
Implementation Study of FFT on
Multi-Lane Vector Processors

Bogdan Spinean∗, Georgi Gaydadjiev∗†
† Department of Computer Science and Engineering, Chalmers University of Technology, Sweden
∗Computer Engineering Laboratory, EEMCS, Delft University of Technology, The Netherlands

{b.spinean, g.n.gaydadjiev}@tudelft.nl

Abstract—In this paper we extend a custom FFT vector
architecture by adding multiple lane capabilities and study
its hardware implementation. We use the six step algorithm
to segment a long Fourier transform of size N = Z × L
into L smaller transforms of size Z. We split the data into
pairs of vector registers (for the real and imaginary part),
each containing Z elements. A vector register pair with its
corresponding functional unit form a single lane replicated
L times. While smaller transforms proceed iteratively all of
them are computed in parallel. The shorter FFT transforms
along the X dimension are computed using previously proposed
vector permutations while the transforms along the Y dimension
are performed using a simple butterfly network that handles
inter-lane communication. All data patterns required by the
FFT computation are generated implicitly in hardware by a
simple control unit. No data transposition is required and the
twiddle factors are stored locally inside the functional units.
We validated our design through simulation and ASIC synthesis
targeting 90nm CMOS technology. We compare three possible
configurations for computing a 256point FFT, all running at 217
MHz with Z × L equal to: a) 32× 8, b) 16× 16 and c) 8× 32.
Configuration a) is the smallest and the slowest; configuration
b) requires 1.43 times fewer cycles but 1.64 more area while
configuration c) requires 1.76 times fewer cycles and is 3.16 times
larger. Unlike other high performance FFT implementations,
our design offers the possibility to trade-off execution speed for
two resource types: vector register size and number of lanes.
Another important contribution is the possibility to execute 2D
FFT without any HW modifications or special provisions.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) has extensive ap-
plications in science and engineering ranging from spectral
analysis to data compression and partial differential equations.
A real breakthrough in the use of the DFT has been brought
by the Cooley-Tukey (CT) FFT algorithm [10] that reduced
the computation complexity from O(n2) to O(n × log(n)).
The DFT is defined by the formula:

Xk =

n−1∑
n=0

xne
− 2πi

N nk (1)

The radix 2 decimation in time recursively divides a DFT of
size N into two interleaved DFTs of the even and the odd

input indexes and then combines the two results to produce
the DFT of the overall sequence.

Xk =

N/2−1∑
m=0

x2me−
2πi
N

(2m)k + e−
2πi
N

k

N/2−1∑
m=0

x2m+1e
− 2πi

N
(2m+1)k

(2)
Xk = Ek + e−

2πi
N

kOk (3)

Due to the periodicity of the DFT, the outputs for N/2 ≤ k <
N from a DFT of length N/2 are identical to the outputs for
0 ≤ k < N/2 and therefore, Ek+M/2 = Ek and Ok+N/2 =
Ok. This way, the large transform can be reconstructed from
the smaller ones and the algorithm is accelerated by re-using
intermediate results to compute multiple DFT outputs.

Xk =

{
Ek + e−

2πi
N kOk if k < N/2

Ek−N/2 + e−
2πi
N (k−N/2)Ok if k ≥ N/2

(4)

The computation involved is not complicated, each butterfly
operation consists of one complex multiplication and two
complex additions. The data accesses have a very clear, regular
and highly predictable pattern. However, as the computation
progresses, the input memory locations are at exponentially
increasing distances. For large transform sizes, the data will
not fit in superscalar processors’ caches, in the GPGPUs’
registers or in the registers of vector processors and thus
intermediate results must be spilled to main memory [1], [5].

An important improvement in FFT computation perfor-
mance was brought by the six step algorithm [6]. This al-
gorithm greatly increases parallelism and locality as it divides
the FFT into multiple, smaller steps, some truly independent.

In this paper we extend the vector based six step FFT
algorithm presented in [2] with multi lane capabilities. Com-
pared to existing FFT implementations, our advantages are
twofold. At runtime, we support multiple processing modes,
including 2D transforms. Moreover our approach enables
additional flexibility at late system design stages since, for
a fixed transform size N = Z × L, multiple implementation
possibilities exist, each with different vector register sizes Z
and number of lanes L. Thus, the designer can trade-off speed



for area (and consequently power) allowing a closer fit within
the design constraints.

