
978-1-4673-2921-7/12/$31.00 c©2012 IEEE

A LIGHTWEIGHT SPECULATIVE AND PREDICATIVE SCHEME FOR HARDWARE
EXECUTION

Razvan Nane, Vlad-Mihai Sima and Koen Bertels

Computer Engineering Lab
Delft University of Technology

email: 〈r.nane, v.m.sima, k.l.m.bertels〉 @tudelft.nl

ABSTRACT
If-conversion is a known software technique to speedup ap-
plications containing conditional expressions and targeting
processors with predication support. However, the success
of this scheme is highly dependent on the structure of the if-
statements, i.e., if they are balanced or unbalanced, as well
as on the path taken. Therefore, the predication scheme
does not always provide a better execution time than the
conventional jump scheme. In this paper, we present an
algorithm that leverages the benefits of both jump and
predication schemes adapted for hardware execution. The
results show that performance degradation is not possible
anymore for the unbalanced if-statements as well as a
speedup for all test cases between 4% and 21%.

I. INTRODUCTION
As the increase in frequency of the general purpose

processors is becoming smaller and harder to obtain, new
ways of providing performance are investigated. One of the
promising possibilities to improve the system performance
is to generate dedicated hardware for the computation
intensive parts of the applications. As writing hardware in-
volves a huge effort and needs special expertise, compilers
that translate directly from high level languages to hardware
languages have to be available, before this method is widely
adopted. As C and VHDL are the most popular used
languages in their fields, of embedded and hardware system
development respectively, we will focus on compilers for
C-to-VHDL. The algorithm presented here can be applied
in theory to any such compiler. A C-to-VHDL compiler can
share a significant part with a compiler targeting a general
purpose architecture, still, there are areas for which the
techniques must be adapted to take advantage of all the
possibilities offered.

In this context, this paper presents an improved predica-
tion algorithm, which takes into account the characteristics
of a C-to-VHDL compiler and the features available on the
target platform. Instruction predication is an already known
compiler optimization technique, however, current C-to-
VHDL compilers do not take fully advantage of the possi-
bilities offered by this optimisation. More specifically, we

propose a method to increase the performance in the case of
unbalanced if-then-else branches. These types of branches
are problematic because, when the jump instructions are
removed for the predicated execution, if the shorter branch
is taken, slowdowns occur because (useless) instructions
from the longer branch still need to be executed. Based on
both synthetic and real world applications we show that
our algorithm does not substantially increase the resource
usage while the execution time is reduced in all the cases
for which it is applied.

The paper is organized as follows. We begin by present-
ing a description of the predication technique and previous
research, emphasizing on the missed optimization possibil-
ities. In Section III we present our algorithm and describe
its implementation. The algorithm is based on a lightweight
form of speculation because it does not generate logic to
roll back speculated values. It employs a lightweight form
of predication because only some branch instructions are
predicated, as well as keeping jump instructions. Section
IV discusses the results and Section V concludes the paper.

II. RELATED WORK AND BACKGROUND

Given the code in Fig. 1 (a), the straightforward way of
generating assembly (or low level code) is presented in Fig.
1 (b). We note that for any of the two branches there is at
least one jump that needs to be taken. If the block execution
frequency is known, an alternative approach exists in which
the two jumps are executed only on the least taken branch.

Branches are a major source of slowdowns when used
in pipelined processors as the pipeline needs to be flushed
before continuing. Furthermore, branches are also schedul-
ing barriers, create I-cache refills and limit compiler scalar
optimizations. In order to avoid this negative effect, the
concept of predication was introduced, which does not alter
the flow but executes (or not) an instruction based on the
value of a predicate. An example is given in Fig. 1 (c). In
this scheme no branches are introduced, but, for a single
issue processor more (useless) instructions are executed. In
case of a multiple issue processor such instructions can be
”hidden” because the two code paths can be executed in

parallel. We emphasize that the advantage of the predica-
tion comes from the fact that there are no branches in the
code.

if (x)
r = a + b;

else
r = c - d;

(a)

cond = cmp x,0
branchf cond, else
add r,a,b
branch end

else:
sub r,c,d

end:

(b)

cond = cmp x,0
[cond] add r,a,b
[!cond] sub r,c,d

(c)

Fig. 1. (a) C-Code; (b) Jump- ; (c) Predicated-Scheme.

