
Improving DRAM performance
and energy efficiency

Bogdan Spinean∗, Sander Geursen∗, Georgi Gaydadjiev∗†
† Department of Computer Science and Engineering, Chalmers University of Technology, Sweden
∗Computer Engineering Laboratory, EEMCS, Delft University of Technology, The Netherlands

b.spinean@tudelft.nl, a.a.j.geursen@student.tudelft.nl, g.n.gaydadjiev@tudelft.nl

Abstract—In many core systems with shared DRAM memory
a clear performance dissbalance exists between the requirements
of the processors and the bandwidth that the memory system
can provide. Very often the utilization of the memory interface
is poor even for well understood and regular workloads. In this
paper we propose a method to reorder the in-flight requests
by the multiple processing elements at the level of the memory
controller and significantly reduce the number of row changes in
a fashion transparent to the workload, the CPU ISA or the bus
protocol. Several reordering policies have been considered and
after a thorough analysis one was selected for implementation.
We have obtained application speedups of 1.58x for 3D FFT
and 1.4x for Conjugate Gradient workloads. In addition, our
reordering proposal reduces the activation power of the memory
by up to 40% while the total energy reduction per application
is 26.6% for 3D FFT and 13.2% for CG.

I. INTRODUCTION

In this paper we study the influence of memory access
reordering on performance and energy efficiency in the context
of many core systems running workloads that access in parallel
a block of data located in shared DRAM memory. The
proposed memory access reordering does not require changes
to the ISA, the bus or memory interfaces making it totally
transparent to the overall system architecture.

The goal of this work is to propose a memory controller
that will operate the DRAM as close as possible to the
maximum theoretical bandwidth while also saving energy. We
have opted for a modular design that can easily adapt to a large
variety of buses or DRAM devices. Also, our optimization
block is designed in such a way that both reordering policies
and data buffer allocation policies can be easily changed
without impacting the rest of the design. Several reordering
policies have been considered and after a thorough preliminary
analysis we have implemented the one with the best estimated
performance-cost ratio. Reordering of memory accesses brings
two complications. The first is memory consistency: we must
ensure that accesses to the same memory location are executed
in program order. This is aggravated by the fact that the
memory requests can have any size and multiple requests
might overlap either partially or completely. The second
complication is data buffer management. Data is allocated in
the data buffer in the order that the requests are received but
the data is deallocated out of order. Since the memory requests
have arbitrary sizes, the allocation policy must have flexible
de-fragmentation capabilities. Our proposal:

• reduces memory transfer time by up to 1.4x for 3D-FFT
and 1.5x for Conjugate Gradient;

• reduces the memory controller and DRAM total energy
by 26.6% for 3D-FFT and 13.2% for CG;

• does not require changes in the architecture, bus inter-
faces or data mapping into the DRAM.

The paper is organized as follows: Section 2 presents the
background and related work; Section 3 describes the general
architecture of the proposed memory controller; In Section 4
we elaborate on the reordering policy, the data buffer allocation
and we address memory consistency; Section 5 discusses our
results and Section 6 presents our conclusions.

II. BACKGROUND AND RELATED WORK

DRAM devices are organized typically in 4 independent
banks, each bank is a matrix of rows×columns memory
elements, each one byte in size [8]. To access a particular
element first a row needs to be open, then within the open
rows any number of column accesses can be performed. When
accessing data on a different row, a precharge operation is
required before a new row can be open. There is a single
command interface and one data interface shared by all banks.
While data is transferred to/from one bank, other banks can be
executing commands that don’t involve data transfers like row
activation or precharge. The key to obtaining high performance
is minimizing the time that the data interface is not transferring
data because the DRAM is waiting for row changes or other
timing constraints. For low power consumption it is important
to minimize row changes.