The contributions of this paper are:
• we extend the vector processor design in [2] with multiple

lanes capability and with a simple butterfly network to
generate necessary inter-lane communication patterns;

• multiple 1D and 2D FFT operations support during run-
time and multiple design options with trade-offs between
execution speed and area for a given transform size;

• we present an ASIC 90nm implementation that operates
at 217MHz clock frequency;

• three configurations are presented for the 256point FFT
and we show that reducing the number of cycles by 1.43
costs 1.64 additional area and 1.76 improvement results
in 3.16 bigger area.

The remainder of this paper is organized as follows: Section
II presents the background in traditional high performance FFT
hardware implementations, describes the Vector permutations
introduced in [2] and the six step algorithm. Section III
presents the proposed architecture describing the hardware
blocks and an example. Section IV contains the synthesis re-
sults and discusses the design’s scalability and finally, Section
V presents our conclusions.

II. BACKGROUND AND RELATED WORK

Traditional high performance custom FFT architectures are
based on either pipeline designs or column designs. In the
case of pipeline architectures, the building blocks are butterfly
processors and shift registers that ensure that data elements
arrive at the functional units in the required sequence. The
butterfly processors and shift registers are cascaded logrN
times (where N is the transform length and r is the radix)
corresponding to the logrN stages of the computation [7],
[14], [12]. Column architectures are composed of N/r pro-
cessing elements such that for each step all N/r butterflies
are computed in parallel. Data shuffling for the column designs
is performed by the interconnection network [8], [9]. In both
cases the number of functional units is fixed at logrN for the
pipeline implementations and N/r for column architectures.

The proposed architecture fits in neither of these categories
and is based on implementing the six step algorithm on
vector processors. Compared to other high performance FFT
implementations, our advantages are twofold. At runtime, we
support multiple processing modes: one long transform, many
shorter transforms or 2D transforms. Switching between these
mode is done by executing all or only part of the steps
presented in the next section. While most custom FFT imple-
mentations can be easily adapted for shorter FFT transforms,
few of them can perform 2D transforms without additional
hardware and control. The second advantage of our approach
is the additional flexibility at late system design stages. While
the pipelined or column approaches require a fixed number of
processing elements (logrN for the pipeline implementations
and N/r for column architectures), our design, for a given
transform size N = Z × L, can be implemented in multiple
configurations by varying the vector register size Z and the

Step 1. transpose
Step 2. N1 independent N2 point FFTs
Step 3. twiddle factor multiplication
Step 4. transpose
Step 5. N2 independent N1 point FFTs
Step 6. transpose

Fig. 1. The six step FFT algorithm

number of lanes L. This way, the designer has a lot of freedom
in choosing the configuration with the appropriate area and
speed and can closely fit within the design constraints while
at the same time gain more flexibility for the design of other
components of the system. In terms of design flexibility we
position in the middle ground between FPGA implementations
and traditional high performance ASIC designs.

The six step algorithm sketched in Figure 1 uses a
very important property of the FFT that a long transform of
length N = N1 × N2 can be computed as N1 independent
transforms of length N2, followed by the computation of N2

independent transforms of length N1. All intermediate results
are then combined together to form the final result. We focus
our attention on Steps 2 and 5 of performing independent
transforms. We further assume that N1 = L, the number of
lanes and that N2 = Z, the length of a vector register. For
simplicity we have chosen to use radix 2 functional units.
Similar principles apply for higher radixes without loss of
generality.

For the original Cooley-Tukey algorithm [10] the results of
the butterfly will be stored in the same position as the inputs
and thus the algorithm can be performed in place. However
other variations, like the Stockham algorithm [15] change the
layout of the array at every step and thus additional storage
and index calculation are required.

Vector processors have been very powerful in areas where
high memory bandwidth and regular computation are needed.
The first FFT algorithms that have been implemented on vector
processors were simple radix-2 algorithms for arrays of lengths
N = 2p [13], such as the Pease [11] or the Stockham [15]
algorithms. The algorithms that inspired the six step algorithm
were the mixed radix FFTs [3] and then the prime-factor
algorithms. Temperton [4] reports on average 97% functional
unit utilization when processing multiple transforms in parallel
on the Cray-1 vector processor.

The additional parallelism of the six step algorithm is
utilized by loop interchange [4]. All details of the FFT
indexing are transferred to outer loops and have no impact on
vectorization. The fact that the transforms are shorter than the
original transform does not have any influence on the vector
implementation. The vector register permutations that we have
introduced in [2] take advantage of the shorter transforms and
greatly reduce the number of memory accesses.

