entryBlock(), avg)
21: removeClockFromNonEntryBlocks(f)
22: clockableList.insert(f)
23: modified = true
24: end if
25: end for
26: end while
27: end function

between all the different paths should not be greater than one
tenth of the mean value.

We call such leaf functions as clocked functions. By intu-
ition, we can judge that it is also possible to clock functions
which call only clocked functions. In this way, we can even
clock functions which are not necessarily leaf functions. Our
algorithm greedily searches for all such functions. This is done
by first checking for all the functions in the program to see
if they can be clocked and making them clocked functions
if possible. If at the end, we see that one or more functions
were added to the clocked functions list, we iterate over all the
functions once again to search for more clockable functions.
We keep on repeating this process until no more function is
added to clockable functions’ list in an iteration.

C. Optimization 2

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible. On
the other hand, part b is not necessarily precise, but we make
sure that the clock do not diverge significantly after that pass.

Algorithm 4 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
. When this function is called, modified is false and Entry block of a
function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt2aCondNodeRequirements(bb) then
7: if allSuccessorsHaveNonZeroClock(bb) then
8: modified = true
9: end if

10: min = minimumOfSucessors(bb)
11: setClock(bb, GetClock(bb) + min)
12: subtractFromAllSuccessors(bb, min)
13: else
14: if meetsOpt2aMergeNodeRequirements(bb) then
15: pushClockUp(bb)
16: end if
17: end if
18: succList = getAllSuccessors(bb)
19: for all succ in succList do
20: updateOpt2aClocks(modified, succ)
21: end for
22: end function

23: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
24: clock = getClock(mergeBlock)
25: removeClock(mergeBlock)
26: predList = getAllPredecessors(mergeBlock)
27: for all pred in predList do
28: setClock(pred, GetClock(pred) + clock)
29: if meetsOpt2aMergeNodeReq(pred) then
30: pushClockUp(pred)
31: end if
32: end for
33: end function

1) Part a: This optimization is based on the principle that
if a block has two or more successors, we can make the blockFig. 4: Pseudocode for Optimization 1 (Clocking Functions)

them. For many built-in functions such as memset and math
functions, we just keep an estimate of the instructions they
take and increment the clock accordingly. For memset and
other functions which depend upon the size parameter, we
increment the clock considering the size parameter. Since most
of built in functions are simple, we can use an estimate for
them. We provide a text file (instructions estimate file) for
such purpose, where these functions can be defined with the
approximate number of instructions they take alongwith their
dependency on input parameters. However, this is not always
possible for functions in shared libraries. One way is to ignore
them and the other way is to add them in the instructions
estimate file if possible (If the instructions count for them can
be approximated satisfactorily).

Another concern are functions which internally use locks,
such as malloc. For such functions, we provide our own imple-
mentation which replaces the locks with our own deterministic
locks.

IV. OPTIMIZATIONS

We apply several optimizations to reduce the clock updating
overhead. Moreover, we try to increment clocks as soon as
possible so that waiting time for threads who are waiting
for other thread’s clocks to go past them is reduced. The
optimizations are discussed below.

A. Optimization 1 (Clocking Functions)

As discussed in Section III-A, the sooner the clocks are
updated, the better, and leaf functions with only one basic
block are a perfect candidates for such an optimization. Inside
the blocks that call those functions, the clock can be just

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function ISCLOCKABLE(out Int avg, ref Function f)
2: if hasLoops(f) or hasUnclockedFunctions(f) then
3: return false
4: end if
5: clocks = getClocksOfAllPaths(f)
6: avg = mean(clocks)
7: s = std(clocks)
8: r = range(clocks)
9: if r > (m / 2.5) or s > (m / 5) then

10: return false
11: end if
12: return true
13: end function

14: function UPDATECLOCKABLEFUNCLIST
15: modified = true
16: while modfied do
17: modified = false
18: for all f in Program do
19: if (not clockableList.find(f)) and isClockable(avg, f) then
20: setClock(f.entryBlock(), avg)
21: removeClockFromNonEntryBlocks(f)
22: clockableList.insert(f)
23: modified = true
24: end if
25: end for
26: end while
27: end function

be incremented by the number of instructions these functions
take. Besides functions with only one blocks, our method also
considers leaf functions with multiple blocks, given that no
block in that function has a function call. If our pass sees
that all possible paths taken by that function do not differ by
much, we calculate the mean value for all possible paths and
put the clock only once at the entry block for that function.
The criteria we have set is that the mimimum and maximum
clock difference of all possible paths should not be more
than the mean value divided by 2.5. Moreover the standard
deviation between all the different paths should not be greater
than one tenth of the mean value. This is checked by calling
the isClockable function shown in Figure 4.

We call such leaf functions as clocked functions. By intu-
ition, we can judge that it is also possible to clock functions
which call only clocked functions. In this way, we can even
clock functions which are not necessarily leaf functions. The
UpdateClockFunctionList function shown in Figure 4 shows
how we do this. Our algorithm greedily searches for all such
functions. This is done by first checking for all the functions
in the program to see if they can be clocked and making them
clocked functions if possible. If at the end, we see that one
or more functions were added to the clocked functions list,
which is signaled by the modified flag, we iterate over all the
functions once again to search for more clockable functions.
We keep on repeating this process until no more function is
added to clockable functions’ list in an iteration.

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise

Fig. 4: Pseudocode for Optimization 1 (Clocking Functions)

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function ISCLOCKABLE(out Int avg, ref Function f)
2: if hasLoops(f) or hasUnclockedFunctions(f) then
3: return false
4: end if
5: clocks = getClocksOfAllPaths(f)
6: avg = mean(clocks)
7: s = std(clocks)
8: r = range(clocks)
9: if r > (m / 2.5) or s > (m / 5) then

10: return false
11: end if
12: return true
13: end function

14: function UPDATECLOCKABLEFUNCLIST
15: modified = true
16: while modfied do
17: modified = false
18: for all f in Program do
19: if (not clockableList.find(f)) and isClockable(avg, f) then
20: removeClockFromFunction(f)
21: clockableList.insert(f, avg)
22: modified = true
23: end if
24: end for
25: end while
26: end function

Figure 4: Pseudocode for Optimization 1 (Function Clock-
ing)

such blocks with gray color. The optimizations are discussed
below.

A. Optimization 1 (Function Clocking)

As discussed in Section III-A, the sooner the clocks
are updated, the better, and leaf functions with only one
basic block are perfect candidates for such an optimization.
Clocks can be removed from such functions and instead be
added to the basic blocks calling such functions. Besides
functions with only one blocks, our method also considers
leaf functions with multiple blocks, given that there are no
loops in such functions. If our pass sees that all possible
paths taken by such a function do not differ by much, we
calculate the mean value for all possible paths and use that
mean value to update the clock. The criteria we have set
is that the minimum and maximum clock difference of all
possible paths should not be more than the mean value
divided by 2.5. Moreover the standard deviation between
all the different paths should not be greater than one fifth of
the mean value. This is checked by calling the isClockable
function shown in Figure 4.