Works related to improving memory bandwidth have ap-
proached the following areas: software improvements, oper-
ating system support, memory controller optimizations and
DRAM chip optimizations. Pichel et al. [10] propose a
software solution for efficient memory access in the case
of sparse matrices. A technique for increasing the locality
is introduced that consists on reorganizing the data at the
application side without hardware changes. Another software
based approach is proposed by [15] where a library is used
abstract the memory bandwidth improvement techniques from
the rest of the software application. The Impulse memory
controller focuses on the improvement in the cache and bus
utilization [6] and requires OS support. Certain regions in
the address space can be mapped into an extended address
space called shadow addresses. For instance, for a matrix



stored in virtual memory, its diagonal can be mapped in the
shadow address space as a continuous region and thus the
cache will not be polluted by unneeded data. The Impulse
memory controller remaps the shadow addresses to the correct
non-continuous data locations in the memory. Compared to
the above approaches, our performance enhancements do not
require any changes of software or OS. Optimizations that
are localized in the memory controller have been proposed
by Rixner [12] and Lin [7]. These two approaches target
media applications while our proposed solution is application
domain independent and and offer improved flexibility of
busses and memory interfaces. Hitachi [14] proposes an access
optimizer implemented in the same silicon as the DRAM
cells. Langemeyer et al. [11] propose a novel mapping scheme
that for 2D-FFT workloads that requires very frequent and
predictable row changes that can be hidden while transferring
data from different banks. Bandwidth is increased at the cost
of using more energy. Compared to the above approaches,
ours does not require any changes of the DRAM devices or in
the address mapping while at the same time improving total
energy used.

III. PROPOSED SOLUTION

Figure 1 shows the general organization of the proposed
memory controller. The Front-End handles communication
with the bus interface, the Optimization Block reorders mem-
ory accesses, buffers the data and handles memory consistency
while the Back-End translates memory requests int actual
DRAM commands. The design is flexible and easy inter-
changeable with different bus interfaces and memories.

Front-End
Optimization Block

bus protocol
CAS
RAS

ADDR

CS

BANK

DATA

WE

Back-End

Fig. 1: The proposed organization.

The Front-End is built for buses resembling the AMBA
AXI bus with the following bus interface features [1]: full-
duplex, the bus can send and receive data at the same time;
non locking operations when a request is being processed,
multiple requests can be send before a response is given; the
request size can range from 1B to 16kB and requests of any
size can be interleaved.

The Back-End is used to ensure that different types of
DRAM devices can be used with the optimization imple-
mented in the controller. The Back-End is the part of the
memory controller that controls the physical DRAM inputs
like CAS, RAS, bank number and so on. The Back-End also
enforces the DRAM timing like CL, tRCD, tRC and so on.
It will also read data from and write data to the DRAM. The
Optimization Block need not change when a different DRAM
is used, a modified Back-End will suffice. The Back-End that
we have used in our experiments is a DRAM controller from
OpenCores [13]. This is a fairly simple controller with an
easy interface and adaptive bank control. This means that the

commands that are issued to the DRAM are depending on the
previous accesses. The stalls are avoided by issuing commands
during data transfers.

in/out control

sorting array

data buffer

processing 

requests 

FIFO

outgoing 

request 

FIFO

incoming

request FIFO

cntrl

Optimization Block

Bridge

request in

data in

data out
request out

data location

allocate

re
ad

w
ri
te

processed request

free

request

request done

data location
data

read / write

large request

read request

Fro
n
t-E

n
d

B
a
ck

-E
n
d

Fig. 2: The Optimization Block.

The optimization block has two major components: the
sorting array, that implements the reordering policy and the
data buffer that allocated data for write requests. In the
following paragraphs we present the flow of a request from
the Front-End through the Optimization Block towards the
Back-End. Then we present the functioning of the optimization
block, depicted in figure 2. When the bus interface receives a
new request, before acknowledging it, two checks are done.
First, the data buffer must have enough space to allocate the
data. The size can be anywhere from 1Byte up to 16kBytes
and varies with memory requests. The second requirement is
that the sorting array has enough room to receive one extra
request. If the above checks are met, the sorting array will
save the request information: address, size and read or write
while the data buffer will allocate the required size. In case
of a write request, the data will be transferred from the bus
to the data buffer immediately. The sorting array will reorder
the memory requests and then send them to the Back-End
that is responsible for the appropriate control signals towards
the DRAM. In case of a write, the data is transferred to the
DRAM and the space in the data buffer can be de-allocated.
In case of a read, data from the DRAM will be stored in the
data buffer. Once this is done, the request leaves the sorting
array and the Front-End is responsible for sending the data
back through the bus. De-allocation is performed only after
all the data has been sent through the bus.

The sorting array is the central element in the optimization
process. Sedition IV describes in detail the different sorting
policies we have considered for implementation and motivates
our choices. It is important to note that differences between
the sorting policies are localized in the sorting array, the rest
of the design remains unchanged.

