
Efficient Software-Based Fault Tolerance Approach
on Multicore Platforms

Hamid Mushtaq, Zaid Al-Ars, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract—This paper describes a low overhead software-
based fault tolerance approach for shared memory multicore
systems. The scheme is implemented at user-space level and
requires almost no changes to the original application. Redundant
multithreaded processes are used to detect soft errors and recover
from them. Our scheme makes sure that the execution of the
redundant processes is identical even in the presence of non-
determinism due to shared memory accesses. It provides a very
low overhead mechanism to achieve this. Moreover it implements
a fast error detection and recovery mechanism. The overhead
incurred by our approach ranges from 0% to 18% for selected
benchmarks. This is lower than comparable systems published
in literature.

I. INTRODUCTION

The abundant computational resources available in mul-
ticore systems have made it feasible to implement otherwise
prohibitively intensive tasks on consumer grade systems. How-
ever, these systems integrate billions of transistors to imple-
ment multiple cores on a single die, thus raising reliability
concerns, as smaller transistors are more susceptible to both
transient [12] as well as permanent [13] faults.

A common approach for providing fault tolerance is to
perform redundant execution of the software. This is done
by using the state machine replication approach [14]. In
this approach the replicated copies of a process (known as
replicas) follow the same execution sequence and produce
the same output if given the same input. This requirement
necessitates that the replicas handle non-deterministic events
such as asynchronous signals and non-deterministic functions
(such as gettimeofday) deterministically. This is usually done
by having one replica log the non-deterministic events and have
the other replicas replay them at the same point in program
execution. In a shared memory multithreaded program, this
also means that the original and replica processes perform non-
deterministic shared memory accesses deterministically, so that
they do not diverge in the absence of faults.

Different software-based solutions have been proposed,
for deterministic execution of shared memory multithreaded
programs on multicore processors, such as DTHREADS [9]
and CoreDet [1], which are too slow to be used for practical
purposes. On the other hand, Kendo [7], while an efficient
solution, suffers from portability problem as it requires the use
of deterministic hardware performance counters, which are not
available on many platforms [10]. Respec [5] is a record/replay
approach for fault tolerance, that requires kernel modification
and also does not have highly efficient method of memory

comparison for error detection. Moreover, it does not perform
deterministic execution very efficiently for benchmarks with
high lock frequencies.

In this paper, we describe a software based efficient fault
tolerance scheme that performs the following.

1) The scheme is implemented using a user-level library
and does not require a modified kernel.

2) Record and Replay of synchronization operations is
made efficient and scalable by eliminating atomic
operations and true and false sharing of cache lines.

3) The error detection mechanism is optimized to per-
form memory comparisons of the replicas efficiently
in user-space.

In Section II we discuss the background and related work,
while in Section III, we discuss the implementation. In Sec-
tion IV, we evaluate the performance of our scheme. We finally
conclude the paper with Section V.

II. BACKGROUND AND RELATED WORK

For error detection of software running on a single core,
fault tolerant systems commonly employ redundant execution
at different levels of abstraction, at instruction, process or
virtual machine level [15]. Schemes which work at instruction
level have low error detection latencies, especially those which
operate at hardware level. On the other hand, schemes which
work at process and virtual machine level allow error to prop-
agate before detecting it. Another important issue in process
level and virtual machine level systems is that they need to
cater for non-deterministic events, such as interrupts and non-
deterministic functions, such as time of the day. They need to
make sure that execution of the replicas is deterministic with
respect to each other. Such schemes usually use the concept of
primary and backup replicas, where the primary is responsible
for logging information about the non-deterministic events to
be used by the backups. For this purpose, non-deterministic
events such asynchronous signals have to be executed at
the same point in the code by the replicas. As an example,
[16] defers asynchronous signal handling to known points in
the code, such as function calls, system calls or backward
branches.