We call such leaf functions as clocked functions. By
intuition, we can judge that it is also possible to clock
functions which call only clocked functions. In this way,
we can even clock functions which are not necessarily leaf
functions. The UpdateClockableFunctList function shown in
Figure 4 shows how we do this. Our algorithm greedily
searches for all such functions. This is done by first checking
for all the functions in the program to see if they can be
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Figure 5: Part of example function after applying Optimiza-
tion 1 (Function Clocking)

clocked and making them clocked functions if possible. If
at the end, we see that one or more functions were added to
the clocked functions list, which is signaled by the modified
flag, we iterate over all the functions once again to search for
more clockable functions. We keep on repeating this process
until no more function is added to clockable functions’ list
in an iteration.

Part of example function after applying this optimization
is shown in Figure 5. Originally, the block lor.lhs.false23
had a function call at the start, therefore it was split in such
a way that lor.lhs.false23 contained the function call and
split.lor.lhs.false23 the remaining instructions in that block.
However, this optimization notices that the function called
in lor.lhs.false23 is clockable, thus no splitting of the block
is done and the mean number of instructions from all paths
of that function are added to the clock of lor.lhs.false23.
Moreover, clocks from all the blocks of the called function
are removed.

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible.
On the other hand, part b is not necessarily precise, but we
make sure that the clock does not diverge significantly after
that pass.

1) Part a: This optimization is based on the princi-
ple that if a block has two or more successors, we can
make the successor with the least clock zero and sub-
tract its original value from all its siblings, while also
adding its original clock to the parent block. Another
principle of this optimization is that if all predecessors
of a merge block have that merge block as their only
successor, the clocks could be shifted from the merge
node to them. The pseudocode of this optimization is
shown in Figure 6. The meetsOpt2aCondNodeRequirements
call on line 7 checks if a node meets the first principle,
while meetsOpt2aMergeNodeRequirements call on line 15
checks for the second principle. Note that for the first
principle, meetsOpt2aCondNodeRequirements also makes
sure that no unclocked function call exists in the par-
ent block and its successors. Moreover, it makes sure
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Fig. 3: Example function for discussing the optimizations

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function ISCLOCKABLE(out Int avg, ref Function f)
2: if hasLoops(f) or hasUnclockedFunctions(f) then
3: return false
4: end if
5: clocks = getClocksOfAllPaths(f)
6: avg = mean(clocks)
7: s = std(clocks)
8: r = range(clocks)
9: if r > (m / 2.5) or s > (m / 10) then

10: return false
11: end if
12: return true
13: end function

14: function UPDATECLOCKABLEFUNCLIST
15: modified = true
16: while modfied do
17: modified = false
18: for all f in Program do
19: if (not clockableList.find(f)) and isClockable(avg, f) then
20: setClock(f.entryBlock(), avg)
21: removeClockFromNonEntryBlocks(f)
22: clockableList.insert(f)
23: modified = true
24: end if
25: end for
26: end while
27: end function

between all the different paths should not be greater than one
tenth of the mean value.

We call such leaf functions as clocked functions. By intu-
ition, we can judge that it is also possible to clock functions
which call only clocked functions. In this way, we can even
clock functions which are not necessarily leaf functions. Our
algorithm greedily searches for all such functions. This is done
by first checking for all the functions in the program to see
if they can be clocked and making them clocked functions
if possible. If at the end, we see that one or more functions
were added to the clocked functions list, we iterate over all the
functions once again to search for more clockable functions.
We keep on repeating this process until no more function is
added to clockable functions’ list in an iteration.

C. Optimization 2

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible. On
the other hand, part b is not necessarily precise, but we make
sure that the clock do not diverge significantly after that pass.

Algorithm 4 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
. When this function is called, modified is false and Entry block of a
function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt2aCondNodeRequirements(bb) then
7: if allSuccessorsHaveNonZeroClock(bb) then
8: modified = true
9: end if

10: min = minimumOfSucessors(bb)
11: setClock(bb, GetClock(bb) + min)
12: subtractFromAllSuccessors(bb, min)
13: else
14: if meetsOpt2aMergeNodeRequirements(bb) then
15: pushClockUp(bb)
16: end if
17: end if
18: succList = getAllSuccessors(bb)
19: for all succ in succList do
20: updateOpt2aClocks(modified, succ)
21: end for
22: end function

23: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
24: clock = getClock(mergeBlock)
25: removeClock(mergeBlock)
26: predList = getAllPredecessors(mergeBlock)
27: for all pred in predList do
28: setClock(pred, GetClock(pred) + clock)
29: if meetsOpt2aMergeNodeReq(pred) then
30: pushClockUp(pred)
31: end if
32: end for
33: end function

1) Part a: This optimization is based on the principle that
if a block has two or more successors, we can make the block

Fig. 5: Pseudocode for Optimization 2a

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible.
On the other hand, part b is not necessarily precise, but we
make sure that the clock does not diverge significantly after
that pass.

1) Part a: This optimization is based on the principle that
if a block has two or more successors, we can make the
successor with the least clock zero and subtract its original
value from all its siblings, while also adding its original clock
to the parent block. Another principle of this optimization is
that if all predecessors of a merge block have that merge block
as their only successor, the clocks could be shifted from the
merge node to them. The pseudocode of this optimization is
shown in Figure 5. The meetsOpt2aCondNodeRequirements
call on line 6 checks if a node meets the first principle, while
meetsOpt2aMergeNodeRequirements call on line 14 checks
for the second principle. Note that for the first principle,
meetsOpt2aCondNodeRequirements also makes sure that no
unclocked function call exists in the parent block and its
successors. Moreover, it makes sure that the parent block

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
. When this function is called, modified is false and Entry block of a
function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt2aCondNodeRequirements(bb) then
7: if allSuccessorsHaveNonZeroClock(bb) then
8: modified = true
9: end if

10: min = minimumOfSucessors(bb)
11: setClock(bb, GetClock(bb) + min)
12: subtractFromAllSuccessors(bb, min)
13: else
14: if meetsOpt2aMergeNodeRequirements(bb) then
15: pushClockUp(bb)
16: end if
17: end if
18: succList = getAllSuccessors(bb)
19: for all succ in succList do
20: updateOpt2aClocks(modified, succ)
21: end for
22: end function

23: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
24: clock = getClock(mergeBlock)
25: removeClock(mergeBlock)
26: predList = getAllPredecessors(mergeBlock)
27: for all pred in predList do
28: setClock(pred, GetClock(pred) + clock)
29: if meetsOpt2aMergeNodeReq(pred) then
30: pushClockUp(pred)
31: end if
32: end for
33: end function

34: function APPLYOPT2A
35: for all f in Program do
36: modified = false
37: while modfied do
38: updateOpt2aClocks(modified, f.entry())
39: visitedList.clear()
40: end while
41: end for
42: end function

is dominating the successors, that is, the successors are not
merge blocks. Similarly meetsOpt2aMergeNodeRequirements
also makes sure that none of the blocks in consideration have
unclocked function calls. It also makes sure that the merge
block is not a loop header.