The predication schemes assumes that the penalty of
the jump is huge and thus branching has to be avoided.
This is no longer true in the case of VHDL code. For
the VHDL code there are no ”instructions” but states in
a datapath, controlled by a Finite State Machine (FSM).
A straightforward implementation in VHDL of the jump
scheme is presented in Fig. 2. We will present in the
later sections the implications of the fact that the jumps
are not introducing a huge delay. For this case, applying
predication decreases the number of states from 4 to 2.
We will show in the later sections how our algorithm can
reduce the number of states even for unbalanced branches,
a case not treated in the previous work.

A seminal paper on predication is [3], where a generic
algorithm is presented that works on hyperblocks which
extends the concept of basic blocks to a set of basic blocks
that execute or not based on a set of conditions. It proposes
several heuristics to select the sets of the basic blocks as
well as several optimizations on the resulted hyperblocks
and discusses if generic optimizations can be adapted to the
hyperblock concept. Compared to our work, their heuristic

datapath
state_1:

cond = cmp x,0
state_2:
state_3:

r=a+b;
state_4:

r=a-b;
state_5:

.... -- code after if-statement
FSM

state_1:
next_state = state_2

state_2:
if(cond)
next_state = state_3

else
next_state = state_4

state_3:
next_state = state_5

state_4:
next_state = state_5

state_5:
....

Fig. 2. Jump Scheme

void balanced_case(int *a, int *b, int *c, int *d,
int *e, int *f, int *result) {

if (*a > *b)

*result = *c + *d;
else

*result = *e - *f;
}

Fig. 3. Balanced if branches.

does not consider the possibility of splitting a basic block
and does not analyse the implications for a reconfigurable
architecture, e.g. branching in hardware has no incurred
penalty.

The work in [4] proposes a dynamic programming
technique to select the fastest implementation for if-then-
else statements. As with the previous approach, any change
in the control flow is considered to add a significant
performance penalty. In [5], the authors extend the predica-
tion work in a generic way to support different processor
architectures. In this work, some instructions are moved
from the predicated basic blocks to the delay slots, but as
delay slots are very limited in nature there is no extensive
analysis performed about this decision.

Regarding the C-to-VHDL compilers, we mention Al-
tium’s C to Hardware (CHC) [6] and LegUp [7]. They
translate functions that belong to the application’s compu-
tational intensive parts in a hardware/software co-design
environment. Neither of these compilers considers specif-
ically predication coupled with speculation during the
generation of VHDL code.

III. SPECULATIVE AND PREDICATIVE
ALGORITHM

In this section, we describe the optimization algorithm
based on two simple but representative examples which
illustrate the benefit of including Speculative and Predica-
tive Algorithm (SaPA) as a default transformation in High
Level Synthesis (HLS) tools.

III-A. Motivational Examples
To understand the problems with the predication scheme

(PRED) compared to the jump scheme (JMP), we use
two functions that contain each one if-statement. The
first, shown in Fig. 3, considers the case when the then-
else branches are balanced, i.e. they finish executing the
instructions on their path in the same amount of cycles,
whereas the second case deals with the unbalanced scenario
(Fig. 4). In these examples, we assume the target platform
is the Molen machine organisation [2] implemented on a
Xilinx Virtex-5 board. This setup assumes that three cycles
are used to access memory operands, simple arithmetic
(e.g. addition) and memory write operations take one cycle,
whereas the division operation accounts for eight cycles.