In multithreaded programs running on multicore proces-
sors, there is one more source of non-determinism, which
is shared memory accesses. These accesses are much more
frequent than interrupts or signals. Therefore, efficient deter-
ministic execution of replicas in such systems is much more
difficult to achieve.978-3-9815370-0-0/DATE13/ c©2013 EDAA



Leader process Follower process

ReadsWrites

Checkpoint process

Creates/Starts on error/
Kills when taking next 

checkpoint

Watchdog process

Creates

Creates/Signals

Starts on timeout 
error

Kills on timeout error

Kills on timeout 
error

ReadsWrites

Shared Memory

Kills on error

Signals on error

Kills on error

Fig. 1. Data flow diagram of our fault tolerance scheme

Lately, effort has been done to create deterministic lan-
guages, that ensure deterministic execution of a program. Ex-
amples of programming languages designed for deterministic
parallel execution are StreamIt [8] and SHIM [3]. However
porting programs written in traditional languages to determin-
istic languages is difficult as the learning curve is high for
programmers used to programming in traditional languages.
Therefore, deterministic execution at runtime is still the only
viable solution to most users.

One such method for runtime deterministic execution is
CoreDet [1] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve determin-
ism. Since this method requires bulk syncrhonous quantas,
it has a very high overhead (1-11x for 8 cores) and limited
scalability.

Kendo [7] is a software approach that works only on
programs without data races, that is, those that access shared
memory only through synchronization objects. It executes
threads deterministically and performs load balancing by only
allowing a thread to complete a synchronization operation
when its logical clock, which is used to perform deterministic
execution, becomes less than those of the other threads. Since
this method requires global communication among threads for
reading clock values, it also has limited scalability.

Respec [5] is a record/replay software approach that only
logs synchronization objects rather than every shared memory
access. If divergence is found between the replicas, it roll-
backs and re-execute from a previous checkpoint. However,
if divergence is found again on re-execution, a race condition
is assumed. At that point, a stricter deterministic execution
is performed. It uses producer-consumer queues. A queue is
shared between a thread in the leader and its corresponding
thread in the follower and is used to record logical clocks
for mutexes. Each recorded operation atomically increments a
clock. Since having a producer-consumer queue for each mutex
will require a large memory, Respec only uses fixed number
of clocks, that is, 512. The hash of the address of a mutex
is used to point to its logical clock. A thread in the follower
process only acquires a mutex when its logical clock matches
that recorded by the corresponding thread of the leader.

III. FAULT TOLERANCE SCHEME

Our fault tolerant scheme is intended to reduce probability
of failures in the presence of transient faults. The data flow
diagram of our fault tolerance scheme is shown in Figure 1.
Initially, the leader process (which is the original process
highlighted in the figure) creates the watchdog and follower
processes. The follower process is identical to the leader

process and follows the same execution path. The execution
is divided into time slices known as epochs. An epoch starts
and ends at a program barrier. At the end of each epoch, the
memories of the leader and follower processes are compared
by the follower. If no divergence is found, a checkpoint is
taken and output to files or screen is committed. The previous
checkpoint is also deleted. The checkpoint is basically a
suspended process which is identical to the leader process at
the time the checkpoint is taken. If a divergence is found at
the end of an epoch, the follower process signals an error
to the leader process which in turn signals the checkpoint
process to start and kills itself and its follower. This can also
happen inside an epoch, if the follower sees that the parameters
(of synchronization functions or system calls) logged by the
leader do not match those read by the follower. When the
checkpoint process starts, it becomes the leader and creates its
own follower. It might also happen that the leader or follower
processes are unable to reach the end of an epoch, due to
some error which hangs them. In that case, the watchdog
process detects those hangs by using timeouts and signals the
checkpoint process to start. The watchdog process itself is less
vulnerable to transient faults as it remains idle most of the time.

At this moment, our fault tolerant scheme does not work
with programs that use inter process communication (such as
through pipes and shared memory). The only form of I/O
allowed is disk I/O and screen output. Moreover, our scheme
assumes that there are no data races in the program. Lastly, we
have not added functionality to handle asynchronous signals.
However, this functionality can be added for user space by
handling asynchronous signals at synchronous points, such as
system calls, as done by Scribe [17].

In Section III-A, we discuss how we allow deterministic
execution of the replicas. This is followed by Section III-B
which discusses error detection. Finally in Section III-C, we
discuss our recovery mechanism.