It should be noted that after having parsed all the blocks of
a function and applying this optimization, if it is still possible
to apply this optimization once more to reduce clock updating
code, it is applied. This is done by checking the modified flag.

The example function after applying one pass of this opti-
mization is shown in Figure 6. The sequence of events that
will happen are given below (Refer to Figure 3 for original
clock values).

• if.then.i is made 0 by if.end, which itself becomes 29
and makes if.end27 equal to 2.

• if.then.i reaches the merge node
Z17intersection typeP6 patchP6... through if.else.i.

Fig. 5: Pseudocode for Optimization 2a

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible.
On the other hand, part b is not necessarily precise, but we
make sure that the clock does not diverge significantly after
that pass.

1) Part a: This optimization is based on the principle that
if a block has two or more successors, we can make the
successor with the least clock zero and subtract its original
value from all its siblings, while also adding its original clock
to the parent block. Another principle of this optimization is
that if all predecessors of a merge block have that merge block
as their only successor, the clocks could be shifted from the
merge node to them. The pseudocode of this optimization is

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
. When this function is called Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: modified = false
7: if meetsOpt2aCondNodeRequirements(bb) then
8: if allSuccessorsHaveNonZeroClock(bb) then
9: modified = true

10: end if
11: min = minimumOfSucessors(bb)
12: setClock(bb, GetClock(bb) + min)
13: subtractFromAllSuccessors(bb, min)
14: else
15: if meetsOpt2aMergeNodeRequirements(bb) then
16: pushClockUp(bb)
17: end if
18: end if
19: succList = getAllSuccessors(bb)
20: for all succ in succList do
21: updateOpt2aClocks(modified, succ)
22: end for
23: end function

24: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
25: clock = getClock(mergeBlock)
26: removeClock(mergeBlock)
27: predList = getAllPredecessors(mergeBlock)
28: for all pred in predList do
29: setClock(pred, GetClock(pred) + clock)
30: if meetsOpt2aMergeNodeReq(pred) then
31: pushClockUp(pred)
32: end if
33: end for
34: end function

35: function APPLYOPT2A
36: for all f in Program do
37: modified = true
38: while modfied do
39: updateOpt2aClocks(modified, f.entry())
40: visitedList.clear()
41: end while
42: end for
43: end function

shown in Figure 5. The meetsOpt2aCondNodeRequirements
call on line 6 checks if a node meets the first principle, while
meetsOpt2aMergeNodeRequirements call on line 14 checks
for the second principle. Note that for the first principle,
meetsOpt2aCondNodeRequirements also makes sure that no
unclocked function call exists in the parent block and its
successors. Moreover, it makes sure that the parent block
is dominating the successors, that is, the successors are not
merge blocks. Similarly meetsOpt2aMergeNodeRequirements
also makes sure that none of the blocks in consideration have
unclocked function calls. It also makes sure that the merge
block is not a loop header.

It should be noted that after having parsed all the blocks of
a function and applying this optimization, if it is still possible
to apply this optimization once more to reduce clock updating
code, it is applied. This is done by checking the modified flag.

The example function after applying one pass of this opti-

Fig. 5: Pseudocode for Optimization 2a

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible.
On the other hand, part b is not necessarily precise, but we
make sure that the clock does not diverge significantly after
that pass.

1) Part a: This optimization is based on the principle that
if a block has two or more successors, we can make the
successor with the least clock zero and subtract its original
value from all its siblings, while also adding its original clock
to the parent block. Another principle of this optimization is
that if all predecessors of a merge block have that merge block
as their only successor, the clocks could be shifted from the
merge node to them. The pseudocode of this optimization is

Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
. When this function is called Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: modified = false
7: if meetsOpt2aCondNodeRequirements(bb) then
8: if allSuccessorsHaveNonZeroClock(bb) then
9: modified = true

10: end if
11: min = minimumOfSucessors(bb)
12: setClock(bb, GetClock(bb) + min)
13: subtractFromAllSuccessors(bb, min)
14: else
15: if meetsOpt2aMergeNodeRequirements(bb) then
16: pushClockUp(bb)
17: end if
18: end if
19: succList = getAllSuccessors(bb)
20: for all succ in succList do
21: updateOpt2aClocks(modified, succ)
22: end for
23: end function

24: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
25: clock = getClock(mergeBlock)
26: removeClock(mergeBlock)
27: predList = getAllPredecessors(mergeBlock)
28: for all pred in predList do
29: setClock(pred, GetClock(pred) + clock)
30: if meetsOpt2aMergeNodeReq(pred) then
31: pushClockUp(pred)
32: end if
33: end for
34: end function

35: function APPLYOPT2A
36: for all f in Program do
37: modified = true
38: while modfied do
39: visitedList.clear()
40: updateOpt2aClocks(modified, f.entry())
41: end while
42: end for
43: end function

shown in Figure 5. The meetsOpt2aCondNodeRequirements
call on line 6 checks if a node meets the first principle, while
meetsOpt2aMergeNodeRequirements call on line 14 checks
for the second principle. Note that for the first principle,
meetsOpt2aCondNodeRequirements also makes sure that no
unclocked function call exists in the parent block and its
successors. Moreover, it makes sure that the parent block
is dominating the successors, that is, the successors are not
merge blocks. Similarly meetsOpt2aMergeNodeRequirements
also makes sure that none of the blocks in consideration have
unclocked function calls. It also makes sure that the merge
block is not a loop header.

It should be noted that after having parsed all the blocks of
a function and applying this optimization, if it is still possible
to apply this optimization once more to reduce clock updating
code, it is applied. This is done by checking the modified flag.

The example function after applying one pass of this opti-

Figure 6: Pseudocode for Optimization 2a

that the parent block is dominating the successors, that
is, the successors are not merge blocks. Similarly meet-
sOpt2aMergeNodeRequirements also makes sure that none
of the blocks in consideration have unclocked function calls.
It also makes sure that the merge block is not a loop header.

It should be noted that after having parsed all the blocks
of a function and applying this optimization, if it is still
possible to apply this optimization once more to reduce
clock updating code, it is applied. This is done by checking
the modified flag.

The example function after applying one pass of this
optimization is shown in Figure 7. The sequence of events
that will happen are given below (Refer to Figure 3 for
original clock values).

• if.then.i is made 0 by if.end, which itself becomes 29
and makes if.end27 equal to 2.