The FSM states corresponding to the two examples
are listed in Fig. 5(a) and 5(b). For each example, the

if (*a > *b)
*result = *c + *d;

else
*result = *e - *f;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: if (TB) jmp S16;
S8: ld *e;
S9: ld *f;
S11: read e;
S12: read f;
S13: result = e-f;
S14: write result;
S15: jmp S23;
S16: ld *c;
S17: ld *d;
S19: read c;
S20: read d;
S21: result = c+d;
S22: write result;
S23: return;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: TB ? ld *c : ld *e;
S8: TB ? ld *d : ld *f;
S10: TB ? (read) c : e;
S11: TB ? (read) d : f;
S12: if (TB)

 result = c+d;
 else

 result = e-f;
S13: write result;
S14: return;

S1: ld *a
S2: ld *b
S3: ld *c
S4: read a;
 ld *d;
S5: read b;
 ld *e;
S6: read c;
 ld *f;
 TB = cmp_gt (a,b)
S7: read d;
S8: read e;
S9: read f;
S10: if (TB)

 result = c+d;
 else
 result = e-f;
S11: write result;
S12: return;

(1) JMP_B (2) PRED_B (3) SaPA_B

(a) Balanced Example

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: if (TB) jmp S16;
S8: ld *e;
S9: ld *f;
S11: read e;
S12: read f;
S13: result = e-f;
S14: write result;
S15: jmp s32;
S16: ld *c;
S17: ld *d;
S19: read c;
S20: read d;
S21: tmp = c+d;
S22: INIT → tmp/5;
S30: result← tmp/5;
S31: write result;
S32: return;

S1: ld *a
S2: ld *b
S4: read a;
S5: read b;
S6: TB = cmp_gt (a,b)
S7: TB ? ld *c : ld *e;
S8: TB ? ld *d : ld *f;
S10: TB ? (read) c : e;
S11: TB ? (read) d : f;
S12: tmp = c+d;

 If (!TB) result = e-f;
S13: INT→ tmp/5;
S21: if (TB)
 result ← tmp/5;
S22: write result;
S23: return;

S1: ld *a
S2: ld *b
S3: ld *c
S4: read a;
 ld *d;
S5: read b;
 ld *e;
S6: read c;
 ld *f;
 TB = cmp_gt (a,b)
S7: read d;
S8: read e;
S9: read f;
S10: if (TB) tmp = c+d;
 else { result = e-f;

 jmp S20; }
S11: INT→ tmp/5;
S19: result ← tmp/5;
S20: write result;
S21: return;

if (*a > *b) {
tmp = *c + *d;
*result = tmp / 5; }

else
*result = *e - *f;

(4) JMP_U (5) PRED_U (6) SaPA_U

(b) Unbalanced Example

Fig. 5. Synthetic Case Studies.

void unbalanced_case(int *a, int *b, int *c, int *d,
int *e, int *f, int *result) {

int tmp;
if (*a > *b) {

tmp = *c + *d;

*result = tmp /5; }
else

*result = *e - *f;
}

Fig. 4. Unbalanced if branches

first column represents the traditional jump scheme ((1)
and (4)), the middle columns ((2) and (5)) represent the
predicated one and columns (3) and (6) shows the SaPA
version. This column will be explained in more detail in
the next section, as it is presenting the solution to the
problem described here. Because each state executes in
one cycle, the first five states are needed to load the a
and b parameters from memory. In the first two states,
the address of the parameters is written on the memory
address bus. State three is an empty state and therefore is
not shown in the figures. Finally, in states four and five the
values of the parameters are read from the data bus. These
operations are common for all possible implementations
(i.e. for all combinations of balanced/unbalanced case study
and JMP/PRED/SaPA schemes) shown by the (1) to (6)
numbered columns in the two figures. Subsequently, the
then-branch (TB) predicate is evaluated for the JMP cases
(column (1) and (4)). Based on this value, a jump can be
made to the then-branch states (states 16 to 22), or, in
case the condition is false, execution falls through to the

else-path (states 8 to 15). The number of states required
for the unbalanced case, i.e. (4) JMP U, is larger due to
the additional division operation present in the then-branch.
That is, in state 22 we initialize the division core with
the required computation, whereas in state 30 we read the
output.