The data buffer has the role of decoupling the transfers
through the bus with the transfers through the memory in-
terface. This is because either the bus can have interruptions
(potentially higher priority requests) or the DRAM can require
a row change or a refresh. Because these interruptions are
unpredictable, we have chosen to decouple the two interfaces.
Therefore, when reading data from the DRAM it has to be
stored in the data buffer before sending it through the bus
and consequently, before writing to the DRAM, the data from
the bus is stored in the data buffer. Requests are processed



out of order and therefore the data buffer will be de-allocated
in a random order leading to fragmentation and therefore a
structure more complex than a FIFO is required. The data
buffer allocates space with a size given by the request entering
the Front-End. If there is enough room the data buffer will
acknowledge the memory request that will be passed further
to the sorting array. The allocation policy details are discussed
in Section IV.

The design can easily adapt to new reordering policies
because the sorting array has an interface that is comparable
with a FIFO. Also, a new allocation policy does not require
adaptations of any other part of the design. This approach
keeps the changes localized and makes the design highly
flexible. The modular design also brings some limitations like
the fact that the Optimization Block has no direct control over
the DRAM. Interacting with the DRAM directly would give
more possibilities in optimizing the transfers. Stalls could be
potentially avoided if the Optimization Block could send the
precharge and activate commands in advance before issuing
the request to the Back-End. Another disadvantage is that
separate the Front-End, Optimization Block and Back-End
requires additional glue logic and FIFO’s.

IV. MAIN FUNCTIONALITIES

In this section we discuss the details of a memory controller
that reorders memory accesses. We start by presenting the
reordering policies that we have considered. Since memory
access can now complete out of order, two complications are
introduced. The data buffer will be de-allocated out of order
and a complex allocation policy is required in order to avoid
data buffer fragmentation. Also, by reordering accesses we can
have data hazards of type read after write, write after read or
write after write. In such cases conflicts must be detected and
reordering must be prevented.

A. Reordering Policy

The goal of the memory access reordering is to have as few
as possible cycles when the data bus is not transferring (stalls).
There are two major sources of stalls that can be avoided: First
is when a row change is required. For example if we have 3
memory accesses on r1, then r2 and then again on row r1.
Without reordering, the DRAM needs 2 row changes while if
we reorder the requests to be r1, r1 and r2 then the DRAM
needs a single row change. The second source of dead cycles is
accesses to the same row with reads and writes alternating and
incurring the CAS latency multiple times (the delay in clock
cycles between the registration of a read command and the
availability of the first piece of output data). For example the
sequence rd1, wr1, rd2 can be re-ordered to rd1, rd2, wr1 to
save CAS clock cycles. Therefore, the goal of the reordering
policy is to minimize the number of row changes and the
number of changes from writes to reads while maintaining
memory consistency.

All policies that we have analyzed use an implementation of
the insertion sort algorithm that executes in O(1) [3] and are
based on the memory address. The row and bank addresses are

used for sorting and the column address is used for memory
consistency checks. A new request entering the sorting array is
compared in parallel with all the requests present in the array.
All the requests that have larger row addresses will be shifted
by one position towards the end of the array and the entering
request will be inserted in the newly created empty array slot.
Detection of consistency issues or policy rules can alter the
insertion position. All address comparisons are performed in a
single cycle and a new request is inserted in the sorting array.

We have chosen to add a separate sorting array for each
DRAM bank. While processing requests, when a row change
is needed in the current bank, the arbiter switches to a different
bank that has several requests queued up for a particular row.
This approach has the added benefit that while processing
requests from one bank, requests in the other banks are
accumulated and sorted. Special care must be taken to prevent
starvation, ie. having requests waiting disproportionately long
in one queue while another queue is constantly filled and
emptied. We handle this issue by forcing a bank switch after
a predefined number of requests.

We assume that we are switching to a new bank and that
the sorting array has received a number of requests sorted by
their row address. The sorting policy answers two questions,
first, ”How do we decide which of the requests in the sorting
array we should send to the DRAM?” We have considered
two answers: of the requests in the sorting array either pick
the row that has the most requests, irrespective of the address
(we call this Largest Block First) or pick the first entry in the
sorting array (we call this Smallest Address First since entries
are sorted by their addresses).