Vector Register Permutations extend the state of vector
registers with a permutation unit that allows reading and
writing the vector registers in a different order. The vector
register contains Z elements, Z = 2k. To access those Z
elements we require k bits: xk−1, xk−2, ..., x1, x0. We define
a Vector Permutation as a sequence of k numbers as follows:



Fig. 2. a) Example permutation (2,0,’1’) for the case of Z=8; b) The structure of a vector register extended with the permutation unit; c) The Permutation
Unit is implemented using multiplexers.

(pk−1, pk−2, ..., p1, p0). For i = 0 to k − 1, bit pi can
take any of the following values: a) either of the input bits
xk−1, xk−2, ..., x1, x0; b) ’T’; c) ’F’ with ’T’ being a constant
value of 1 and ’F’ being a constant value of 0.

In [2], we have introduce two permutations that are used to
formulate the Cooley-Tukey algorithm in terms of permuta-
tions: the shift(i) and twiddle(i) permutations (Figure 2 a)).
The shift(i) permutation is used by the data vector registers
and is defined as:

for j = 1 to k-1 do
if j > i

pj = xj

else if j==i
pj = x0

else
pj = xj+1

If Z = 8, k = 3, shift(1) becomes Permutation (2,0,1):
• the 3rd output bit becomes the 3rd input bit (index 2);
• the 2nd output bit becomes the 1st input bit (index 0);
• the 1st output bit becomes the 2nd input bit (index 1);

By applying the (2,0,1) permutation, when reading the
vector register, the sequence of elements is:

before permutation: 000, 001, 010, 011, 100, 101, 110, 111

after permutation: 000, 010, 001, 011, 100, 110, 101, 111

The vector register holding the twiddle factors uses the
twiddle(i) permutation defined as:

threshold = k-1-i
p0 = x0

for j = 1 to k-1 do
if j > threshold

pj = xj−threshold

else
pj = ’F’

III. PROPOSED SOLUTION

In this section, we describe the proposed architecture. We
start by briefly presenting the steps of the execution, we then
discuss in detail the building blocks of our design. In the final
part of this section we provide a detailed example of all thee
steps required for FFT computation. Figure 3 shows the block

Fig. 3. The multi lane FFT architecture consists of L lanes, two butterfly
network and the control unit. A lane contains two vector registers and a
functional unit.

scheme of our design. We process an N = Z × L point FFT
transform by first computing L independent transforms of size
Z. We call this the ”X FFT step”. We then perform what
we call the ”correction step” by multiplying the intermediate
results by correction factors. The third step is the ”Y FFT
step” that consists of Z independent transforms of size L.

We split the data into pairs of vector registers (for the
real and imaginary part), containing Z elements. The vector
register pair with its corresponding functional unit form a lane
and we replicate this design L times. Each lane, using vector
permutations, can perform a transform of size Z in log(Z)
iterative steps, each step completing in a number of cycles in
the order of O(Z) [2]. All lanes operate in lock step, using
the same vector permutations. Therefore the ”X FFT step” will
execute in O(Z × log(Z)) cycles.

The ”correction step” consists of multiplying each element
by a twiddle factor. The functional units contain the necessary
twiddle factor, therefore for this step, in each lane, the contents
of the vector registers will be multiplied by the correction
twiddle factors stored locally in the lane’s functional unit.

The first two steps required no inter-lane communication.
However, the ”Y FFT step” is made possible by the use of
the butterfly interconnection network. By selecting the proper



network configurations, two elements from different lanes are
brought together at a functional unit, the butterfly is calculated
and the results are written back to the locations where the
inputs originated. To the vector registers and the functional
units the ”Y FFT step” is identical to the ”X FFT step”. The
only thing that changes is the network switching. Therefore,
the duration of the ”Y FFT step” is in O(Z × log(L)) cycles.

For clarity we distingwish between steps and iterations. We
call the ”X FFT” and ”Y FFT” ”steps” and each step consists
of log(Z) and respectively log(L) ”iterations”.

A. The Hardware Structure

1) The Vector Registers: Each vector register contains Z
elements that are 32bits wide (see Figure 2). For our imple-
mentation, the reading and writing of the Z elements is an
atomic operation that takes Z consecutive cycles without the
possibility to stop the data transfer in between. The addition
of the vector permutations described in [2] allows reading or
writing the elements in various orders such that at the output
of the vector register the two elements required for a butterfly
come at consecutive positions. For example in the first iteration
of the ”X FFT” step the butterflies are performed between
consecutive elements. Therefore, the vector registers are read
sequentially, the permutation used is the identity permutation.
For the second iteration of the same step, the butterflies are
performed with elements that have indexes in the sequence
(0,2) for the first butterfly, (1,3) for the second butterfly and so
on (see figure 6). The vector registers can be configured with
the correct permutations such that the elements will be read in
the correct sequence. Each lane has two vector registers, one
for the real and one for the imaginary data elements.