A. Deterministic execution

For deterministic execution, we need to ensure that replicas
use the same memory addresses. We also need to ensure
determinism in the presence of non-deterministic functions and
shared memory accesses. Moreover, we need to make sure
that the leader and follower processes use the same memory
addresses. For this we need to have a deterministic memory
allocation scheme. Finally we also need to make sure that we
have deterministic I/O. Below we discuss how we handle these
issues.

1) Replica creation: Our library creates a follower from
the leader process by using fork system call, at the beginning
and also when a rollback is done. This is because at a rollback,
the checkpoint process becomes the leader and creates its own
follower, which uses the same memory addresses as the leader
process. We use our own version of pthread create function to
make sure that the leader and follower processes use the same
stack addresses for the threads. For this purpose, the leader
process logs these addresses to be consumed by the follower.
For thread identification, we use a thread local variable, so that
we can relate a thread in the follower process with that in the
leader process.



Shared Memory

Thread 1 of 
Leader

Thread 2 of 
Leader

Thread 1 of 
Follower

Thread 2 of 
Follower

Queue for Thread 2

Queue for Thread 1

Produces

ConsumesProduces

Consumes

Fig. 2. Communication between the leader and follower processes for
deterministic execution

2) Memory allocation: We implement our own memory
allocation functions to allocate memory deterministically. In an
operating system with Address Space Layout Randomization
(ASLR), malloc can be non-deterministic. This is because
malloc internally uses mmap for allocating memory blocks
of large sizes and mmap can be non-deterministic. Therefore,
whenever the memory allocator uses mmap, we make sure the
follower has the same address returned for mmap by calling
mmap with MAP FIXED flag and the address returned by the
leader process.We also make sure that threads of the leader and
follower processes call the malloc function in the same order
by internally using a mutex, which is locked and unlocked
deterministically.

The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
memory, which is allocated with mmap. This memory is not
compared for error detection.

3) Deterministic shared memory accesses: For redundant
deterministic execution, it is necessary that the leader and
follower processes perform shared memory accesses in the
same order. For this purpose, a mutex is enclosed in a special
data structure, which also contains a pointer to clocks for that
mutex to aid in deterministic execution. Whenever a thread in
the leader process acquires a mutex, it increments the mutex’s
clock. A thread in the follower only acquires the same mutex in
its execution, when its clock matches that for the corresponding
thread in the leader.

We create our own deterministic versions of pthread’s
synchronization functions, such as pthread mutex lock,
pthread mutex unlock, pthread trylock, pthread cond wait,
pthread broadcast, pthread barrier wait etc. Since
pthread mutex lock is the mostly used and is also used
in our implementation of other pthread synchronization
functions, we discuss our pthread mutex lock algorithm here,
which is shown in Algorithm 1. We also have our own versions
of data structures for representing the synchronization objects,
for example, pthread mutex log t instead of pthread mutex t.
Here m represents an object of pthread mutex log t structure
which holds a mutex and its clocks. There is one such object
for each mutex in the program. Therefore, deterministic
access to a mutex is independent of other mutexes in the
program, hence improving scalability.

When a leader thread acquires a mutex, it increments the
leader’s clock for that mutex and also records that value in
a circular queue, so that the follower can acquire the thread
when its clock reaches one less than the same value. The

Algorithm 1 Pseudocode for deterministic lock
function R PTHREAD MUTEX LOCK(ref pthread mutex log t m)

q = GetQueue(tid) . There is a separate queue for each thread
if isLeader then

r = lock(m.mutex)
if r == 0 then . Only if lock call is successful, increment the clock

m.clock = m.clock + 1 . m.clock does not need to be atomic
end if
while !pushq(q, MUTEXLOCK, m.mutex, m.clock, r)
end while
return r

else . Follower
while not !popq(q, ref type, ref mutex, ref clock, ref r)
end while
if type != MUTEXLOCK and mutex != m.mutex then . Logged parameters do not match