Applying the predication scheme to the balanced exam-
ple results in a reduction in the number of states. This
is achieved by merging both then- and else-branches and
by selecting the result of the good computation based on
the predicate value. This optimization is ideal for HLS
tools because decreasing the number of states reduces the
total area required to implement the function. For the
examples used in this section, a reduction of nine states
was possible, i.e. when comparing (1) and (4) with (2)
and (5) respectively. However, because branches can be
unbalanced, merging them can have a negative impact on
performance when the shorter one is taken. For example in
column (5) PRED U, when the else-path is taken, states
13 to 21 are superfluous and introduce a slowdown for the
overall function execution.

Fig. 6 shows all possible paths for both examples as
well as their execution times in number of cycles, e.g.
from state 1 to state 23. TE represents the execution Time
for the Else path while TT is the Time when the Then
path is taken. The upper part of the figure corresponds to
the balanced if-function and the lower for the unbalanced
case. Furthermore, there is a one-to-one correspondence
between the columns in Fig. 5 and the scenarios in Fig. 6.
The numbers on the edges represent the number of cycles

1 7 8 15 23

16 23

6 1 7 1
TE = 16 cycles;

1

TT = 15 cycles;
11 7 (1) JMP_B

1 7 8 14

8 14

6 1 6
TE = 14 cycles;

1

TT = 14 cycles;
11 6 (2) PRED_B

1 7 8 12

8 12

6 1
TE = 12 cycles;

1

TT = 12 cycles;
11 4 (3) SaPA_B

1 7 8 15 32

16 32

6 1 7 1
TE = 16 cycles;

1

TT = 24 cycles;
11 16 (4) JMP_U

1 7 8 23

8 23

6 1 15
TE = 23 cycles;

1

TT = 23 cycles;
11 (5) PRED_U

1 10 20 21

11 21

9 1 1
TE = 12 cycles;

1

TT = 21 cycles;
11 10 (6) SaPA_U

4

15

(a) Balanced Example

(b) Unbalanced Example

Fig. 6. Execution Sequence of FSM States.

needed to reach the next state shown. The last arrow in the
paths represents the cycle required to execute the return
statement in the last state of the FSM. Considering first
the balanced flows, we observe that the predication scheme
improves performance compared to the jump scheme (i.e.
(2) is better than (1)). This is because jump instructions are
removed.

However, care has to be taken to avoid performance
degradation when shorter paths are taken. This is shown
in Fig. 6 (5) compared to (4), where the execution time
increased from 16 to 23 cycles. Therefore, the predication
scheme has to be adjusted for hardware execution to cope
with unbalanced branches. This is described next.

III-B. Algorithm Description and Implementation
To alleviate the short branch problem from the PRED

scheme we need to introduce a jump statement when
the shorter branch is finished. Fortunately, for hardware
execution this is possible without any penalty in cycles
as opposed to conventional processors. This extension to
the predicated scheme is shown in state S10 of Fig. 5
(6). Including jump instructions in the FSM whenever a
shorter path has finished guarantees that no extra cycles
are wasted on instructions that are superfluous for the path
taken. This is possible because in hardware execution there
is no penalty when performing jumps. This motivates that
this transformation can always be applied for hardware
generation because a hardware kernel is always seen as
running on an n-issue slot processor with a jump penalty
equal to 0. Furthermore, the flows in (3) and (6) of Fig.
6 show that speculation improves performance even more
by starting the branch operations before the predicate is
evaluated. It is important to note that speculation in the
case of hardware execution comes without any penalty as
we do not have to roll back if the predicate value did not
select the proper branch for execution. In hardware we have
enough resources to accommodate speculative operations,
i.e., sacrifice area, in favour of improving performance.