2) The Functional Units: The functional units (FUs) are
specialized for doing the butterfly computations. The control
unit through the use of vector permutations or through the
butterfly interconnection network ensures that the two complex
inputs for the butterflies a and b arrive at the functional
unit in two consecutive cycles. The control unit also sets the
permutation to the twiddle vector register. The FUs contain
two sets of twiddle factors. All the twiddle factors required
by transforms of length Z or L (L < Z) are in the vector
register named ”twiddle”. These are the Z/2 order roots of
unity. In iteration one, only one twiddle factor will be used.
This is obtained by setting a permutation that generates at
the output the same vector register element every time. The
second iteration will require two twiddle factors and this is
obtained by setting a permutation that will alternate between
the two required vector elements. The second set of twiddle
factors is contained in the block named ”correction”. These
are Z of the N/2 order roots of unity, and are used for the
correction step. The correction calculation consists of a single
complex multiplication and all input data is multiplied by the
corresponding correction twiddle factor. No permutations are
required and thus the correction twiddle factors are stored in a
shift register instead of a vector register. The twiddle block is
identical for all lanes and always uses the same permutation in
all lanes. The correction block is unique for each lane, the L

Fig. 4. The butterfly FU performs either butterflies between two consecutive
inputs or complex multiplication between the inputs and the correction factors.

Fig. 5. The butterfly Network has 2× L inputs and outputs and it consists
of 1 + log(L) steps of 2x2 switches.

lanes contain all the N/2 order roots of unity. Since the same
twiddle factors are used for any input data, we have chosen
to store them inside the functional units. This brings a double
benefit. First, there is no bandwidth required to transfer the
twiddle factors and second, because the twiddle factors are
physically located right next to the complex multiplier this
translates into shorter wires and the design is more efficient.

3) The Communication Network: The Butterfly Network,
used for inter-lane communication is shown in Figure 5. The
basic building block is the 2x2 switch with two possible
configurations: outputs are same as inputs or outputs swap
position. We use a network with 2×L inputs and outputs (we
have 2×L vector registers for the real and imaginary part of
the data). Therefore it has 1+log(L) levels, each consisting of
L 2x2 switches. The butterfly network is not blocking, in each
cycle the 2× L outputs are connected to all the inputs. Each
input is connected to a single output, no two inputs can connect
to the same output and no input can connect to more than one
output. The butterfly network does not provide all possible
input-output connections but all of the patterns required by
the FFT computation are supported.

Our design requires two butterfly networks one for passing
data from the vector registers to the functional units and the
other one from the functional units back to the vector register.
The intermediate FFTs are computed in place, and therefore
the results of the butterflies will be stored in the same position
as the inputs. Thus, the second butterfly networks will have the
the same configuration as the first but delayed by an amount
of clock cycles equal to the functional unit latency.

4) The control unit: The control unit is a hierarchical
FSM that executes (besides the basic I/O) the following three



operations: a) X FFT, b) Y FFT and c) correction step. By
combining these operations we gain the flexibility of executing
multiple types of FFT computations. A 1D FFT of size
N = Z × L can be executed by performing the operations
in the order: X FFT, correction, Y FFT. A 2D FFT of the
same size can be computed by performing only operations a)
and b), without the correction step. A third possible command
is the computation of L independent transforms of size Z. In
this case only step a) X FFT is required.

B. Motvational Example

In this subsection we discuss in detail how a 32point 1D
FFT is computed by using L = 4 lanes, each holding Z = 8
elements. We have chosen these numbers because they are
small enough that the algorithm execution can be presented
entirely and also because they are large enough to give an
idea of the characteristics of the proposed architecture.

Using the 6 step algorithm we segment the 32 data elements
into a logical array of 8 × 4 that maps to 4 lanes containing
8 elements. The first step is what we call the ”X FFT step”
and consists of computing 4 independent 8point transforms,
one in each lane. Figure 6 shows the (log(Z) = 3) iterations
of the 8 point FFT transform. For this step there is no inter-
lane communication and the butterfly networks are configured
such that the output port is the same as the input port.

