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Abstract—Multicore processing, especially heterogeneous mul-
ticore, is being increasingly used for data intensive processing
in embedded systems. An important challenge in multicore
processing is, efficiently, to get the data to the computing
core that needs it. In order to have an efficient interconnect
design for multicore architectures, a detailed profiling of data
communication patterns is necessary. In this work, we propose a
heuristic-based approach to design an application-specific custom
interconnect using quantitative data communication profiling
information. The ultimate goal is, automatically, to have the most
optimized custom interconnect design taking runtime commu-
nication pattern into account. Experimental results show that
the hardware accelerators speed-up achieved in comparison with
software is up to 7.8×, which is 2.98× in comparison with the
system without using our interconnect approach.
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I. INTRODUCTION

In recent years, multicore architectures, especially hetero-
geneous multicores, are emerging as promising architectures
for data intensive processing in embedded systems such as
multimedia computing, HD digital TVs, etc. Single-core mi-
croprocessors have reached the end of their scaling capabil-
ities. Meanwhile, Field Programmable Gate Arrays (FPGA)
have shown their flexibility with their fine grained architec-
ture, but they are limited by overhead in timing, area and
power consumption. Software design in traditional micropro-
cessors is straightforward while FPGA designs have benefits
in performance. Therefore, hardware/software co-design (also
called hardware accelerator systems) is one of the important
approaches for multicore design.

In hardware accelerator systems, a processor has a main
memory, while hardware accelerators usually have their local
memory to improve the parallelism. The communication and
the synchronization between computing cores (microprocessor
and hardware accelerators) are normally done through an
interconnect network such as buses, Networks on Chip (NoC),
etc. In data intensive applications, a large amount of data
needs to be transferred from core to core. Therefore, data
communication is usually a primary anticipated bottleneck for
system performance [1], [2], [3], [4]. One important method
to improve the speed-up of such systems is reducing data
communication overhead.

Reducing data communication overhead can be done by in-
creasing communication throughput or decreasing the amount
of data movement from one memory to another. Examples
of the former are [1], [2], [3], [5], [6] and of the latter are

[4], [7]. However, all the aforementioned works are based
on static information of the application such as task graphs.
The actual amount of data transferred between cores (which
is responsible for data communication overhead) is not taken
into consideration.

The above highlights are important challenges in multicore
processing, namely to efficiently get the data to the computing
core that needs it. The goal is, of course, to hide the com-
munication delay such that a performance improvement can
still be observed. The resource allocation decision requires
detailed and accurate information on the amount of data that
is needed as input and what will be produced as output.
Evidently, there are dependencies between computations since
data produced by one core will be needed by another. To have
an efficient allocation scheme where the communication delays
can be hidden as much as possible, a detailed profile on the
data communication patterns is necessary for which the most
appropriate interconnect infrastructure can be generated. Such
communication patterns can be specific for each application
(domain) and could, therefore, lead to different types of
interconnect. The work presented in this paper is a first step
towards a custom designed interconnect for an application.
The ultimate goal is to change at runtime the interconnect
infrastructure.

The main contributions of this paper can be summarized as
follows: 1) the introduction of a heuristic-based and detailed
profile-driven interconnect design with an emphasis on runtime
management; 2) the presentation of experimental results with
seven different applications on a real FPGA platform; and
3) identification of the most suitable interconnect for each
application domain in our experiment.

The rest of the paper is organized as follows. Section II
briefly describes the research context of the work presented in
this paper and related works. Section III presents in detail our
approach to reducing data communication overhead and our
proposed heuristic-based algorithm for a specific application
using profiling information. Section IV introduces the exper-
iments of this work. Finally, Section V concludes the paper.

II. RELATED WORK
In this section, we discuss the different interconnect tech-

niques available in Section II-A, followed by the way these
techniques are used at the system level in Section II-B.

A. Interconnect techniques
Point-to-point interconnect is considered as the simplest

interconnect solution for a system-on-chip (SoC). In a point-



to-point interconnect architecture, the producer processing ele-
ment (PE) is directly connected to the consumer PE. However,
the biggest drawback of this architecture is the large number
of wires required. This leads to difficulty in routing. Designs
using this architecture are reported in [8], [9].