• if.then.i reaches the merge node
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Figure 7: Part of example function after applying first
iteration of Optimization 2a
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Figure 8: Part of example function after second and final
iteration of Optimization 2a

Z17intersection typeP6 patchP6... through if.else.i.
• Merge node Z17intersection typeP6 patchP6... be-

comes 0 while propagating its clock to all of its 4 pre-
decessors, which are if.else39, if.then35.i, if.then29.i
and if.else.i, whose values now become 5, 5, 6 and 7
respectively.

• if.end27 subtracts 2 from if.else33 and if.then29.i to
make them 0 and 4 respectively while itself becoming
4.

• if.else33.i takes value of 5 from if.else39.i and
if.then35.i after making them 0.

Note that after applying this one pass, further optimiza-
tion is still possible, but after the second pass (shown by
Figure 8), no further optimization is possible.

2) Part b: The part b of this optimization deals with
if conditions, such as those made by the blocks if.end21,
lor.lhs.false23 and if.then28 in Figure 10. The pseudocode
for this optimization is shown in Figure 9. The variable
swSucc in Figure 9 represents the block in the middle, which
is lor.lhs.false23 in this example, while endSucc represents
the merge node, which is if.then28 for this example. The
meetsOpt2bRequirements function call at line 6 checks if a
pattern like the one shown in Figure 10 is formed.

If the block lor.lhs.false23 was not jumping to for.inc, that
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Fig. 6: Part of example function after applying first iteration
of Optimization 2a
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Fig. 7: Part of example function after second and final iteration
of Optimization 2a

mization is shown in Figure 6. The sequence of events that
will happen are given below (Refer to Figure 3 for original
clock values).

• if.then.i is made 0 by if.end, which itself becomes 29
and makes if.end27 equal to 2.

• if.then.i reaches the merge node
Z17intersection typeP6 patchP6... through if.else.i.

• Merge node Z17intersection typeP6 patchP6... be-
comes 0 while propagating its clock to all of its 4
predecessors, which are if.else39, if.then35.i, if.then29.i
and if.else.i, whose values now become 5, 5, 6 and 7
respectively.

• if.end27 subtracts 2 from if.else33 and if.then29.i to
make them 0 and 4 respectively while itself becoming
4.

• if.else33.i takes value of 5 from if.else39.i and if.then35.i
after making them 0.

Note that after applying this one pass, further optimization
is still possible, but after the second pass (shown by Figure 7),
no further optimization is possible.

2) Part b: The part b of this optimization deals with
if conditions, such as those made by the blocks if.end21,
lor.lhs.false23 and if.then28 in Figure 9. The pseudocode
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Fig. 6: Part of example function after applying first iteration
of Optimization 2a
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Fig. 7: Part of example function after second and final iteration
of Optimization 2a

• Merge node Z17intersection typeP6 patchP6... be-
comes 0 while propagating its clock to all of its 4
predecessors, which are if.else39, if.then35.i, if.then29.i
and if.else.i, whose values now become 5, 5, 6 and 7
respectively.

• if.end27 subtracts 2 from if.else33 and if.then29.i to
make them 0 and 4 respectively while itself becoming
4.

• if.else33.i takes value of 5 from if.else39.i and if.then35.i
after making them 0.

Note that after applying this one pass, further optimization
is still possible, but after the second pass (shown by Figure 7),
no further optimization is possible.

2) Part b: The part b of this optimization deals with
if conditions, such as those made by the blocks if.end21,
lor.lhs.false23 and if.then28 in Figure 9. The pseudocode
for this optimization is shown in Figure 8. The variable
swSucc in Figure 8 represents the block in the middle, which
is lor.lhs.false23 in this example, while endSucc represents
the merge node, which is if.then28 for this example. The
meetsOpt2bRequirements function call at line 6 checks if a
pattern like the one shown in Figure 9 is formed.

If the block lor.lhs.false23 was not jumping to for.inc, that

e n t r y = 8

for.cond=3

for.body=3

r e t u r n = 1

for.inc=2

lor.lhs.false=2

lor.lhs.false8=2

i f .end=29

if . then. i=0

if .end27. i=4

if.else.i=7

_Z17intersect ion_typeP6_patchP6VertexP3RayPfff .exi t=0

i f . end21=1

i f . then28=1

lor. lhs.false23=90

i f . then30=5

if . then29. i=4if.else33.i=5

i f . then35. i=0if.else39.i=0

Fig. 4: Example function after applying first iteration of
optimization 2a

with the least clock zero and subtract its value from all other
blocks. We ofcourse assume that in such an arrangement, no
function call exists and all the blocks are at same loop depth.
We also make sure that the parent block is dominating its
successors, that is, successors are not merge blocks. We do
deal with merge blocks nonetheless in this pass, but that will
be discussed later in this section. By taking out the clock of the
successor with minimum clock value, we not only reduce the
code for clock updation, but also increment the clock earlier.
We can double benefit if some or all successors of that parent
block has the same value, because in that way clock updation
code would not be needed for all such blocks.

The second part of this optimization deals with merge nodes.
If a merge node has predecessors whose only successor is that
merge node, we can remove the clock updation code for that
merge node and instead add its value to all its predecessors.

It should be noted that after having parsed all the blocks of
a function and applying this optimization, it is still possible
to apply this optimization once more to reduce clock upda-
tion code even further. Therefore, we keep on applying this
optimization again and again until we find no change in a pass.

The example function after applying one pass of this opti-
mization is shown in Figure 4. The sequence of events that
will happen are given below. Note that after one pass, further
optimization is still possible, but after the second pass (shown
by Figure 5, no further optimization is possible.

• if.then.i is made 0 by if.end, which itself become 27 and
makes if.end27 equal to 3.

• if.then.i reaches Z17intersection typeP6 patchP6...
through if.else.i.

• Z17intersection typeP6 patchP6... becomes 0 while
propagating its clock to all of its 4 predecessors, which
are if.else39, if.then35.i, if.then29.i and if.else.i, whose
values now become 5, 5, 6 and 7 respectively.

• if.end27 subtracts 2 from if.else33 and if.then29.i to
make them 0 and 4 respectively while itself becoming
4.