The butterfly computation produces 2 complex outputs a+
(b ∗ w) and a − (b ∗ w) and requires 3 complex inputs: the
two data elements (a and b) and the twiddle factor w. The two
data elements are stored in two vector registers, one for the
real part, another for the imaginary part. The twiddle factors
are stored in a vector register inside the functional unit and
contains alternating real and imaginary parts. The number of
twiddle factors is equal to the butterfly computations required
which in our case is Z/2.

Our goal is to read these registers in a suitable order
such that at the functional units data will arrive grouped
per butterfly: the first two cycles the FU will receive the
two data elements and the twiddle factor required for the
first butterfly, the following two cycles the data elements and
twiddle factor for the second butterfly and so on. The pipelined
functional unit will generate the two results of the butterflies
in consecutive cycles that must be written back to the vector
register in the same order as the data elements have been read.

We do not consider the data values as they do not have
any impact on the techniques described here. Instead, we shall
focus on the elements’ position. Table I presents the sequences
of addresses required by the FFT algorithm presented in Figure
6. The four pairs of columns represent the butterflies B0, B1,
B2 and B3 computed during each iteration. Groups of the
rows correspond to the iterations of the FFT algorithm. For
each iteration, we must determine one Permutation for the data
array and one Permutation for the twiddle factors.

For the first iteration, in the vector registers, the data
array is in the required order, butterflies are computed between
elements of consecutive positions. Therefore, we configure the
two data registers with the identity permutation (2,1,0). We

Fig. 6. The butterfly operations of an 8 point Cooley Tukey FFT.

000 001 010 011 100 101 110 111
Permutation B0 B1 B2 B3
Step 1 data 0 1 2 3 4 5 6 7
(2,1,0) 000 001 010 011 100 101 110 111

twiddle 0 1 0 1 0 1 0 1
(F,F,0) 000 001 000 001 000 001 000 001
Step 2 data 0 2 1 3 4 6 5 7
(2,0,1) 000 010 001 011 100 110 101 111

twiddle 0 1 4 5 0 1 4 5
(1,F,0) 000 001 100 101 000 001 100 101
Step 3 data 0 4 1 5 2 6 3 7
(0,2,1) 000 100 001 101 010 110 011 111

twiddle 0 1 2 3 4 5 6 7
(2,1,0) 000 001 010 011 100 101 110 111

TABLE I
THE ADDRESS SEQUENCES REQUIRED BY THE 8 POINT FFT USING THE

COOLEY-TUKEY ALGORITHM.

can follow in Table I that the first butterfly (B0) is computed
between element 0 and element 1, the second butterfly (B1)
is computed between element 2 and element 3 and so on.

The first iteration requires only one twiddle factor for
all butterflies that must be replicated in all the positions of
the corresponding vector register. Since the twiddle factor is
a complex number, the output of the vector register must
alternate between the first two elements of the vector array:
the element on position 0 (the real part), followed by element
on position 1 (the imaginary part), followed again by element
0, then element 1 etc. In order to obtain the required sequence
of addresses we need the following permutation word: the first
two bits must stay constant at F while the LSB must toggle
every cycle. The permutation for the twiddle factors is (F,F,0);

For the second iteration the first butterfly B0 is computed
between elements 0 and 2, B1 is computed between elements
1 and 3 and so on. By examining the required sequence
of addresses, we notice that the second bit of the address



swaps first, then the LSB and then the MSB. Therefore the
Permutation becomes (2,0,1).

The twiddle factors required in the second iteration are
the second order roots of unity which are on position 0 and
position 4. Thus, the permutation required to read the vector
register containing the twiddle factors is (1,F,0).

For the third iteration, following the same reasoning, we
obtain the permutation for the data array to be (0,2,1) and the
permutation for the twiddle factors to be (2,1,0).

The second step in our 32point 1D FFT computation is
the ”correction step”. The data from each vector register is
multiplied by the correction factors stored inside the functional
units and written back to the vector registers. For this steps the
vector registers are configured with the identical permutation,
they are read and written in the normal sequential order. The
butterfly networks are configured to their default state, the
outputs are equal to the inputs.

The third step is the ”Y FFT step”. In this step Z =
8 independent transforms of length L = 4 are computed in
parallel. This third step consists of log(L) = 2 iterations that
are displayed schematically in Figure 7. The central role is
played by the butterfly networks.