The bus architecture is a low cost interconnect for SoCs.
The two standard and well-know bus architectures are AMBA
developed by ARM [10] and CoreConnect developed by IBM
[11]. Only CoreConnect has been adopted in Xilinx Virtex
FPGA families. The main disadvantage of the bus architec-
ture is the competition among to access the bus introducing
arbitrary latencies. This competition potentially degrades the
performance of the system.

The crossbar is a well-known architecture for providing
a high-performance and minimum latency interconnect. The
main drawback of a crossbar is its cost. An n×n crossbar can
quickly become prohibitively expensive as its cost increases by
n2. To reduce the cost, many studies focusing on application-
specific crossbars have been reported such as in [12], [13].

In recent years, many Network-on-Chip architectures for
FPGA have been reported such as DyNoC [14], FLUX [15]
and CuNoC [16]. For low-latency applications-specific NoCs,
driven by task graph, ReNoC [5] and Skip-links [6] are used.
Scalability is the main advantage of NoC. Moreover, NoCs
are emerging as a high level interconnect solution ensuring
parallelism and high performance. However, there are still
several issues that need to be addressed such as latency, power
consumption and especially high area cost.

B. System-level interconnect solutions
The Molen architecture [17], is a heterogeneous, shared

memory multicore system for software/hardware co-design.
The Molen architecture consists of two types of processing
elements (PE): one General Purpose Processor (GPP) and one
or more Reconfigurable Processor(s), also so-called Custom
Computing Unit(s) (CCUs). GPP has the main memory to con-
tain application data while each CCU has each local memory
(CCUMem) to contain its local data. The CCU exchanges pa-
rameters with GPP by exchange registers (CCUXreg) through
an on-chip standard bus. While the GPP can access the main
memory and the accelerator local memories, the accelerators
can access only its local memory. The GPP and the accelerator
local memories are also connected through an on-chip bus.
When accelerator functions are needed, the GPP transfers data
from the main memory to the local memory of the accelerator
and copies the result back to the main memory.

The MORPHEUS architecture [18] has an ARM9 embed-
ded RISC processor taking care for the control flow and
synchronization, and three heterogeneous reconfigurable en-
gines (HREs) for accelerating application kernels. The control
infrastructure is done via an AMBA AHB bus which con-
nects HREs and the ARM9 processor. The control flow is
also performed via exchange registers, similar to the Molen
architecture. A NoC is used to transfer data among HREs,
main memory, off-chip memory. The data transfers via the
NoC may be triggered by a Direct Network Access (DNA)
hardware module. The MORPHEUS platform is implemented
using STMicroelectronics CMOS090 technology. Although
the platform shows very good simulation results, the NoC
takes a huge resource toll up to 944Kgate.

A Warp processor [19] consists of a main general purpose
processor, an efficient on chip profiler, an on-chip computer
aid design module (CAD) and a warp-oriented FPGA (w-
FPGA). The main processor executes the software part of an
application while the critical software regions are synthesized
and mapped onto the w-FPGA. The selection, synthesis and
mapping the critical software kernels are done automatically
by the profiler and the CAD module. The w-FPGA and the
processor share the main data cache by using a mutually
exclusive execution model. The main process, CAD module
and the w-FPGA are connected together through an on-chip
standard bus to configure the w-FGPA as well as to provide a
mechanism for communication and synchronization between
the main processor and the w-FPGA.

LegUp [20] is an open source high-level synthesis tool
for FPGA-based processor/accelerators systems. The target
system contains a processor connecting with custom hardware
accelerators through a standard on-chip bus interface. The
current version is implemented on the Altera Cyclone II FPGA
with an Altera Avalon Bus as the interface for processor
and accelerators communication. In this version, a shared
memory architecture is used for exchanging variables between
the processor and the accelerators. The shared memory uses
an on-FPGA data cache and off-chip memory. The authors
indicate that limitations of the bus system need to be further
investigated.

III. CUSTOM INTERCONNECT AND SYSTEM DESIGN

In this section, we introduce a heuristic-based algorithm to
design an optimized application-specific custom interconnect.
The heuristic-based algorithm uses data communication profil-
ing information as a parameter to choose the most optimized
interconnect solution.