SignalErrorAndExit()
end if
if r != 0 then

return r
end if
while (m.clock+1) != clock
end while
lock(m.mutex)
m.clock = m.clock + 1
return 0

end if
end function

function PUSHQ(q, type, addr, clock, r) . Called by Leader
lindex = GetLeaderQIndex(tid)
if checkQElementsForZero(lindex) then

q[lindex].type = type
q[lindex].addr = addr
q[lindex].clock = clock
q[lindex].r = r + 1
SetLeaderQIndex((lindex + 1) %QCAPACITY)
return TRUE

else
return FALSE

end if
end function

function POPQ(q, ref type, ref addr, ref clock, ref r) . Called by Follower
findex = GetFollowerQIndex(tid)
if checkQElementsForNonZero(qindex) then

type = q[findex].type
addr = q[findex].addr
clock = q[findex].clock
r = q[findex].r - 1
setQElementsToZero(findex)
SetFollowerQIndex((findex + 1) %QCAPACITY)
return TRUE

else
return FALSE

end if
end function

communication between the leader and follower processes is
shown in Figure 2. After acquiring the mutex, the follower
also increments its clock for that mutex. Unlike Respec which
uses a hash table of 512 entries to keep clocks for all the
syncrhonization objects, we use a separate clock for each
mutex. The benefit of this is that we can avoid using atomic
variables for accessing the clocks, as clock can be incremented
after acquiring the lock.

We also optimize the queue access by avoid using atomic
variables and avoiding true and false sharing of cache lines. For
that purpose, we use a lockless queue as shown by pushq and
popq functions in Algorithm 1. This is unlike Respec which
uses atomic operations if necessary to access the queue. The
typical method of using a lockless queue (which we call naive
in this paper) is to use shared tail and head indexes. Since
in this method, producer and consumer read the head or tail
indexes at the same time when the other is writing to it, this
causes cache trashing. Hence it is a true sharing problem. We
avoid this by having local indexes for producer (leader) and
consumer (follower). The check for emptiness and fullness is
done by checking the data value instead. Producer only writes
to the queue when all the fields of the queue element it is
about to write to, are zero, while the consumer only reads



when all the fields of the queue element are non-zero. Here,
since the value of r, which represents the result returned by
a synchronization function can be zero, We add one to its
value while pushing and subtract one from it when popping.
We make sure that the indexes for leader and follower do not
share the same cache line by having sufficient padding between
them. This makes sure that we do not have the problem of false
sharing.

4) System Calls, Non-deterministic functions and I/O: We
use LD PRELOAD to preload the system call wrappers found
in glibc with our own version which perform logging. This
is possible, because most of the system calls can be and are
usually called through their user-space wrapper functions. This
method will not work however, if for example, a system call is
made without using the wrapper function, for example, by us-
ing inline assembly. So, with our library, the programmer needs
to make sure to not make a system call directly. Since the glibc
library sometimes also make system calls directly, for example,
by making the clone system call in pthread create function,
we provide our version of pthread create. We also provide
our own version of non-deterministic functions such as get-
timeofday and rand and preload them using LD PRELOAD.
The leader performs logging of the parameters and output
of these non-deterministic functions and system calls. The
logged parameters are used by the follower to check for errors
(by checking for discrepancies), whereas the logged output is
just read by the follower. Furthermore, each non-deterministic
function and system call is protected by a deterministic lock
so that the leader and follower processes perform these calls
in the same order.

For I/O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during an
epoch. For that purpose, no output is committed during an
epoch. Instead it is buffered. Our library overrides the write and
read system call wrappers to allow buffering of the data. The
buffers are committed at the end of an epoch after comparing
the buffer contents of the leader and follower by using hash-
sums. For this purpose, each file opened for writing is allocated
a special buffer. It is important that addresses of these buffers
are the same for the leader and follower process. For this
purpose, we use a deterministic memory allocation scheme
like the one described in Section III-A2. For sequential file
reading, the file offset value is saved at the end of each epoch,
so that the file can be rewinded to the previous value in case
of rollback.

B. Error detection

At regular intervals of 1 second, known as epochs, dirtied
memories of the leader and follower processes are compared.
However, the epoch time is reduced to 100 ms if a file or
screen output occurs during the epoch. Instead of comparing
each memory one by one, the leader and follower processes
calculate hash-sums of the dirtied (modified) memory pages,
which are then compared. If a discrepancy is found, a fault is
detected. The hash-sums are calculated much faster by using
the CRC32 instruction of the SSE4.2 instruction set found on
modern x86 processors.