The first of the 8 transforms has its elements on the first
position in the vector registers of each lane (0, 8, 10, 18).
The second one has its elements on the second position of the
vector registers and so on. Let us focus on the first transform.
In the initial iteration the butterflies are computed between
elements (0, 8) and (10, 18) while in the second iteration the
butterflies are computed between elements (1, 10) and (8, 18).
The data must reach the functional units grouped per butterflies
in consecutive cycles. Therefore we must configure the system
such that elements (0 and 8) reach a FU in consecutive cycles
and the same for (10 and 18). The first observation is that lanes
L1 and L3 must be delayed by one cycle. We configure the
butterfly network such that in the even cycles the butterfly
network does not cross at all while in the odd cycles the
first level of 2 × 2 switches cross. We also configure the
vector registers with the identical permutation, data is read
sequentially, in the natural order. The twiddle factors in the
FUs use the same permutations as in the ”X FFT step”, for
this initial iteration the permutation is twiddle(0).

The result is that the elements on even positions in L0 get
to FU0 while those in odd positions arrive at FU1. The data
elements of L0 and L1 are interleaved, the even ones in both
L0 and in L1 arrive at FU0 while the odd elements in both
L0 and in L1 arrive at FU1. The data elements arrive in
the correct order to the FUs. Summing up, during the first
iteration the two butterflies of the 1st transform are computed
in FU0 and FU2 respectively, while the two butterflies of the
2nd transform are computed in FU1 and FU3 respectively.
The butterfly network that connects the FUs back to the
vector registers has the same alternating configuration but it
is delayed by a number of cycles equal to the FUs latency.

During the second iteration vector registers in lanes L2 and
L3 are read one cycle later. During the even cycles the butterfly
network does not cross at all, while during the odd cycles

Fig. 7. During The Y FFT step of the FFT computation each iteration half
the registers are read one cycle later and one single level of the butterfly
network switches every cycle.

the second level of switches cross. The data vector registers
are read sequentially, while the twiddle vector registers inside
the FUs are configured with the twiddle(1) permutation. The
result is very similar to the previous iteration, the elements on
even positions in both L0 and L2 get to FU0 while those in
odd positions arrive at FU2. The data elements of L0 and L2

are interleaved, the even ones in both L0 and in L2 arrive at
FU0 while the odd elements arrive at FU2.

We can extend the working prinicple for any value of
L. During iteration i the elements of lanes L0 and L2i are
interleaved, the even ones arrive at FU0 and odd at FU2i .

IV. EXPERIMENTAL RESULTS

A. Synthesis results

We have designed the multi-lane FFT implementation in be-
havioural Verilog. The emphasis was on making the design as
generic as possible in order to be implementation independent.
We have synthesised our design in 90nm commercial standard
cell technology using Cadence Encounter RTL Compiler. We
have run the steps up to placement. For all configurations of
Z and L the frequency of our design is 217MHz, the critical
path is in the functional units and can be improved by using
deeper functional unit pipelining.

In terms of area, the three major components of our design
are: the functional units (including the twiddle factors), the
butterfly networks and the vector registers containing the data.
The control unit represents in all the studied configurations less
than 1% of the total area. Figure 8 shows the area distribution
when varying both Z and L from 4 to 32 in powers of two.

Most of the area is occupied by the functional units.
For small values of Z and L the functional units occupy
around 70% of the design’s area. For the largest designs
this percentage falls down to 40% but still remains dominant
component in terms of area. The area taken by the butterfly
networks fluctuates greatly. For designs with 4 lanes the
butterfly network requires around 10% of the total area while
for 32 lanes this percentage goes up to 25-30%. This is because
more lanes translate into more levels in the butterfly network
and also, since the butterfly network is dominated by wires, the
larger the network the higher the overhead. While on average,
for the entire design the wires take 30 to 45% of the total



Fig. 8. The area occupied by the major components of the design for both
Z and L ranging from 4 to 32 in powers of two.

Fig. 9. The increase in the design area when both Z and L ranging from 4
to 32 in powers of two. The baseline design is for Z = L = 4

area, the butterfly networks consist mostly of wires. For the
smallest configurations of Z = L = 4 the net area is 66% of
the butterfly network’s area while for the largest configuration
of Z = L = 32 the wires account for 80% the the butterfly
network’s area. The vector registers holding the data have the
smallest impact with regards to the overall area.