A. Assumptions & definitions
In hardware accelerator systems such as Molen, MOR-

PHEUS and LegUp, besides the main memory (on-chip
memory or off-chip memory), each hardware accelerator has
its own local memory to improve the parallelism. In our
discussion, we assume that the memory hierarchy is as follows:
1) GPP can access the main memory as well as the local
memories of hardware accelerators through a standard on-
chip bus; and 2) Hardware accelerators can access their local
memory only.

Before presenting the proposed custom interconnect design
using quantitative data communication profiling, we need to
define some equations used to estimate the quality of the
solutions. The following vocabulary is used:

• Hardware accelerator function: A hardware accelerator
function is defined by Function(H,Di, Do); where H
is the execution time of the hardware accelerator only
(without data communication overhead), Di and Do are
the total amount of data input and output in bytes,
respectively.

• Data communication: A communication between two
functions is defined by Cij(Fi, Fj , Dij); where Fi and Fj

are the producer and the consumer function, respectively,
and Dij is the total amount of data in bytes transferred
from Fi to Fj . The functions Fi and Fj can be accelerated
on hardware as well as run on the GPP.



• The average time taken by the GPP for transferring 1
byte from the main memory to a hardware accelerator
local memory or vice versa is tg , and the average time
for transferring 1 byte from a hardware accelerator local
memory to another one on the bus using direct memory
access (DMA) is td. These values are platform dependent,
however td < tg .

The execution time of the hardware accelerator can be
estimated using simulation tools such as ModelSim while the
amount of data input (Di) and output (Do) as well as the
amount of data communication (Dij) can be generated using
a data communication tool such as the QUAD tool [21].

To estimate the quality of solutions, we compare the so-
lutions with a base system. In this base system, whenever a
hardware accelerator is needed, the GPP copies all required
data from the main memory to the local memory of the hard-
ware accelerator and transfers the output result from the local
memory to the main memory when the hardware accelerator is
done. While the hardware accelerators are executed, the GPP
is set into a waiting state.

B. Different interconnects
1) Crossbar-based shared local memory: The first intercon-

nect we will use is a crossbar-based shared local memory in the
case where two CCUs need to exchanges data. In this work,
we use a crossbar for only two CCUs which communicate
together to improve the parallelism of the CCUs as well as
to reduce the area overhead. Figure 1a illustrates a simple
system with the two hardware accelerators HW1 and HW2

sharing their local memories using a crossbar based on the
Molen architecture. Figure 1b depicts the detailed structure of
the crossbar for the Molen hardware accelerator functions.

The QUAD tool identifies functions communicating to-
gether and how much data is transferred between them exactly.
Based on this information, we can choose which functions
should share their local memories via a crossbar. The execution
time can be computed as follows.

Consider two hardware accelerators HW1(H1, D1i, D1o)
and HW2(H2, D2i, D2o) which communicate together with
the data communication C12(HW1, HW2, D12). Following
the base system model presented above, the total execution
time of the two hardware accelerators is as follows:

T = H1 + H2 + (D1i + D1o + D2i + D2o)tg (1)
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One solution to reduce the execution time of the two
hardware accelerators is to use a DMA to transfer data (D12

bytes) from the local memory of HW1 to the local memory
of HW2. However, using DMA to transfer data from local
memory not only has a hardware overhead but does not hide
all data communication.
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Fig. 1: Shared hardware accelerator local memory

Through the crossbar, each hardware accelerator, HW1 or
HW2, can access not only its own local memory but also the
local memory of the another one. Therefore, HW1 can write
part of its result (D12 bytes) which is used by HW2 to the
local memory of HW2. Assume that the output of HW1 is
used by two different consumers: D12 bytes by HW2, and at
least D1o−D12 bytes by other software functions. Therefore,
the GPP needs to transfer D1o − D12 bytes from the local
memory of HW1 to the main memory. However, rather than
waiting for the execution of HW2 to complete, the GPP can
transfer this amount of data in parallel with the execution of
HW2. This reduces a lot of execution time in comparison with
the base system model. Similarly, the GPP can move D2i−D12

bytes from the main memory to the local memory of HW2 in
parallel with the execution of HW1. In this model, the total
execution time of the two hardware accelerators is as follows.

Tcrossbar = H1 + H2 + (D1i + D2o)tg (2)

With the crossbar, the total reduction time in comparison
with the base system is ∆c = T −Tcrossbar = (D1o +D2i)tg .