The second question is ”New requests entering the array
are placed at the end of the sorting array or are they sorted
interleaved with the existing ones?”. We introduce the concept
of a boundary. When switching banks, the entries already in
the sorting array of the newly considered bank are freezed
(sorting wise), and a boundary is placed after the last request.
With a static boundary, a new request entering the sorting
array is placed after the boundary position and sorting occurs
only between the requests below the boundary. When the last
request within the boundary has been sent to the DRAM, a new
boundary is set at the last entry of the array and the process
is resumed. With a dynamic boundary, any new requests for
rows smaller than the boundary request row will be inserted
before the boundary (see figure 3).

The reason for a boundary is to prevent requests at low
address from entering the array at the top position because
that would create extra row changes. Suppose that in the
current bank there is an ongoing burst on row r2, there is
another request for row r2 and that there are two new request
entering the sorting array for row r2 and for row r1. Sorting
would place r1 ahead of row r2 and this would cause two row
changes while only a single row change would be sufficient.
With a static boundary both new requests are placed at the
bottom of the queue, request for r1 first, then the request for
r2. With a dynamic boundary, the new request for row r2 is
placed right after the other request for row r2, the boundary is



moved one position further and the request on row r1 is placed
below the boundary. Figure 3 shows a motivational example
of how the Shortest Address First with dynamic boundary
sorts a sequence of memory requests. In the figure, the request
number is its index while the address is the row number.

Write stage Read stage

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 0 Addr 5

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 0 Addr 5

Req 4 Addr 5

Req 4
 A

ddr 5

in

out

b
o
u
n
d
a
ry

(a) clk i

Write stage Read stage

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 0 Addr 5

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 0 Addr 5

Req 4 Addr 5

Req 5
 A

ddr 6

in

out

Req 4 Addr 5

b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

Req 5 Addr 6

(b) clk i+ 1

Write stage Read stage

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 0 Addr 5

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 6 Addr 4

Req 0 Addr 5

Req 6
 A

ddr 4

in

out

Req 4 Addr 5 b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

Req 4 Addr 5Req 5 Addr 6

Req 5 Addr 6

(c) clk i+ 2

Write stage Read stage

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 6 Addr 4

Req 2 Addr 3

Req 1 Addr 4

Req 3 Addr 4

Req 6 Addr 4

Req 0 Addr 5

Req 7
 

Addr 2

in

outReq 0 Addr 5 b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

Req 4 Addr 5Req 4 Addr 5

Req 7 Addr 2

Req 5 Addr 6Req 5 Addr 6

(d) clk i+ 3

Fig. 3: An example of the Smallest Address First, Dynamic
Boundary policy for 4 clock cycles and several requests that
are sorted by their address. The grayed out requests are those
that have been removed and sent to the Back-End. (a) request
4 is inserted and request 2 is removed and the boundary is
set. (b) request 5 is inserted inside the boundary and request
1 is removed. (c) request 6 is inserted inside the boundary
and request 3 is removed. (d) request 7 is inserted outside the
boundary and request 6 is removed.

In order to compare the four reordering policies, we have
developed our own in house software simulator that computes
the number of total clock cycles, the number of row changes
and all other relevant metrics e.g., implementation complexity.
The simulator takes as input the same memory access traces
that are used with the Modelsim VHDL simulations in Section
V. From figure 4a we can see that the dynamic boundary
always performs better than the static boundary and that the
best benefits are for small request sizes and sorting array sizes
varying from 8 to 128 entries. We estimate that for both the
static and dynamic boundary the hardware complexity is very
similar. Figure 4b shows the comparison between the Largest
Block First policy and the Smallest Address First policy. For
sorting array sizes of 16 elements and larger, the Smallest
Address First policy wins by about 1.5% while for small
sorting array sizes and small request sizes the Largest Block
First is faster by up to 1%. The Largest Block first requires
slightly more logic to implement because of extra counters
and comparators. Based on the performance and hardware
cost estimates we have implemented the Shortest Address First
approach with dynamic boundary.