B. Register size and number of lanes scalability

In the following paragraphs we discuss the effects of
changing the design parameters. We investigate the changes in
total area, the modifications to the control unit, the butterfly
networks and the vector registers. We also study the total
execution time, in terms of cycles. Figure 8 compares the
total area of the studied configurations. It is essential to note
that the number of lanes L and the vector register size Z can
only be powers of two. This is because the FFT algorithm
requires logarithmic number of steps and also the butterfly
network requires a logarithmic number of levels. Another
important note is that the vector register size Z should close
to the number of lanes L. Otherwise the design becomes
unnecessarily unbalanced.

Doubling the number of lanes L (see Figure 3) brings
no conceptual change in the FSM. The ”Y FFT step” will
contain an additional iteration. However, the additional twiddle
factors are already in the functional units. There is no change
whatsoever in the structure of a lane: the vector registers and

Total number Z=4 Z=8 Z=16 Z=32
of cycles

L=4 84 126 204 362
L=8 112 160 248 424

L=16 144 198 296 490
L=32 180 240 348 560

TABLE II
FOR EACH CONFIGURATION, THE NUMBER OF CYCLES REQUIRED TO

COMPLETE THE MAXIMUM SIZE FFT.

the functional units remain unchanged. The butterfly networks
require an additional level and the butterfly network area more
than doubles since it is dominated by wiring. When doubling
L, the main effect is that the total design area more than
doubles. This is because we double the number of functional
units and vector registers and because the butterfly networks
greatly increase in size (see Figure 8).

Doubling the vector register size Z brings no conceptual
change in the FSM. The ”X FFT step” will contain an
additional iteration and will require double the number of
twiddle factors stored in the functional units. The structure
of the butterfly network does not change at all. For small
designs, doubling the vector registers size increases total area
by a fraction, around 10% or less. For large designs, however,
since the wiring becomes more important, doubling the vector
register size increases the area by a substantial amount.

Table II presents the number of cycles required for each
configuration to compute a 1D FFT of size Z × L. These
numbers have been obtained through simulation. As a rule of
thumb the duration of the ”X FFT step” is DX = log(Z) ×
(Z + 2 × log(L) + lat). There are log(Z) iterations, each
consisting of reading the vector registers (Z) + the functional
unit latency (lat) + the latency of passing twice through
the log(L) levels of the butterfly network. The approximate
duration of the correction step is Dcorr = Z+2×log(L)+lat).
That is, the duration of a single iteration of the ”X FFT
step”. The approximate duration of the ”Y FFT step” is
DY = log(L) × (Z + 2 × log(L) + lat), log(L) iterations,
each of the same length as the ”X FFT step” iteration.

Let us focus on the 1D FFT that is 256 elements long. There
are three possible configurations of our design: configuration
a) Z × L = 32 × 8; configuration b) Z × L = 16 × 16; and
configuration c) Z × L = 8 × 32. We will compare these
three configurations by following Table II and Figure 9. For
this comparison, let us take the baseline as configuration c)
which is the slowest in terms of number of cycles and the
smallest in terms of area. Then, configuration b) is 1.43 times
faster and 1.64 times larger (in terms of cycles and area) while
configuration c) is 1.76 times faster and 3.16 times larger.

We thus conclude that we trade-off execution speed for
two different resource types: vector register size and number
of lanes. Depending on the implementation constraints, the
user may choose between multiple implementations. General
guidelines for increasing performance and scaling up the
design are as follow: if the design is area constrained than
increase Z. If the design is constrained by execution time, then
increase L. If efficiency is the main concern, a balanced design
(where Z = L) offers the best trade-off between area resources



and speed. On the opposite, the most inefficient configurations
are those where Z << L or Z >> L.

For higher radixes the concept remains the same. The
only block that changes is the FU block. We use radix 2,
with the two inputs a and b arriving at the FUs in two
consecutive cycles while radix 4, requres four inputs and
outputs that stream through the FUs in consecutive cycles.
This is compatible with the concept presented in this paper.
For higher radixes we need less iterations but larger functional
units, with more multipliers.

V. CONCLUSIONS

We have extended an architecture for FFT computation de-
scribed in [2] with multi-lane capabilities. We use the six-step
algorithm to segment a long transform of size N into Z blocks
of length L, where N = Z×L. We then map the N complex
elements into L pairs of vector registers of size Z. The shorter
FFT transforms along the X dimension are computed using
previously proposed vector permutations that allow the reading
and writing of vector register elements using different patterns
required by the FFT computation. The transforms along the Y
dimension are performed using a simple butterfly network that
handles inter-lane communication. The functional units are
specialized for computing the radix 2 butterflies and require
that the two elements arrive in two consecutive cycles. By
using the correct permutation for the data registers and correct
switching of the network all the data patterns required by the
FFT computation are generated implicitly in hardware.