2) DMA support for parallel processing: For some applica-
tions (multimedia) data can be processed as streaming input.
Using this concept, we can reduce the data communication
time by segmenting the input data and running the hardware
accelerator on each data segment independently. When the data
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the GPP needs to transfer D1o − D12 bytes from the local
memory of HW1 to the main memory. However, rather than
waiting for the execution of HW2 to complete, the GPP can
transfer this amount of data in parallel with the execution of
HW2. This reduces a lot of execution time in comparison with
the base system model. Similarly, the GPP can move D2i−D12

bytes from the main memory to the local memory of HW2 in
parallel with the execution of HW1. In this model, the total
execution time of the two hardware accelerators is as follows.

Tcrossbar = H1 + H2 + (D1i + D2o)tg (2)
With the crossbar, the total reduction time in comparison

with the base system is ∆c = T −Tcrossbar = (D1o +D2i)tg .
2) DMA support for parallel processing: For some applica-

tions (multimedia) data can be processed as streaming input.
Using this concept, we can reduce the data communication
time by segmenting the input data and running the hardware
accelerator on each data segment independently. When the data
input is segmented, hardware accelerators can be executed
in parallel. However, when two accelerators communicate
together through the crossbar, they cannot process in parallel
due to the fact that a local memory port conflict may arise.
One solution is to use DMA to transfer data directly from one
local memory of a given hardware accelerator to another one
via a bus.

Consider again the two hardware accelerators and the same
communication that can execute in parallel on different seg-
ments, S1 and S2, of the input data. The processing flow
following the pseudo code in Algorithm 1 can be applied to
parallelize the data transfer from the main memory the the
hardware accelerator local memory and the processing of the
hardware accelerators.

Algorithm 1 Pipelining data communication
1: GPP copies S1 from the main memory to HW1 local

memory;
2: HW1 processes S1 while GPP copies S2 from the main

memory to HW1 local memory in parallel;
3: DMA transfers result of S1 from HW1 to HW2 local

memory;
4: HW1 processes S2 while HW2 processes the first segment

in parallel;
5: DMA transfers result of S2 from HW1 to HW2 local

memory;
6: HW2 processes the second segment while GPP copies

final result of the first segment from HW2 local memory
to the main memory in parallel;

7: GPP copies final result of the second segment from HW2

local memory to the main memory;

With this processing model, the total execution time of the
two hardware accelerators is as follows.
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where O is the overhead for processing streaming input. The
total reduction time in comparison with the base system is
∆p = T −Tp = min(H1

2 , H2

2 ) + (D1i
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2 )tg −D12td−O.
3) Local buffer: Consider the two hardware accelerators

HW1 and HW2 as in the base system. They communicate
together with C12(HW1, HW2, D12) as depicted in Figure 2.
Assume that HW1 is executed only one time while HW2

is accelerated on hardware and iterated n (n > 1) times.
HW2 also communicates with itself with a communication
C22(HW2, HW2, D22). Due to the iteration of HW2 using the
same data, the part of data input for this hardware accelerator
produced by HW1 (D12 bytes) should be kept locally, which
eliminates the need to transfer data from the main memory
n− 1 times (we need to transfer for the first time). Therefore,
only D2i − D12 bytes need to be transferred from the main
memory to local memory of HW2 in each iteration. The total
time of the two hardware accelerators is as follows.

Tdl = H1+H2+(D2i−(n−1)D12+D2o+D1i+D1o)tg (4)

The total reduction time in comparison with the based system
is ∆dl = T − Tdl = D12tg(n− 1).
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Fig. 2. Local buffer at HW2

4) Hardware accelerator duplication: In Section III-B2, we
introduced a way to parallelize the execution of the hardware
accelerators. In case the data processed by a hardware acceler-
ated function can be segmented and processed independently
in parallel, we can duplicate the hardware accelerator twice
to further reduce the execution time. When the hardware ac-
celerator is duplicated twice, the data input of this accelerator
is divided into two segments and each core processes each
segment in parallel. A DMA is used to transfer the result of
these hardware accelerators to others.

Consider a hardware accelerator HW1(H1, D1i, D1o), the
execution time of the hardware accelerator in the non-
duplication case and in the duplication case with DMA is as
follows.