CFrontCFront

.c.c IRIR

SSASSA SaPA flowSaPA flow emitemit

.vhdl.vhdl

DWARV2.0

SaPA flow

schedulerscheduler

pefilterpefilter predicablepredicable pecostspecosts

peallocatepeallocatepepropagatepepropagateSaPASaPA

ddgddg

Fig. 7. Engine Flow to Implement SaPA.

The compiler modifications required to implement the
algorithm are shown in Fig. 7 in the lower dashed rectangle.
In the upper part of the figure the global flow of the
DWARV 2.0 compiler [1] is shown, where standard and
custom engines performing various transformations and
optimizations are called sequentially to perform the code
translation from C to VHDL. In this existing flow, the SaPA
flow wrapper engine was added. This wrapper engines is
composed of seven standard CoSy engines and one custom
engine that implements the SaPA algorithm.

The first engine required is the data dependency graph
(ddg) engine, which places dependencies between the
predicate evaluation node and all subsequent nodes found
in both branches of the if-statement. Next, the pefilter
engine is called to construct if-then-else tree structures.
That is, basic blocks containing goto information coming
from an if-statement are included in the structure, however,
basic blocks with goto information coming from a loop
are not. The predicable engine annotates the Intermediate
Representation (IR) with information about which basic
blocks can be predicated. The compiler writer can also
express in this engine if he does not want the if-construct
to be predicated. pecosts computes the cost for each
branch of the if-statement based on the number and type
of statements found in these and decides what scheme
should be used to implement this if-statement. For hardware
generation, this engine was reduced to simply returning
SaPA. peallocate allocates registers in which if conditions
are stored, whereas pepropagate propagates those registers
to instructions found in both if-branches.

The SaPA engine implements the lightweight predication
by introducing a jump instruction in the case of unbalanced
branches. That is, when one of the branches reached the
end. Whenever this point is reached, a jump to the end of
the other branch is inserted. The SaPA engine performs this
step. Furthermore, the control flow edges from the predicate
register to the expressions found in both branches are also

State 1: ld *a
State 2: ld *b
State 4: read a;
State 5: read b;
State 6: then_branch = cmp_gt (a,b)
State 7: if (then_branch) jmp state 16;
State 8: ld *c;
State 9: ld *d;
State 11: read c;
State 12: read d;
State 13: result = c-d;
State 14: write result;
State 15: jmp state 21;
State 16: ld *c;
State 17: ld *d;
State 19: read c;
State 20: read d;
State 21: result = c+d;
State 22: write result;
State 23: return;

LD LD

read read

cmp_gt

LD LD

read read

+ -

WRITE WRITE

(a) Predicated Graph

State 1: ld *a
State 2: ld *b
State 4: read a;
State 5: read b;
State 6: then_branch = cmp_gt (a,b)
State 7: if (then_branch) jmp state 16;
State 8: ld *c;
State 9: ld *d;
State 11: read c;
State 12: read d;
State 13: result = c-d;
State 14: write result;
State 15: jmp state 21;
State 16: ld *c;
State 17: ld *d;
State 19: read c;
State 20: read d;
State 21: result = c+d;
State 22: write result;
State 23: return;

LD LD

read read

cmp_gt

LD LD

read read

+ -

WRITE WRITE

JMP
end-if

Insert in short
branch, if any

(b) SaPA Graph

Fig. 8. Data Dependency Graphs.

removed here. That is, for simple expressions with local
scope, dependency edges coming from the if-predicate are
not needed. These expressions can be evaluated as soon as
their input data is available. We name this lightweight spec-
ulation because by removing the control flow dependencies
from the if-predicate we enable speculation, however, we
do not introduce any code to perform the roll back in case
the wrong branch was taken as this is not necessary in our
hardware design. The dependencies to the memory writes
however remain untouched to ensure correct execution. Fig.
8(b) exemplifies the removal of unnecessary dependency
edges for the balanced case study. It shows as well in the
dashed box the (optional) insertion of the jump instruction,
that in the case illustrated, was not necessary.