B. Data Buffer Allocation
This section presents the policy used for the data buffer

allocation. Because the memory requests are executed out of
order and deallocation is done in a different order than allo-
cation, a complex allocation policy is required. Furthermore,

0,
90

0,
92

0,
94

0,
96

0,
98

1,
00

1,
02

1,
04

1,
06

1,
08

1,
10

2 w
ords

4 w
ords

8 w
ords

16 w
ords

32 w
ords

request size

s
p

e
e

d
-u

p

sorting array size: 4
sorting array size: 8
sorting array size: 16
sorting array size: 32
sorting array size: 64
sorting array size: 128
sorting array size: 256

(a)

0,
96

0,
97

0,
98

0,
99

1,
00

1,
01

1,
02

2 w
ords

4 w
ords

8 w
ords

16 w
ords

32 w
ords

request size

s
p
e

e
d

-u
p

(b)

Fig. 4: Policy comparison: a) dynamic boundary versus static
boundary speedup for the Smallest Address First policy; b)
Largest Block First policy versus Smallest Address First policy
speedup, both with static boundary.

requests can have arbitrary sizes. When a new memory request
enters the memory controller we need a way to determine if
there is a block in the data buffer that is large enough. An
additional requirement is that the availability of space needs to
be determined within a single cycle. Software based allocators
like malloc use linked lists to keep track of all free blocks in
the memory [2] and of course, this solution is not suitable for
hardware implementation.

We have implemented the approach used in [5] where an
or-tree is used to find out if there is a block that is large
enough. Each level l of the or-tree can signal if there is space
available of size 2l. The start address of the free block can
be found using a ’non-backtracking binary search algorithm’
implemented with an and-tree and few multiplexers [5]. After
detecting if there is enough space, every location in the
allocated data block has to be marked.

C. Memory Consistency

Memory inconsistencies are created when overlapping re-
quests that will write or read entirely or partially at the
same location in the memory are executed in the wrong
order through reordering. Several types of request overlaps
are possible: figure 5a shows the case of two requests having
partial overlap while figure 5b shows the case of a full overlap
when every location of a request has to read or write is also
read or written by another request. The request overlaps can
be easily detected using their addresses and sizes. There is

memory location

re
q
u
e
s
t 

o
rd

e
r

req. 1

req. 2

(a) partial overlap
memory location

re
q
u
e
s
t 

o
rd

e
r

req. 1

req. 2

(b) full overlap

Fig. 5: Request overlap types.

no memory inconsistency when only read requests are being
sorted. However, write request can introduce inconsistencies.
When a new write request enters the sorting array, all elements
already present check in parallel if there is an overlap with the



new request. If an overlap is detected, the new request must
be inserted below any overlapping request. It is important to
note that overlaps can occur only between requests on the
same row and that the column address will be used to detect
overlaps. Therefore, the overlap detection logic can easily
exclude consistency comparisons between requests accessing
different rows. Another important note is that requests coming
over the bus that span over multiple DRAM rows (for instance
end of one row and beginning of the next) are split into
multiple requests that target the individual rows.

When requests are overlapping, extra optimizations are
possible. A part of a request can be deleted when two write
requests are overlapping. For instance, in figure 5a if both
requests are write requests then the gray part of the first
request will be overwritten by the second request. The memory
controller detects this overlap and forces the two request to
execute in order. Extra bandwidth can be gained by reducing
the size of the first request and also the reordering restriction
can be eliminated. We have chosen to not implement this kind
of optimizations because it would require communication be-
tween the sorting array (where overlap of request is detected)
and the data buffer (where the data allocation needs to be
altered) and this would negatively impact the intended design
modularity.

V. EXPERIMENTAL RESULTS

This section discusses our experimental results that are
structured in three subsections: speedup, power and energy
savings and discussion of the sorting array size and the data
buffer size trade-off.

A. Application Speedup

For our simulations we have generated the memory ac-
cess traces for the studied applications: 3D FFT, Conjugate
Gradient and random read/writes. For 3D FFT and random
read/writes we have varied the size of the request ranging from
2 words up to 32 words. For CG (which is mainly sparse
matrix vector multiplication [4]), we have varied the matrix
size from 500×500 elements to 8k×8k elements. We have
then used the traces as inputs for the Modelsim simulations and
obtained the number of cycles and all other relevant metrics.

The speed-up results for the 3D-FFT are given in figure 6.
The comparison is against the memory controller without
memory request reordering. These results show a large im-
provement for the smaller request sizes while the speed-up
slowly degrades as the request size increases. This is expected
since for small requests the actual time spent transferring data
is comparable to the overhead (the amount of time spent
activating/precharging rows and other timing constraints).
Therefore, optimization through reduction of overhead can
bring significant improvements. For larger requests the dead
cycles represent a smaller percentage of the total execution
time and thus, optimization is restricted. Another important
conclusion is that sorting array sizes in excess of 128 elements
bring little improvement and do not validate the additional
hardware cost.