Compared to state of the art high performance FFT im-
plementations our advantages are two fold. At runtime, we
support multiple processing modes: one long FFT transform,
many shorter transforms or 2D FFT transforms. The second
advantage of our approach is the added flexibility at late design
stages of the system that uses the FFT computation. While
the pipelined or column approaches require a fixed number of
processing elements (logrN for the pipeline implementations
and N/r for column architectures), our design, for a fixed
transform size N = Z × L, can be implemented in multiple
possible configurations by varying the vector register size Z
and the number of lanes L. This way the FFT block can fit
better within the area or power budget constraints.

We have explored various design sizes raging from 4×4 up
to 32×32. Our design trades-off execution speed for two types
of area resources: vector register size and number of lanes.
General guidelines for increasing performance and scaling up
the design are as follow: if the design is area constrained

then Z should be increased. If the design is constrained by
execution time, then increasing L is preferable. If efficiency
is the main concern, a balanced design (where Z = L) offers
the best trade-off between area resources and speed. On the
opposite, the most inefficient configurations are those where
Z << L or Z >> L. As an example we show three possible
configurations for computing a 256point FFT, all running at
217 MHz. Compared to the smallest configuration, one of the
other three requires 1.43 fewer cycles and requires 1.64 more
area while the third one requires 1.76 times fewer cycles and
is 3.16 times larger.

REFERENCES

[1] A. Nukada, Y. Ogata, T. Endo, S. Matsuoka. Bandwidth intensive 3-D
FFT kernel for GPUs using CUDA. In International Conference for
High Performance Computing, Networking, Storage and Analysis, SC.,
pages 1–11, 2008.

[2] B. Spinean, G. Kuzmanov, G. Gaydadjiev. Vector Processor Customiza-
tion for FFT. In International Conference on Embeded Computer
Systems (SAMOS), pages 110–117, 2011.

[3] C. Temperton. Fast Fourier Transforms and Poisson solvers on Cray-1.
In Infotech State of the Art Report: Supercomputers, vol 2, pages 359 –
379, 1979.

[4] C. Temperton. Implementation of a prime factor FFT algorithm on
Cray-1. In Parallel Computing 6, pages 99 – 108, 1988.

[5] D Takahashi. An implementation of parallel 1-D FFT using SSE3
instructions on dual-core processors. In PARA’06 Proceedings of the 8th
international conference on Applied parallel computing, pages 1178–
1187, 2007.

[6] D.H. Bailey. FFT’s in external or hierarchical memory. In Journal of
Supercomputing 4, pages 23 – 35, 1990.

[7] E. Bidet, D. Castelain, C. Joanblanq, P. Senn. A fast single-chip
implementation of 8192 complex point FFT . In Journal on Solid-State
Circuits, pages 300–305, 1995.

[8] G. Sunada, J. Jin, M. Berzins, T. Chen. COBRA: an 1.2 million transistor
expandable column FFT chip. In International Conference on Computer
Design: VLSI in Computers and Processors, pages 546–550, 1994.

[9] J. O’Brien, J. Mather, B. Holland. A 200 MIPS single-chip 1k FFT
processor. In International Solid-State Circuits Conference, pages 166–
167, 1989.

[10] J.W. Cooley, J.W. Tukey. An algorithm for the machine computation of
the complex Fourier series. In Mathematics of Computation 19, pages
297–301, 1965.

[11] M.C Pease. An adaptation of the fast Fourier Transform for parallel
processing. In J. ACM 15, pages 252–264, 1968.

[12] P. A. Ruetz, M. M. Cai. A real time FFT chip set: architectural issues. In
10th International Conference on Pattern Recognition, pages 385–388,
1990.

[13] P. N. Swarztrauber. FFT algorithms for vector computers. In Parallel
Computing 1, pages 45 – 63, 1984.

[14] S. He, M. Torkelson. Design and implementation of a 1024-point
pipeline FFT processor. In Custom Integrated Circuits Conference, pages
131–134, 1998.

[15] W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel, W.W.
Lang, G.C. Maling, Jr., D.E. Nelson, C.M. Reader and P.D. Welch. What
is the fast Fourier transform? In IEEE, Trans. Audio Electroacoustics
Au-15, pages 45 – 55, 1967.