T = H1 + (D1i + D1o)tg (5)

Tdp =
H1

2
+ (D1i + D1o −Ddma)tg + Ddmatd + O (6)

where Ddma is the total amount of data transfer from the
duplicated hardware accelerators to others using DMA and
O is the overhead for parallel processing. The total reduction
time in comparison with the base system is ∆dp = T −Tdp =
H1

2 + Ddma(tg − tD)−O.

C. Heuristic-based algorithm
In the previous sections, we introduced different solutions

to design a custom interconnect as well as a system using
the quantitative data communication profiling. This section
proposes a heuristic based algorithm to select the best and

most suitable solution for each application. The pseudo code
for the proposed algorithm is shown in Algorithm 2.

In this algorithm, at most five of the most computationally
intensive functions suitable to implement on hardware are
selected to accelerate on hardware. Currently, we choose
only five functions as candidates for accelerating because our
platform used to do experiments can support up to five hard-
ware accelerators. Only the most computationally intensive
hardware accelerator is considered for duplication. The QUAD
profiling tool is used to identify the communication among
the hardware accelerated functions. Based on this information,
the algorithm examines the local buffer characteristic of the
functions first. Then the interconnect solutions presented above
are considered for each data communication between two
hardware accelerators.

Algorithm 2 Data communication profiling-driven design
Input: Application source code
Output: The most optimized interconnect

1: Lhw ← List of at most five of the most computationally
intensive functions suitable to implement on hardware;

2: G← Quantitative data communication graph for functions
in Lhw;

3: G← Sort G in decreasing amount of data transfer order;
4: Calculate ∆dp as described in Section III-B4 for the most

computationally intensive hardware accelerator;
5: if ∆dp > 0 then
6: Apply the solution in Section III-B4
7: end if
8: for each function in Lhw do
9: Check for iteration (Figure 2) and apply the Local

buffer solution;
10: end for
11: for each data communication in G do
12: if the producer and the consumer can be executed in

parallel then
13: Calculate ∆c and ∆p as described in Section

III-B1 and III-B2;
14: if (∆p > ∆c) then
15: Apply the solution in Section III-B2;
16: else
17: Apply the solution in Section III-B1;
18: end if
19: else if The crossbar solution is applied to the producer

or the consumer then
20: Use DMA to transfer data from the producer to

the consumer
21: else
22: Apply solution in Section III-B1;
23: end if
24: end for
25: return A hardware accelerator system with the most

optimized interconnect

IV. EXPERIMENTS

A. Experimental setup
In this work, we use the Molen architecture as the ex-

perimental platform. The Molen system is implemented on



the Xilinx ML510 [22] board which contain a xc5vfx130t-
ff1738 FPGA device. The PowerPC is used as the GPP and the
hardware accelerators are mapped onto the reconfigurable area.
The main memory is the off-chip SDRAM connected to the
PowerPC through a high performance IP core from Xilinx. The
local memories of hardware accelerators are on-chip BRAMs.
The PowerPC and the hardware accelerators are running at
400MHz and 100MHz, respectively. In our experiment, the
Molen architecture can support up to five different hardware
accelerators due to limited FPGA resource.

We use the gprof profiling tool [23] to identify which
part of the application takes most of the execution time.
Functions with high computational-intensity are good targets
for acceleration. The QUAD toolset [21], which provides a
comprehensive overview of the data communication behavior
of an application, is used to generate the amount of data
transfer between the functions of the application. The output
of QUAD is a Quantitative Data Usage (QDU) graph in which
the amount of data transfer among functions is shown.

B. Experimental results
We did experiments with 7 different well-known applica-

tions. Those are the Canny edge detection [24], the Susan
edge detector [25] (with an implementation version of Oxford
University), KLT feature tracker [26], Fluid simulation [27],
the Blowfish application (a symmetric block cipher) from the
CHStone benchmark [28], AES [29] and Bloom Filter [30].
The DWARV tool [31] is used to synthesize the VHDL code
for the hardware accelerators from the original C code. As
an example, Figure 3 and Figure 4 present the QDU graph
and the final hardware accelerator system for Canny based on
the Molen architecture and using our algorithm and solutions,
respectively.
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Fig. 3. QUAD graph for the Canny edge detection application