The comparison is made even faster by assigning each
thread to calculate hash-sum of different portions of the

Memory space

Segment 1

Page 1 Page 2 Page 3 Page 4

Fig. 3. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

memory. Follower keeps its hash-sums in shared memory so
that the leader can read it from there for comparison. We
perform memory comparison at barriers which are already
found in the program rather than stopping and creating a
barrier. This improves the performance, as threads already wait
for each other at barriers. If insufficient barriers are found
in the program, the programmer can insert calls to function
potential barrier wait, which is provided by our library. This
function creates a barrier only when required, that is at the
end of an epoch.

Since our scheme runs at the user-space level, we cannot
note down dirtied pages while handling page faults (from the
kernel), the way Respec does, which is the most efficient
method possible. We take special steps to improve its per-
formance at user-space level.

At start of each epoch, we give only read access to allocated
memory pages. Whenever a page is accessed for writing, the
OS sends a signal to the accessing thread. In the signal handler,
the address of the memory page is noted down and both read
and write accesses are given to that memory page. In this
way, we only need to compare the dirtied memory pages at
the end of an epoch. Sending signals on each memory page
access violation can slow down execution. Therefore, to reduce
the number of such signals, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 3. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section IV, where we discuss
the performance evaluation.

Some functions, like that for comparing memories, change
the stacks differently for the leader and follower threads. For
those purposes, we switch to a temporary stack, so that the
original stack remains unaltered from such functions.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.
In that signal, the process ID of the checkpoint is also sent,
so that the watchdog is able to start the checkpoint process in
case it detects hang of leader or follower process. Hangs are
detected by using timeout. Besides sending the process ID of
the checkpoint, the leader also sends process ID of itself and
the follower process when it forks the follower, so that the
watchdog process can kill the leader and follower processes
before starting the checkpoint process.

C. Recovery

As discussed previously, for fault recovery, we use check-
point/rollback. whenever the leader takes a checkpoint, it kills
the previous checkpoint. If the leader process detects an error,
or the Watchdog process detects a hang, a signal is sent to
the last checkpoint process, so that the checkpoint process



can start execution. The leader and its follower are killed at
that point. The checkpoint process then assumes the role of
the leader and forks its own follower. It also creates a new
checkpoint. Moreover, it resets the mutex clocks (which exist
in shared memory), since they could have been corrupted by
an error. Checkpoints are taken only at barrier points. For
creating a multithreaded follower, we have implemented a
special multithreaded fork function that replicates the leader
process to create the follower.

IV. PERFORMANCE EVALUATION

We selected 8 benchmarks, two from the PARSEC [2] and
six from the SPLASH-2 [11] benchmark sets. We ran all our
benchmarks on an 8 core (dual socket with 2 quad cores), 2.67
GHz Intel Xeon processor with 32GB of RAM. All programs
were compiled using gcc 4.4.4 with optimization level -O3.
The results are shown in Table I.

For each benchmark, we show the results when the bench-
mark runs for 2 and 4 threads. Number of epochs executed are
shown in the third column, while number of synchronization
operations performed by each process is shown in the fourth
one. This is followed by the number of barriers and total
number of memory pages compared for error detection. Then
the table shows the redundant execution time, which is the
time to execute two instances of the same application. For
redundant execution, each instance is executed on one of the
two different quad core processors of the dual socket system.
Next we show the time for deterministic execution scheme,
which is execution without performing error detection and
checkpointing but only deterministic locking and unlocking of
the mutexes. This is followed by the overall execution (with
error detection, checkpointing and Watchdog process). Next we
show the overheads of the deterministic and overall execution
with respect to the redundant time. For overall execution, the
results are shown with memory grouping size of 4.