Finally, the scheduler is executed which can schedule
the local operations before the if-predicate is evaluated,
i.e. speculating. Furthermore, when the FSM is constructed,
whenever the branches become unbalanced, a conditional
jump instruction is scheduled to enforce the SaPA be-
haviour. If the predicate of the jump instruction is true, the
FSM will jump to the end of the if-block, therefore avoiding
extra cycles to be wasted if the shorter branch was taken.
This ensures no performance degradation is possible with
this scheme. If the predicate is false, the default execution
to move to the next state is followed.

IV. EXPERIMENTAL RESULTS

The environment used for the experiments is composed
of three main parts: i) The C-to-VHDL DWARV 2.0 com-
piler [1], extended with the flow presented in Section III,

ii) the Xilinx ISE 12.2 synthesis tools, and iii) the Xilinx
Virtex5 ML510 development board. This board contains
a Virtex 5 xc5vfx130t FPGA consisting of 20,480 slices
and 2 PowerPC processors. To test the performance of
the algorithm presented, we used seven functions. Two
are the simple synthetic cases introduced in the previous
section, while the other five were extracted from a library
of real world applications. These applications contain both
balanced and unbalanced if-branches.

Fig. 9 show the speedups of the PRED and SaPA
schemes compared to the JMP scheme. The balanced
function shows how much speedup is gained by combining
the predication scheme with speculation. Similar to this,
the speedup of the unbalanced function, tested with inputs
that selects the longer branch (LBT), shows a performance
improvement compared to the JMP scheme due to specu-
lation. However, when the shorter branch is taken (SBT),
the PRED scheme suffers from performance degradation.
Applying the SaPA scheme in this case allows the FSM
to jump when the shorter branch finishes and therefore
obtaining the 1.14x speedup.

The execution times for both schemes for the gcd
function are the same because both paths found in this
arithmetic function have length one, i.e. they perform
only one subtraction each. Therefore, the only benefit
is derived from removing the jump-instruction following
the operands comparison. It is important to note that
applying speculation is useful in all cases where both
branches and the if-predicate computation take more than
one cycle. Otherwise, the PRED scheme is enough to
obtain the maximum speedup. Nevertheless, the speedup
that can obtained by simply predicating the if-statement
and thus saving one jump instruction per iteration can be
considerable, e.g. 20% when the gcd input numbers are
12365400 and 906. mergesort provided a test case with a
balanced if-structure where each of the paths contains more
than one instruction. Therefore, the benefit of applying
SaPA was greater than using the PRED scheme. This
example confirms that whenever the paths are balanced,
the application can not be slowed-down.

Finally, the last three cases show results obtained for un-
balanced cases with inputs that trigger the shorter branches
in these examples. As a result, for all these functions the
PRED scheme generates hardware that performs worse than
the simple JMP strategy. Applying the SaPA algorithm
and introducing a jump instruction after the short branch
will allow the FSM to break from the ”predication mode”
execution of the if-statement and continue further with
executing useful instructions.

To verify that the presented algorithm does not introduce
a degradation of other design parameters, i.e. area and fre-
quency, we synthesized all test cases using the environment
described in the beginning of this section. Table I summa-

Results_chart

Page 1

balanced
unbalanced_LBT

unbalanced_SBT
gcd

adpcm
mergesort

idct
lcs

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

PE
SaPA

S
p
e
e
d
u
p

Fig. 9. Predication and SaPA speedups vs. JMP Scheme.