• if.else33.i takes value of 5 from if.else39.i and if.then35.i
after making them 0.
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Fig. 5: Example function after optimization 2a

Algorithm 6 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT2BCLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: swSucc, endSucc, meetsReq = meetsOpt2bRequirements(bb)
7: if meetsReq then
8: modifyClocks(bb, swSucc, endSucc)
9: updateOpt2bClocks(endSucc)

10: swSuccList = getAllSuccessors(swSucc)
11: for all succ in swSuccList do
12: if succ != endSucc then
13: updateOpt2bClocks(endSucc)
14: end if
15: end for
16: else
17: succList = getAllSuccessors(bb)
18: for all succ in succList do
19: updateOpt2bClocks(succ)
20: end for
21: end if
22: end function

2) Part b: The part b of this optimization deals with
if conditions, such as those made by the blocks if.end21,
lor.lhs.false23 and if.then28. If the block lor.lhs.false23 was
not jumping to for.inc, that is, it had no successor other than
if.then28, we could have straight away removed clock updation
from if.end21 and added its clock value to if.then28 to make
it 2. That optimization, like part a would have been precise.
However, since lor.lhs.false23 has one more successor, our
algorithm checks to see how much clock divergence we will
get by removing clock from if.end21. The criteria we keep
is that if the divergence is less than one tenth, we proceed
with the optimization. In this case, by removing clock from
if.end21, if we jumped to for.inc from lor.lhs.false23, the
divergence would be 1/93, which is well below one tenth.
Therefore, we proceed with it. The example function now
becomes what is shown in figure 6.

Note that this pass also determines if clock updation has
to removed from the upperblock (if.end21 in this case) or the
lower block (if.then28 in this case). It prefers to remove it

Fig. 8: Pseudocode for Optimization 2b
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14: end if
15: end for
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17: succList = getAllSuccessors(bb)
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19: updateOpt2bClocks(succ)
20: end for
21: end if
22: end function

23: function APPLYOPT2B
24: for all f in Program do
25: updateOpt2bClocks(f.entry())
26: end for
27: end function

is, it had no successor other than if.then28, we could have
straight away removed clock updating code from if.end21
and added its clock value to if.then28 to make it 2. That
optimization, like part a would have been precise. However,
since lor.lhs.false23 has one more successor, our algorithm
checks to see how much clock divergence we will get by
removing clock from if.end21. The criteria we keep is that
if the divergence is less than one tenth, we proceed with the
optimization. In this case, by removing clock from if.end21,
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1: function UPDATEOPT2BCLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: swSucc, endSucc, meetsReq = meetsOpt2bRequirements(bb)
7: if meetsReq then
8: modifyClocks(bb, swSucc, endSucc)
9: updateOpt2bClocks(endSucc)

10: swSuccList = getAllSuccessors(swSucc)
11: for all succ in swSuccList do
12: if succ != endSucc then
13: updateOpt2bClocks(endSucc)
14: end if
15: end for
16: else
17: succList = getAllSuccessors(bb)
18: for all succ in succList do
19: updateOpt2bClocks(succ)
20: end for
21: end if
22: end function

23: function APPLYOPT2B
24: for all f in Program do
25: visitedList.clear()
26: updateOpt2bClocks(f.entry())
27: end for
28: end function

Figure 9: Pseudocode for Optimization 2b

is, it had no successor other than if.then28, we could have
straight away removed clock updating code from if.end21
and added its clock value to if.then28 to make it 2. That
optimization, like part a would have been precise. However,
since lor.lhs.false23 has one more successor, our algorithm
checks to see how much clock divergence we will get by
removing clock from if.end21. The criteria we keep is that
if the divergence is less than one tenth, we proceed with the
optimization. In this case, by removing clock from if.end21,
if we jumped to for.inc from lor.lhs.false23, the divergence
would be 1/93, which is well below one tenth. Therefore, we
proceed with it. The example function now becomes what
is shown in Figure 10.

Note that this pass also determines if clock has to be
removed from the upper block (if.end21 in this case) or the
lower block (if.then28 in this case). We prefer to remove it
from the lower block (and add it to upper block) so that
clock is incremented ahead of time. However, in certain
cases, we remove it from the upper block (and add it to
lower block). One such case is when the upper block is at
a higher loop depth than the lower block. Removing clock
from upper clock is beneficial here since it is in a more
critical path and therefore we save clock updating overhead.
Another case where we remove clock from the upper block
(and add to the lower block) is when the lower block has
a higher clock than the upper block and middle block has
more than one successors. This is because shifting clock to
the upper block in this case will cause a larger divergence
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for this optimization is shown in Figure 8. The variable
swSucc in Figure 8 represents the block in the middle, which
is lor.lhs.false23 in this example, while endSucc represents
the merge node, which is if.then28 for this example. The
meetsOpt2bRequirements function call at line 6 checks if a
pattern like the one shown in Figure 9 is formed.

If the block lor.lhs.false23 was not jumping to for.inc, that
is, it had no successor other than if.then28, we could have
straight away removed clock updating code from if.end21
and added its clock value to if.then28 to make it 2. That
optimization, like part a would have been precise. However,
since lor.lhs.false23 has one more successor, our algorithm
checks to see how much clock divergence we will get by
removing clock from if.end21. The criteria we keep is that
if the divergence is less than one tenth, we proceed with the
optimization. In this case, by removing clock from if.end21,
if we jumped to for.inc from lor.lhs.false23, the divergence
would be 1/93, which is well below one tenth. Therefore, we
proceed with it. The example function now becomes what is
shown in Figure 9.

Note that this pass also determines if clock has to be
removed from the upper block (if.end21 in this case) or the
lower block (if.then28 in this case). We prefer to remove it
from the lower block (and add it to upper block) so that clock
is incremented ahead of time. However, in certain cases, we
remove it from the upper block (and add it to lower block).
For example, in cases where the upper block is at higher loop
depth or clock of lower block is much higher than clock of
the upper block. In this example, since if.end21 is at higher
loop depth than if.then28, we remove the clock from if.end21
and add it to if.then28.

C. Optimization 3 (Averaging of Clocks)

This optimization is based on the fact that paths emanating
from a block in a function could be matching close together
in total clock values. One can imagine it as a specialized
case of the Optimization 1 (Function Clocking). For Function
Clocking, we just considered the paths emanating from the
entry block, but here we also check for paths besides the entry
block. When forming paths for a block, we only consider
blocks dominated by it (execution must pass through the
dominating block to reach its dominated blocks).
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Fig. 6: Example function after applying optimizations 2b

from the block which is at a higher loop depth (if.end21 in
this case). If the loop depth is the same, preference is given
to remove it from the lower block.

D. Optimization 3

Algorithm 8 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT3CLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt3Requirements(bb) then
7: clocks, touchedBlocksList = getClocksOfAllOpt3Paths(bb)
8: if isClockable(avg, bb) then
9: setClock(bb, avg)

10: for all tb in touchedBlocksList do
11: removeClock(tb)
12: end for
13: tbSuccList = getAllSuccessorsOfTB(bb, touchedBlocksList)
14: for all succ in tbSuccList do
15: updateOpt3Clocks(succ)
16: end for
17: return
18: end if
19: end if
20: succList = getAllSucessors(bb)
21: for all succ in succList do
22: updateOpt3Clocks(succ)
23: end for
24: end function

This optimization is based on the fact that paths emanating
from a block in a function could be matching close together
in total clock values. You can imagine is as a specialized case
of the optimization which tries to clock function, discussed in
Section III-B. There, we just considered the paths emanating
from the entry block, but here we also check for paths besides
the entry block. We only consider blocks which are dominated
by that block and therefore the paths formed with those blocks.
The example function after applying this optimization is shown
in figure 7.