A. Results

Figure 4 shows the improvement that we get by avoiding
atomic variables and having an optimized queue. The left bars
are obtained by running the benchmarks with 2 threads while
right bars are obtained with 4 threads. The lower portion of
the bar shows the overhead with our lockless queue and our
method for keeping the clocks for mutexes, while the middle
portion shows the additional overhead that we get when we use
Respec’s method of using a Hash Table for mutex clocks. The
upper most portion shows the additional overhead by using
naive lockless queue.

We can see that for fluidanimate, which has a high lock
frequency, we have a significant improvement in performance
of deterministic execution. Furthermore, our method of using
separate clocks for each mutex is more scalable than Respec’s
method of using limited clocks and accessing them through
a Hash table, that requires atomic operations. The scalability
here can be assessed by the fact that for two threads, our
scheme and Respec’s scheme perform similarly, while for
four threads, our scheme performs far better. From this result,
we can predict that our scheme will have even better results
compared to Respec for larger number of cores. Furthermore,
our lockless queue also shows much better scalability than a

 0

 20

 40

 60

 80

 100

 120

2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T

O
ve

rh
ea

d 
(%

)

Benchmark

With our queue and method for keeping clocks
Additional overhead with Respec’s Hash Table for clocks

Additional overhead with naive lockless queue

watervolrendswaptionsraytraceradixradiosityoceanfluidanimate

Fig. 4. Deterministic execution overhead

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T

O
ve

rh
ea

d 
(%

)

Benchmark

With CRC32 instruction
Additional overhead without CRC32 instruction (Like Respec)

watervolrendswaptionsraytraceradixradiosityoceanfluidanimate

Fig. 5. Memory comparison overhead with and without CRC32 instruction

naive lockless queue due to avoiding true and false sharing of
cache lines. Note that we do not get as much improvement
for radiosity, which also has a high lock frequency, because it
uses much fewer mutexes than fluidanimate, and hence fewer
clocks, causing more contention in communication between
the leader and follower threads.

Figure 5 shows the improvement that we get from using the
CRC32 instruction (as opposed to Respec which does not use
that instruction) for calculating hash sums for error detection.
The results are especially impressive for benchmarks which
modify higher number of pages, such as fluidanimate, ocean
and radix.

In Figure 6, we show the overall results in the form of
bar graphs, with each factor shown separately. Due to the
optimizations we discussed and reduction in epoch overhead,
which will be discussed in the next section, the overhead never
exceeds 18% for four threads and is negligible for benchmarks
with small memory usage and low lock frequencies.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T 2T 4T

O
ve

rh
ea

d 
(%

)

Benchmark

Deterministic Execution Overhead
Epoch Overhead

Memory Comparison Overhead
Watchdog and Other Overheads

watervolrendswaptionsraytraceradixradiosityoceanfluidanimate

Fig. 6. Overall overhead



TABLE I. PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS

Benchmarks Threads Epochs Synch Ops Barriers Pages modi-
fied

Redundant
exec time
(ms)

Deterministic
exec time (ms)

Overall
time (ms)

Det exec over-
head w.r.t Redt
exec time(%)

Overall overhead
w.r.t Redt exec
time (%)

fluidanimate 2 3 8689200 161 25238 2073 2149 2168 4% 5%
4 2 16909680 161 25136 1294 1370 1392 6% 8%

ocean 2 3 10092 10763 103398 2819 2929 3008 4% 7%
4 2 20184 10763 74518 1840 1960 2029 7% 10%

radiosity 2 2 8981938 19 10378 1199 1330 1347 11% 12%
4 2 8900495 19 10344 887 1019 1043 15% 18%

radix 2 2 18 12 57706 1072 1074 1138 0% 6%
4 1 54 12 35170 624 628 666 1% 7%

raytrace 2 2 243914 2 200 1214 1277 1325 5% 9%
4 1 243918 2 148 690 706 702 2% 2%

swaptions 2 1 77020 1 6 510 510 510 0% 0%
4 1 77020 1 8 239 242 242 1% 1%

volrend 2 3 459760 241 160 2490 2496 2503 0% 1%
4 2 463922 241 154 1443 1444 1462 0% 1%

water 2 2 125047 664 474 1889 1941 1948 3% 3%
4 2 188142 664 550 1125 1139 1148 1% 2%

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

Number of pages in a memory segment

E
po

ch
 o

ve
rh

ea
d 

(%
)