Table I. Implementation metrics for the different schemes.
Function Scheme FSM states Area (slices) Freq. (MHz)

balanced
JMP 31 258 644

PRED 20 461 644
SaPA 16 411 644

unbalanced
JMP 61 780 644

PRED 50 910 629
SaPA 46 855 335

gcd
JMP 16 161 350

PRED 14 153 357
SaPA 14 153 357

adpcm
JMP 113 1409 328

PRED 100 1470 328
SaPA 95 1424 352

mergesort
JMP 102 726 324

PRED 73 666 304
SaPA 69 740 360

idct
JMP 240 2361 211

PRED 162 2048 211
SaPA 151 2409 211

lcs
JMP 76 748 329

PRED 52 740 300
SaPA 49 786 300

rizes the outcomes for the SaPA, PRED as well as the
base JMP scheme. Column three list the number of FSM
states needed to implement the corresponding scheme from
column two. Column four shows how much the complete
generated design, i.e. FSM with data-path, took in actual
FPGA slices for the target device. Finally, the estimated
frequency is reported in column five. Studying the numbers,
we can observe that the area does not increase nor does the
frequency decrease substantially when we combine both
paths of if-statements. Our experimental results therefore
support the claim that SaPA brings additional performance
improvement while not substantially increasing the area nor
negatively affecting the execution frequency. Nevertheless,
future research is necessary to investigate the impact in
terms of frequency and area for a large number of test
cases.

V. CONCLUSION
In this paper, we argued that the typical JMP and

PRED schemes found in conventional processors are not
performing ideally when we consider hardware execution.
The problem with the first is that we loose important
cycles to jump from the state where the if-condition is
evaluated to the correct branch state corresponding to the
path chosen for execution. The PRED scheme solves this
issue, however, it suffers from performance degradation
when the if-branches are unbalanced.

To combine the advantages of both schemes, we pre-
sented a lightweight speculative and predicative algorithm
which does predication in the normal way; however, it
introduces a jump instruction at the end of the shorter if-
branch to cope with the unbalanced situation. Furthermore,
to leverage the hardware parallelism and the abundant
resources, SaPA also performs partial speculation, i.e., no
roll back necessary. This gains extra cycles in performance
when the if-predicates take more than one cycle to evaluate.

We demonstrated based on two synthetic examples the
benefit of this optimization and we validated it using five
real world functions. The results show that performance
degradation will not occur anymore for unbalanced if-
statements and that the observed speedups range from
4% and 21%. SaPA is therefore a transformation that
should be part of any HLS tool. Future research will
analyse the impact of SaPA on a large number of kernels
and investigate if any systematic relation can be observed
between the input parameters (e.g. number of instructions
per path or nested ifs) and the measured hardware metrics
(i.e. area, frequency).

ACKNOWLEDGEMENT

This research is partially supported by the Artemisia iFEST project
(grant 100203), the Artemisia SMECY project (grant 100230), and the
FP7 Reflect project (grant 248976).

VI. REFERENCES
[1] R. Nane, V.M. Sima, B. Olivier, R. Meeuws, Y. Yankova and K.

Bertels. DWARV 2.0: A CoSy-based C-to-VHDL Hardware Compiler.
To Appear in Proceedings of the 22nd International Conference on
Field Programmable Logic and Applications (FPL ’12).

[2] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov
and E. M. Panainte. The molen polymorphic processor. In IEEE
Transactions on Computers(November 2004). pages: 1363-1375.

[3] S. A. Mahlke and D. C. Lin and W. Y. Chen and R. E. Hank and R.
A. Bringmann, Effective compiler support for predicated execution
using the hyperblock , 25th Annual International Symposium on
Microarchitecture,1992

[4] R. Leupers, Exploiting conditional instructions in code generation
for embedded VLIW processors, Proceedings of the conference on
Design, automation and test in Europe (DATE), 1999

[5] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, H. Meyr and G.
Bette, Retargetable Code Optimization for Predicated Execution, in
Proceedings of the conference on Design, automation and test in
Europe 2008

[6] Altium Designer 10. [Online]. Available: http://www.altium.com/
[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,

S. Brown and T. Czajkowski. LegUp: high-level synthesis for FPGA-
based processor/accelerator systems. (FPGA’11). pages: 33–36.