E. Optimization 4

This optimization considers the fact that loops are often
executed multiple times. So for example, if you have a for
loop, the increment operation will take place just before the
next iteration. Therefore we check for back edges and if we
see that the clock of the block from which the backedge is
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Fig. 7: Example function after applying optimizations 3
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Fig. 8: Example function after applying optimization 4

originating is less that a certain threshold value and is also
less than the clock of the block it is jumping to, we merge its
clock value to that block’s clock and remove clock updation
code from it. In this example, the clock of for.inc is merged
with for.cond.

IV. PERFORMANCE EVALUATION

We selected 5 benchmarks, one from the PARSEC [4] and
four from the SPLASH-2 [18] benchmark sets. From PARSEC,
we selected Fluidanimate which simulates the underlying
physics of fluid motion for realtime animation purposes.
From SPLASH-2, we selected, Ocean, Water-nsq, Radiosity

Fig. 10: Pseudocode for Optimization 3

if we jumped to for.inc from lor.lhs.false23, the divergence
would be 1/93, which is well below one tenth. Therefore, we
proceed with it. The example function now becomes what is
shown in Figure 9.

Note that this pass also determines if clock has to be
removed from the upper block (if.end21 in this case) or the
lower block (if.then28 in this case). We prefer to remove it
from the lower block (and add it to upper block) so that clock
is incremented ahead of time. However, in certain cases, we
remove it from the upper block (and add it to lower block).
For example, in cases where the upper block is at higher loop
depth or clock of lower block is much higher than clock of
the upper block. In this example, since if.end21 is at higher
loop depth than if.then28, we remove the clock from if.end21
and add it to if.then28.

C. Optimization 3 (Averaging of Clocks)

This optimization is based on the fact that paths emanating
from a block in a function could be matching close together
in total clock values. One can imagine it as a specialized
case of the Optimization 1 (Function Clocking). For Function

Algorithm 6 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT3CLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt3Requirements(bb) then
7: clocks, touchedBlocksList = getClocksOfAllOpt3Paths(bb)
8: if isClockable(avg, bb) then
9: setClock(bb, avg)

10: for all tb in touchedBlocksList do
11: removeClock(tb)
12: end for
13: tbSuccList = getAllSuccessorsOfTB(bb, touchedBlocksList)
14: for all succ in tbSuccList do
15: updateOpt3Clocks(succ)
16: end for
17: return
18: end if
19: end if
20: succList = getAllSucessors(bb)
21: for all succ in succList do
22: updateOpt3Clocks(succ)
23: end for
24: end function

25: function APPLYOPT3
26: for all f in Program do
27: updateOpt3Clocks(f.entry())
28: end for
29: end function

Clocking, we just considered the paths emanating from the
entry block, but here we also check for paths besides the entry
block. When forming paths for a block, we only consider
blocks dominated by it (execution must pass through the
dominating block to reach its dominated blocks).

The pseudocode for this optimization is shown in Figure 10.
When finding paths for a block, we stop when we see
backedges or when we see blocks with unclocked function
calls. Moreover, we stop at a merge node if any of its successor
is not dominated by the block in question. Like Optimizations
2a and 2b, we start to search for this optimization from the
entry block of a function. If we find a block whose paths can
be averaged, then after removing the clocks from the blocks in
its path, we start to look for other blocks in the function. For
this we consider the successors of the blocks in the path (from
which the clocks were removed), given that those successors
are not within that path. This is done by using the code from
line 13 to 16 in Figure 10.

The example function after applying this optimization is
shown in Figure 11. In this figure, accumulated clocks for all
different four paths emanating from if.end were 37, 38, 38 and
29, with a mean value of 35.5 and standard deviation of 4.36.
Since the range here is 8 (37-29) and is less than mean/2.5 as
well the standard deviation is 4.36, which is less than mean/5,
we assign a clock of 35 to if.end, while removing clocks from
all the blocks in the path. Note that we did not consider nodes
below the merge node Z17intersection typeP6 patchP6...
because it has for.inc as its successor, which is not dominated
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29: end for
30: end function
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Algorithm 2 Pseudocode for deterministic lock and un-
lock

1: function UPDATEOPT3CLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt3Requirements(bb) then
7: clocks, touchedBlocksList = getClocksOfAllOpt3Paths(bb)
8: if isClockable(avg, clocks) then
9: setClock(bb, avg)

10: for all tb in touchedBlocksList do
11: removeClock(tb)
12: end for
13: tbSuccList = getAllSuccessorsOfTB(bb, touchedBlocksList)
14: for all succ in tbSuccList do
15: updateOpt3Clocks(succ)
16: end for
17: return
18: end if
19: end if
20: succList = getAllSucessors(bb)
21: for all succ in succList do
22: updateOpt3Clocks(succ)
23: end for
24: end function

25: function APPLYOPT3
26: for all f in Program do
27: visitedList.clear()
28: updateOpt3Clocks(f.entry())
29: end for
30: end function
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be averaged, then after removing the clocks from the blocks in
its path, we start to look for other blocks in the function. For
this we consider the successors of the blocks in the path (from
which the clocks were removed), given that those successors
are not within that path. This is done by using the code from
line 13 to 16 in Figure 10.

The example function after applying this optimization is
shown in Figure 11. In this figure, accumulated clocks for all
different four paths emanating from if.end were 37, 38, 38 and
29, with a mean value of 35.5 and standard deviation of 4.36.
Since the range here is 8 (37-29) and is less than mean/2.5 as
well the standard deviation is 4.36, which is less than mean/5,
we assign a clock of 35 to if.end, while removing clocks from
all the blocks in the path. Note that we did not consider nodes
below the merge node Z17intersection typeP6 patchP6...
because it has for.inc as its successor, which is not dominated
by if.end.

D. Optimization 4 (Loops)

This optimization considers the fact that loops are often
executed multiple times. So for example, if you have a for
loop, the increment operation will take place just before the
next iteration. Therefore we check for back edges and if we
see that the clock of the block from which the backedge is
originating is less that a certain threshold value and is also
less than the clock of the block it is jumping to, we merge its
clock value to that block’s clock and remove clock updating
code from it. In this example, the clock of for.inc is merged
with for.cond.

Figure 12 shows the example function after applying this
final optimization.

V. PERFORMANCE EVALUATION

We selected only those benchmarks from SPLASH-2 [13]
which only have locks and barriers as synchronization oper-
ations, as we have not yet implemented other synchroniza-
tion operations, such as condition variables for example. All
benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -O4
for clang/llvm). We first discuss the results. Afterwards, weFig. 10: Pseudocode for Optimization 3
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1: function UPDATEOPT3CLOCKS(ref BasicBlock bb) . When this
function is called, Entry block of a function is passed as bb
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be averaged, then after removing the clocks from the blocks in
its path, we start to look for other blocks in the function. For
this we consider the successors of the blocks in the path (from
which the clocks were removed), given that those successors
are not within that path. This is done by using the code from
line 13 to 16 in Figure 10.