 

 
fluidanimate
ocean
radiosity
radix
raytrace
swaptions
volrend
water

Fig. 7. Reduction in overhead by grouping memory into segments

B. Impact of Grouping Memory Pages

Figure 7 shows the impact of grouping memory pages (see
Section III-B) on the performance. The overhead shown is
the epoch overhead which mainly consists of the overhead
of signals for noting down dirtied memory pages. We can
see that for applications like ocean and radix which have
high memory usage, we get significant performance gains
using page grouping. However, it has to be noted that there
is a limit to the number of pages which can be grouped for
optimal performance, as grouping too many pages will cause
the application to compare more pages which have not been
actually modified by that application, thus creating unnecessary
overhead.

V. CONCLUSION

In this paper, we described the design and implementation
of a user-space level leader/follower based fault tolerance
scheme for multithreaded applications running on multicore
processors. We applied several optimizations to speedup the
execution, like avoiding atomic variables, true and false sharing
of cache lines for recording/replaying synchronization opera-
tions, reducing signals sent by the OS on page faults (used
to note down dirtied pages) and using the CRC32 instruction
from SSE4.2 instruction set to greatly improve error checking
performance. Empirical measurements on tested benchmarks
show that the overhead does not exceeds 18% for four threads.
We compared our results with Respec and showed that our
scheme is more efficient in performing deterministic execution
and comparing memories for error detection. Moreover, we
showed that by grouping memory pages, we considerably
reduced the overhead of signals used for noting modified
memory pages.

ACKNOWLEDGMENT

This research has been funded by the projects Smecy
100230, iFEST 100203 and REFLECT 248976.

REFERENCES

[1] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Coredet:
a compiler and runtime system for deterministic multithreaded execution.
SIGARCH Comput. Archit. News, 38:53–64, March 2010.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
characterization and architectural implications. PACT ’08, pages 72–81.

[3] S. A. Edwards and O. Tardieu. Shim: a deterministic model for
heterogeneous embedded systems. EMSOFT ’05, pages 264–272.

[4] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or
not? free will to choose. HPCA ’11, pages 333 –334, feb.

[5] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn. Respec: Efficient online multiprocessor replay via speculation
and external determinism, ASPLOS ’10, pages 77–90.

[6] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording and
deterministically replaying shared-memory multiprocessor execution ef-
ficiently. ISCA ’08, pages 289–300.

[7] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient deter-
ministic multithreading in software. SIGPLAN Not., 44:97–108, March
2009.

[8] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A language
for streaming applications. In Proceedings of the 11th International
Conference on Compiler Construction, CC ’02, pages 179–196.

[9] E. D. B. Tongping Liu, Charlie Curtsinger. Dthreads: Efficient determin-
istic multithreading. SOSP ’11, pages 327–336.

[10] V. Weaver and S. McKee. Can hardware performance counters be
trusted? In Workload Characterization, 2008. IISWC 2008. IEEE
International Symposium on, pages 141 –150.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
splash-2 programs: characterization and methodological considerations.
SIGARCH Comput. Archit. News, 23:24–36, May 1995.

[12] R. Baumann. Soft errors in advanced semiconductor devices-part i:
the three radiation sources. Device and Materials Reliability, IEEE
Transactions on, 1(1):17 –22, mar 2001.

[13] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf,
and K. Sankaralingam. Sampling + dmr: practical and low-overhead
permanent fault detection. ISCA ’11, pages 201–212.

[14] F. B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: a tutorial. ACM Comput. Surv., 22:299–319, December
1990.

[15] H. Mushtaq, Z. Al-Ars, and K. Bertels. Survey of fault tolerance
techniques for shared memory multicore/multiprocessor systems. IDT
2011, pages 12–17.

[16] A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors. Plr: A
software approach to transient fault tolerance for multicore architectures.
Dependable and Secure Computing, IEEE Transactions on, 6(2):135 –
148, 2009.

[17] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight applica-
tion execution replay on commodity multiprocessor operating systems.
SIGMETRICS Perform. Eval. Rev., 38(1):155–166, June 2010.