0,
90

1,
00

1,
10

1,
20

1,
30

1,
40

1,
50

1,
60

1,
70

1,
80

2 4 8 16 32

request size [words]

s
p
e

e
d

-u
p

sorting array: 4
sorting array: 8
sorting array: 16
sorting array: 32
sorting array: 64
sorting array: 128
sorting array: 256

Fig. 6: The speed-up obtained for 3D-FFT.

The results for the random read and write benchmark are
shown in figure 7a and show similar behavior. It is interesting
to compare these results with the 3D-FFT in terms of the
speedup per sorting array size. With any request size, for the
3D-FFT the sorting array with 8 entries brings higher benefits
than sorting array of 64 for random reads and writes.

0,
90

1,
00

1,
10

1,
20

1,
30

1,
40

2 4 8 16 32

request size [words]

s
p
e

e
d

-u
p

sorting array: 4
sorting array: 8
sorting array: 16
sorting array: 32
sorting array: 64
sorting array: 128
sorting array: 256

(a) random read writes

1,
10

1,
20

1,
30

500*500

1000*1000

2000*2000

4000*4000

8000*8000

matrix size

s
p
e

e
d

-u
p

(b) CG

Fig. 7: The speedup for random read and writes and CG.

For the Conjugate Gradient benchmark (see figure 7b) we
vary the size of the matrix, while the request size depends on
the number of non-zero elements on each row. The speed-ups
increase up to a sorting array size of 32 entries for several
matrix sizes. Larger sorting arrays do not bring any additional
improvements, as shown on the figure.

Sorting Array size 64 256
Speedup Maximum Average Maximum Average
3D-FFT 1.58 1.19 1.73 1.24
Random R/W 1.12 1.06 1.36 1.17
CG 1.40 1.32 1.41 1.32

TABLE I: Speed-ups due to reordering.

B. Power and Energy

In order to estimate the power and energy usage we have
first synthesized the design into a net list with Synopsys
Design Compiler. ModelSim is then used to generate an
activity file with the net list and the test bench that is also used
for the speed-up simulations. The activity file generated by
ModelSim is then analyzed by Synopsys PrimeTime and the
needed values are extracted. All power results of the controller
are based on a 90nmSP process. The analysis of the power
and energy used by the DRAM were performed by using the
Micron System Power Calculator [9].



70
,0

0

80
,0

0

90
,0

0

10
0,

00

a
c
ti
v
a

ti
o

n
 p

o
w

e
r 

[%
]

2 4 8 16 32

request size [words]

(a) activation power

10
0,

00

10
5,

00

11
0,

00

11
5,

00

12
0,

00

sorting array: 4
sorting array: 8
sorting array: 16
sorting array: 32
sorting array: 64
sorting array: 128
sorting array: 256

request size [words]

to
ta

l 
D

R
A

M
 p

o
w

e
r 

[%
]

(b) total power

Fig. 8: Activation and total DRAM power for 3D-FFT.

Figure 8a shows that memory request reordering drastically
reduces the DRAM activation power (the graph shows results
for the 3D-FFT traces). For a sorting array with 128 entries,
for request sizes ranging from 2 two 16 words, the DRAM
uses about 70% of the activation power consumed without
reordering. On the other hand, since the requests are executed
faster, the total power increases, especially for small requests
sizes (that benefit the most from reordering), as depicted on
figure 8b. Figure 9 shows the total energy usage compared to
an implementation without a reordering policy. Adding the
reordering logic increases the energy used by the memory
controller while it decreases the total energy used by the
DRAM because of fewer commands, fewer row activations,
precharges and so on. The optimal configuration balances the
speedup obtained by the reordering logic with the resources
consumed. From figure 9a we can observe that energy savings
are obtained for every configuration up to a sorting array size
of 128 entries. After this point, doubling the sorting array
brings little execution time improvements (see figure 6) while
consuming significantly more silicon area and energy. We can
see that configurations of 256 entries and larger are rather
inefficient both in terms of performance improvements and
energy savings. A summary of the energy savings for a sorting
array size of 64 entries is given in table II. We can thus
conclude that request reordering brings both speed-ups and
energy savings.