Table I shows our experimental results for the seven
different applications. Column 2 in this table shows the
custom interconnect techniques applied to each application.
The crossbar technique is used for all applications in both
the multimedia domain (the first four applications) and the
cryptography domain (the last three applications). In the
multimedia processing domain, the crossbar and the DMA
techniques are frequently used. In the cryptography domain,
only the crossbar and the local buffer techniques are used.
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Fig. 4. Final system for Canny based on the Molen architecture and proposed
solutions
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Fig. 5. Speed-up (w.r.t software) of hardware accelerators using Molen
platform with and without using custom interconnect

Column 4 in this table shows the number of hardware ac-
celerators used for each application. This column indicates
that the multimedia processing applications have a tendency
to use more hardware accelerator units, making them more
suitable to accelerate on FPGAs compared to the cryptography
applications. Column 5 shows the overall application speed-up
of Molen architecture with custom interconnect in comparison
with software. Column 6 and column 7 show the speed-up
of hardware accelerators (with respect to software) with and
without custom interconnect design.

As shown in Table I, the speed-up of hardware accelerators
and the overall application go up to 7.8× and 3.05×, respec-
tively. Figure 5 shows the comparison of the speed-up of the
Molen system with and without using our algorithm to choose
the most optimized interconnect solutions. As shown in this
figure, hardware accelerators which apply the communication
profiling-driven acceleration solutions provide up to 2.98× ex-
ecution time improvement in comparison with the accelerators
that do not apply these acceleration solutions.
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Fig. 6. The contribution of each solution to the speed-up

Figure 6 shows the contribution of each solution in the
speed-up of each application in comparison with the standard
Molen architecture. From the figure, the crossbar-based shared
local memory always contributes to the speed-up of applica-



TABLE I
SPEED-UP, INTERCONNECT TECHNIQUES AND RESOURCE USAGE OF APPLICATIONS

Application HW techniques # of LUTs # of HW Application accelerators speed-up w.r.t. SW
accelerators Speed-up with custom

interconnect
w/o custom
interconnect

Canny Crossbar, Duplication, DMA 12026 5 3.05× 3.79× 1.85×
SUSAN Crossbar, DMA 21504 3 2.51× 2.55× 2.02×
KLT Feature tracker Crossbar, Duplication, DMA 6553 3 2.24× 7.8× 4.01×
Fluid simulation Crossbar 12569 2 1.50× 1.95× 1.45×
Blowfish Crossbar, Local buffer 16444 2 2.86× 3.02× 1.83×
AES Crossbar, Local buffer 19544 2 1.41× 2.81× 0.94×
Bloom filter Crossbar, Local buffer 1242 2 2.29× 3.05× 1.65×

tions. In the first four applications (Canny, Susan, KLT and
Fluid), which belong to the multimedia processing domain,
the different interconnects contribute in a different way to the
overall speedup. The crossbar has a highest contribution in
SUSAN, KLT and Fluid while the duplication gives the best
performance in Canny. The DMA has a higher contribution
to the speed-up when compared to the crossbar in Canny
and when compared to the duplication in SUSAN. In the last
three applications (which belong to the cryptography domain)
the local buffer gives the best performance. The crossbar
has a higher contribution while compared to the DMA and
the duplication. Because the cryptography domain is very
computation intensive on few data, it does not need a lot
of communication. Therefore, a crossbar-based shared local
memory accessible by all hardware accelerators will suffice.

V. CONCLUSIONS

In this paper, we presented a heuristic-based approach
using a detailed data communication profiling to optimize
an application-specific heterogeneous multicore system. The
proposed approach mainly focuses on custom interconnect
design. A heuristic-based algorithm is proposed to choose the
most optimized interconnect solutions for each application.
The algorithm uses data communication profiling information
rather than task graphs as a guidance parameter because
this information allows the designer to make better founded
decisions regarding the most appropriate interconnect. Our
experimental results show that we can gain speed-up of
hardware accelerators up to 7.8× in comparison with software
and to 2.98× in comparison with a base system without
using our approach. We also considered the contribution of
each interconnect solution to each application as well as
to the application domain. Future research will investigate
the possibility of tuning the interconnect at runtime. This
runtime reconfigurability can be exploited evidently between
applications but also within the execution of one application.
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