The example function after applying this optimization is
shown in Figure 11. In this figure, accumulated clocks for all
different four paths emanating from if.end were 37, 38, 38 and
29, with a mean value of 35.5 and standard deviation of 4.36.
Since the range here is 8 (37-29) and is less than mean/2.5 as
well the standard deviation is 4.36, which is less than mean/5,
we assign a clock of 35 to if.end, while removing clocks from
all the blocks in the path. Note that we did not consider nodes
below the merge node Z17intersection typeP6 patchP6...
because it has for.inc as its successor, which is not dominated
by if.end.

D. Optimization 4 (Loops)

This optimization considers the fact that loops are often
executed multiple times. So for example, if you have a for
loop, the increment operation will take place just before the
next iteration. Therefore we check for back edges and if we
see that the clock of the block from which the backedge is
originating is less that a certain threshold value and is also
less than the clock of the block it is jumping to, we merge its
clock value to that block’s clock and remove clock updating
code from it. In this example, the clock of for.inc is merged
with for.cond.

Figure 12 shows the example function after applying this
final optimization.

V. PERFORMANCE EVALUATION

We selected only those benchmarks from SPLASH-2 [13]
which only have locks and barriers as synchronization oper-
ations, as we have not yet implemented other synchroniza-
tion operations, such as condition variables for example. All
benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -O4
for clang/llvm). We first discuss the results. Afterwards, weFigure 11: Pseudocode for Optimization 3

in clock. In this example, since if.end21 is at higher loop
depth than if.then28, we remove the clock from if.end21
and add it to if.then28.

C. Optimization 3 (Averaging of Clocks)

This optimization is based on the fact that paths emanating
from a block in a function could be matching close together
in total clock values. One can imagine it as a specialized case
of the Optimization 1 (Function Clocking). For Function
Clocking, we just considered the paths emanating from the
entry block, but here we also check for paths besides the
entry block. When forming paths for a block, we only con-
sider blocks dominated by it (execution must pass through
the dominating block to reach its dominated blocks).

The pseudocode for this optimization is shown in Fig-
ure 11. When finding paths for a block, we stop when
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r e t u r n = 1

for.inc=2
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Figure 12: Part of example function after applying Optimiza-
tion 3

we see backedges or when we see blocks with unclocked
function calls. Moreover, we stop at a merge node if any
of its successor is not dominated by the block in question.
Like Optimizations 2a and 2b, we start to search for this
optimization from the entry block of a function. If we find a
block whose paths can be averaged, then after removing the
clocks from the blocks in its path, we start to look for other
blocks in the function. For this we consider the successors of
the blocks in the path (from which the clocks were removed),
given that those successors are not within that path. This is
done by using the code from line 13 to 16 in Figure 11.

The example function after applying this optimization is
shown in Figure 12. In this figure, accumulated clocks for
all different four paths emanating from if.end were 37, 38,
38 and 29, with a mean value of 35.5 and standard deviation
of 4.36. Since the range here is 8 (37-29) and is less than
mean/2.5 as well as the standard deviation is 4.36, which
is less than mean/5, we assign a clock of 35 to if.end,
while removing clocks from all the blocks in the path.
Note that we did not consider nodes below the merge node

Z17intersection typeP6 patchP6... because it has for.inc
as its successor, which is not dominated by if.end.

D. Optimization 4 (Loops)
This optimization considers the fact that loops are often

executed multiple times. So for example, if you have a for
loop, the increment operation will take place just before the
next iteration. Therefore we check for back edges and if we
see that the clock of the block from which the backedge is
originating is less that a certain threshold value and is also
less than the clock of the block it is jumping to, we merge its
clock value to that block’s clock and remove clock updating
code from it. In this example, the clock of for.inc is merged
with for.cond.

Figure 13 shows the example function after applying this
final optimization.

V. PERFORMANCE EVALUATION

We selected only those benchmarks from SPLASH-2 [13]
which only have locks and barriers as synchronization opera-



Table I: Performance results of our scheme for the selected benchmarks

Benchmark Ocean Raytrace Water-nsq Radiosity Volrend Average
Original Exec Time 2903 670 1451 496 1340 -
Locks/sec 343 227835 126034 2211621 443070 -
Clockable Functions 1 33 1 39 35 -

After Inserting Clocks
With No Optimization 2918 (1%) 718 (7%) 2082 (43%) 698 (41%) 1446 (8%) 20%
With Function Clocking Only (O1) 2901 (0%) 706 (5%) 2072 (43%) 644 (30%) 1445 (8%) 17%
With Conditional Blocks Optimization Only (O2) 2889 (0%) 715 (7%) 1779 (23%) 643 (30%) 1392 (4%) 13%
With Averaging of Clocks Only (O3) 2898 (0%) 702 (5%) 2072 (43%) 675 (36%) 1445 (8%) 18%
With Loops Optimization Only (O4) 2903 (0%) 707 (6%) 1752 (21%) 677 (36%) 1442 (8%) 14%
With All Optimizations 2895 (0%) 695 (4%) 1748 (20%) 562 (13%) 1386 (3%) 8%

After Inserting Clocks and Performing Deterministic Execution
With No Optimization 2918 (1%) 768 (15%) 2096 (44%) 855 (72%) 1451 (8%) 28%
With Function Clocking Only (O1) 2924 (1%) 758 (13%) 2085 (44%) 711 (43%) 1448 (8%) 22%
With Conditional Blocks Optimization Only (O2) 2918 (1%) 766 (14%) 1785 (23%) 788 (57%) 1398 (4%) 20%
With Averaging of Clocks Only (O3) 2916 (0%) 742 (11%) 2090 (44%) 807 (63%) 1450 (8%) 25%
With Loops Optimization Only (O4) 2904 (0%) 760 (13%) 1761 (21%) 837 (69%) 1448 (8%) 22%
With All Optimizations 2915 (0%) 742 (11%) 1758 (21%) 683 (38%) 1395 (4%) 15%

e n t r y = 8

for.cond=5

for.body=3

r e t u r n = 1

for.inc=0

lor.lhs.false=2

lor.lhs.false8=2

i f .end=35

if . then. i=0

if .end27. i=0

if.else.i=0

_Z17intersect ion_typeP6_patchP6VertexP3RayPfff .exi t=0

i f . end21=0

i f . then28=2

lor. lhs.false23=90

i f . then30=5

if . then29. i=0if.else33.i=0

i f . then35. i=0if.else39.i=0

Figure 13: Example function after applying all optimizations

tions, as we have not yet implemented other synchronization
operations, such as condition variables for example. All
benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -
O4 for clang/llvm). We first discuss the results. Afterwards,
we show how clocking instructions ahead of time improves
the deterministic execution. Lastly, we compare our results
with those from Kendo.
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Figure 14: Overhead of inserting clocks and deterministic
execution

A. Results

Table I shows the performance overheads with different
optimizations and Figure 14 gives a pictorial view of that
overhead. The left bars in Figure 14 show the performance
overhead without applying optimizations while the bars on
the right show the overhead after applying all the optimiza-
tions. The lower portion of the bar is the overhead of the
inserted clocks updating code only, while the upper portion
shows the additional overhead for deterministic execution.