60
,0

0

70
,0

0

80
,0

0

90
,0

0

10
0,

00

11
0,

00

2 4 8 16 32

request size [words]

e
n

e
rg

y
 u

s
e
d

 [
%

]

(a) 3D-FFT

80
,0

0
85

,0
0

90
,0

0
95

,0
0

10
0,

00
10

5,
00

11
0,

00
11

5,
00

500*500

1000*1000

2000*2000

4000*4000

8000*8000

sorting array: 4
sorting array: 8
sorting array: 16
sorting array: 32
sorting array: 64
sorting array: 128
sorting array: 256

matrix size

e
n

e
rg

y
 u

s
e

d
 [
%

]

(b) CG

Fig. 9: The energy used by the controller and the DRAM
with reordering as a percentage of the energy used without
reordering capabilities.

VI. CONCLUSIONS

In this paper we have studied the effect of DRAM access
reordering on performance and energy usage. We show that

with careful request reordering, we can both reduce execution
Minimum saving Maximum saving Average saving

3D-FFT 0.1% 26.6% 9.4%
Random R/W 0.1% 5.7% 2.4%
CG 9.8% 13.2% 12.1%

TABLE II: Energy savings for sorting array size 64.

time and obtain energy savings. We support memory requests
of arbitrary sizes ranging from one byte up to 16kB. We have
presented a flexible architecture that can be easily adapted
to any bus protocol and arbitrary DRAM types. The sorting
policy implementation is localized in a single block, adaptation
to new sorting policies not influencing any other design blocks.
Using our in house simulator, we have compared several
reordering policies in terms of performance and hardware
complexity and we have opted to implement a policy named
Smallest Address First with dynamic boundary. Reordering of
memory accesses brings two side-effects. The first is memory
consistency: we must ensure that accesses to the same memory
location are executed in program order. The second side-effect
of memory request reordering is that data allocated in the
data buffers will be deallocated out of order and therefore
an allocation policy is required that can handle data buffer
fragmentation. We have obtained application speedups of
1.58x for 3D FFT and 1.4x for Conjugate Gradient workloads.
In addition, our reordering proposal reduces memory activation
power of the memory by up to 40% and total energy per
application by 26.6% for 3D FFT and 13.2% for CG.

REFERENCES

[1] ARM, A. Axi protocol specification, mar. 2004. v1.0.
[2] AUGUST, P. D. Inner workings of malloc and free.

http://www.cs.princeton.edu/courses/archive/fall06/cos217/lectures/
14Memory-2x2.pdf, 2006.

[3] BENDER, M. A., FARACH-COLTON, M., AND MOSTEIRO, M. Insertion
sort is O(n log n), 2004.

[4] C. CIOBANU, ET AL.. Scalability evaluation of a polymorphic register
file: A CG case study. Architecture of Computing Systems-ARCS 2011.

[5] CHANG, J., AND GEHRINGER, E. A high performance memory
allocator for object-oriented systems. Computers, IEEE Transactions
on 45, 3 (mar. 1996), 357 –366.

[6] J. CARTER, ET AL. Impulse: building a smarter memory controller. In
HPCA (jan. 1999), pp. 70 –79.

[7] LIN, E. Quality-aware memory controller for multimedia platform soc.
In SIPS (aug. 2003), pp. 328 – 333.

[8] MICRON. Synchronous DRAM 512Mb, 2000. Rev. L 10/07 EN.
[9] MICRON. SDRAM System-Power Calculator. http://www.micron.com/

get-document/?documentId=31, apr. 2001.
[10] PICHEL, J., SINGH, D., AND CARRETERO, J. Reordering algorithms

for increasing locality on multicore processors. In HPCC (sep. 2008),
pp. 123 –130.

[11] S. LANGEMEYER, P. PIRSCH, H. BLUME. Using SDRAMs for two-
dimensional accesses of long 2n × 2m-point FFTs and transposing. In
SAMOS (2011), pp. 242–248.

[12] S. RIXNER, E. Memory access scheduling. In ISCA (2000).
[13] SHEKHALEV, D. High Speed SDRAM Controller With Adaptive

Bank Management and Command Pipeline. http://opencores.org/project,
hssdrc, dec. 2009.

[14] T. WATANABE, ET AL. Access optimizer to overcome the ’future walls
of embedded DRAMs’ in the era of systems on silicon. In Digest of
Technical Papers. ISSCC. (1999), pp. 370 –371.

[15] Y. C. HU, A. COX, W. Z. Improving fine-grained irregular shared-
memory benchmarks by data reordering. In Supercomputing, ACM/IEEE
2000 Conference (2000), p. 33.