From Table I, we can see that different optimization affect
different benchmarks differently. For example, Optimization
4 (Loops Optimization) has a significant impact on the
performance of Water-nsq while not having that much effect
on other benchmarks. This is because Water-nsq frequently
executes a loop with a small body. The optimization that
had the most impact on performance overall is Optimiza-
tion 2 (Conditional Blocks Optimization). This is because
conditional paths are frequently found in programs and this
optimization efficiently reduces clock update for such paths.
The Optimization 3 had the least impact. This is because it
is unlikely for a program to have all paths originating from
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Figure 15: Improvement of the Radiosity benchmark from
updating clocks ahead of time

a node to have similar clock values.
As far as Optimization 1 (Function Clocking) goes, Ra-

diosity is one benchmark where this optimization signifi-
cantly improved the performance. This is because this bench-
mark has such functions which are compute intensive and
execute frequently. One interesting result of this optimization
is that it significantly reduces the overhead of deterministic
execution in addition to the reduction in clock updating
overhead. This is discussed in more detail in the next section.
Overall, we see that the average overhead of inserting clocks
is at 7%, whereas the average overhead for deterministic
execution is at 14%, with the overhead not exceeding 38%
even for Radiosity, which has a very high lock frequency.

B. Effect of Updating Clocks Ahead of Time

There is a great benefit in updating the clock as soon as
possible, so that threads waiting at a lock acquisition have to
wait less. This effect is more evident for a benchmark like
Radiosity which has high a lock frequency. From Table I,
we can see that for Radiosity, although Optimization 2
(Conditional Blocks Optimization) reduces the clock over-
head by the same amount as Optimization 1 (Function
Clocking), Optimization 1 adds far less additional overhead
for deterministic execution at 13% (43% - 30%) as compared
to 27% (57% - 30%) in the case of Optimization 2. This is
because Optimization 1 is able to increment the clock more
aggressively ahead of time as it works for whole functions.

Figure 15 illustrates the effect of updating clocks ahead
of time for Radiosity. Since Function Clocking optimization,
where possible, increments the clock ahead of time the most
(more than other optimizations), we only consider the result
of Optimization 1 (Function Clocking) here. The left most
bar is that without any optimization, the middle is with
Function Clocking optimization, but clocks updated at the
end of the basic blocks, whereas the right most bar is the
same optimization but with clocks updated at the beginning
of the basic blocks. From the figure, by looking at the upper
portion of the bars, which represents the additional overhead
of deterministic execution, we can see that updating clocks

at the start of the block improves deterministic execution
significantly as compared to updating them at the end.

C. Comparison with Kendo

In Table II, we compare our results with that of Kendo.
Note that the purpose of our scheme is not to surpass Kendo
in performance but to make it more portable while retaining
sufficient efficiency. Since the data sets used by Kendo are
not publicly available, neither its source code, we list the
results directly from their paper. We tried to use the data
sets which match the locks/sec frequency of those used
by Kendo. For Radiosity and Volrend, we could not find
matching data sets however and instead used data sets with
higher lock frequencies than Kendo.

The only benchmark which performs worse than Kendo
is Water-nsq. This is because Water-nsq executes a small
for loop very frequently. The code inside that for loop
contains an if statement. Although Optimization 2 (Con-
ditional Blocks Optimization) and Optimization 4 (Loops
Optimization) work to reduce overhead of clocks update in
that loop, it still updates clocks frequently enough in that
loop to have a relatively high overhead.

For Radiosity, which has a very high lock frequency, our
scheme surpasses Kendo in performance. This is even when
we used a data set which has a higher lock frequency than
what Kendo used. This improvement in performance over
Kendo can be explained by the fact that at compile time, we
are able to update clocks before instructions are executed
and thus reduce waiting time for a benchmark like Radiosity
which has a high lock frequency. On the other hand, Kendo
only updates the logical clocks when it receives overflow
interrupts of the hardware performance counter that counts
retired stores. Therefore, it cannot perform clock updates
ahead of time. It also has to balance the chunk size of
instructions executed between each interrupt, so as to reduce
the impact of frequent interrupts while also maintaining
frequent interrupts to keep the clocks incrementing. For
Radiosity, the authors of Kendo had to manually adjust the
chunk size to get the best performance, which is the one
listed in Table II. Our scheme requires no such manual
adjustments.

We even show slight improvement over Kendo for bench-
marks which do not have very high lock frequencies, such as
Raytrace and Volrend. This improvement can be explained
from the fact that our scheme updates the clock more
frequently than Kendo. Although, in case of Kendo there
may be a less overhead of updating the clocks, threads who
are in the process of acquiring a lock and thus waiting
for other threads’ clocks to go past them, have to wait
longer due to the slow update of the clocks. Moreover,
our optimizations prefer to update the clock even before
instructions are executed. So even when we are updating the
clocks less frequently, it is not because we are delaying their



Table II: Performance results of our scheme as compared to Kendo

Benchmark Ocean Raytrace Water-nsq Radiosity Volrend
Results for Kendo

Locks/sec 279 216979 143202 939771 79612
Overhead 1% 18% 7% 53% 7%

Results for our scheme
Locks/sec 343 227835 126034 2211621 443070
Overhead 0% 11% 21% 38% 4%

update, but because we (most of the time) already updated
them ahead of time.

VI. CONCLUSION

In this paper, we described our tool DetLock, which
consists of an LLVM compiler pass to insert code for
updating logical clocks for Weak Deterministic execution.
Since our scheme does not depend on any hardware or
modification of the kernel, it is very portable. Moreover,
we apply several optimizations to reduce the amount of
code inserted for clock updating. Furthermore, since the
algorithm for Weak Determinism that we use gives lock to
the thread with minimum logical clock, we try to increment
the clocks of threads as soon as possible so that threads
waiting for locks have to wait less. We increment the clocks
even before instructions are executed if possible. On average,
the overhead of inserting clock updating code is only 8%,
whereas the overall overhead including deterministic execu-
tion is 15% for selected benchmarks. This performance is
comparable to Kendo, while providing more portability. In
fact for some applications, DetLock can even surpass Kendo
in performance.
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