
Fault Tolerance on Multicore Processors using Deterministic Multithreading

Hamid Mushtaq, Zaid Al-Ars, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract—This paper describes a software based fault toler-
ance approach for multithreaded programs running on multi-
core processors. Redundant multithreaded processes are used
to detect soft errors and recover from them. Our scheme makes
sure that the execution of the redundant processes is identical
even in the presence of non-determinism due to shared memory
accesses. This is done by making sure that the redundant
processes acquire the locks for accessing the shared memory
in the same order. Instead of using record/replay technique to
do that, our scheme is based on deterministic multithreading,
meaning that for the same input, a multithreaded program
always have the same lock interleaving. Unlike record/replay
systems, this eliminates the requirement for communication
between the redundant processes. Moreover, our scheme is
implemented totally in software, requiring no special hardware,
making it very portable. Furthermore, our scheme is totally
implemented at user-level, requiring no modification of the
kernel. For selected benchmarks, our scheme adds an average
overhead of 49% for 4 threads.

I. INTRODUCTION

The abundant computational resources available in multi-
core systems have made it feasible to implement otherwise
prohibitively intensive tasks on consumer grade systems.
However, these systems integrate billions of transistors to
implement multiple cores on a single die, thus raising reli-
ability concerns, as smaller transistors are more susceptible
to both transient [10] as well as permanent [11] faults.

A common approach for providing fault tolerance is to
perform redundant execution of the software. This is done
by using the state machine replication approach [12]. In
this approach the replicated copies of a process (known as
replicas) follow the same execution sequence and produce
the same output if given the same input. This requirement
necessitates that the replicas handle non-deterministic events
such as asynchronous signals and non-deterministic func-
tions (such as gettimeofday) deterministically. This is usually
done by having one replica log the non-deterministic events
and have the other replicas replay them at the same point
in program execution. In a shared memory multithreaded
program, this also means that the replicas perform non-
deterministic shared memory accesses deterministically, so
that they do not diverge in the absence of faults.

One way of making sure that the redundant processes
access the shared memory in the same order is to perform
record/replay where the leader process records the order
of locks (to access shared memory) in a queue which is
shared between the leader and follower. The follower in turn

reads from that queue to have the same lock acquisitions
order. This approach is used by Respec [4] and our previous
work [6]. However, this requires communication between the
leader and follower process, which decreases reliability, as
the memory used for communicating might itself become
corrupted due a soft error. Moreover, it requires extra mem-
ory.

In this scheme, instead of depending on record/replay,
we use deterministic multithreading, that is, given the same
input, a multithreaded process always have the same lock
interleaving. This makes sure that the redundant processes
acquire the locks in the same order without communicating
with each other. We adapt the method used by Kendo [5]
to do this, but unlike Kendo, our scheme neither requires
deterministic hardware performance counters, which are not
available on many platforms [8] (including many x86 sys-
tems), nor kernel modification for deterministic execution.
The logical clocks used for deterministic execution are
inserted by the compiler instead.

We can sum up the contributions of this paper as follows.
1) The scheme is implemented using a user-level library

and does not require a modified kernel.
2) The scheme uses deterministic multithreading instead

of record/replay to ensure that the redundant processes
acquire locks for shared memory access in the same
order. This eliminates the requirement of communica-
tion between replicas for deterministic shared memory
accesses, making the system more reliable (by increas-
ing isolation). Moreover, it consumes less memory.

3) The scheme is very portable since it does not depend
upon any special hardware for determinisitic execu-
tion.

In Section II we discuss the background and related work,
while in Section III, we discuss our fault tolerance scheme.
This is followed by Section IV, where we discuss the
implementation. In Section V, we evaluate the performance
of our scheme, and we finally conclude the paper with
Section VI.

II. BACKGROUND AND RELATED WORK

A fault tolerant system which uses redundant execution
needs to make sure that the redundant processes do not di-
verge in the absence of faults. In a single threaded program,



in the absence of any fault, the only possible causes of diver-
gence among the replicas can be non-deterministic functions
(such as gettimeofday) or asynchronous signals/interrupts.

However, in multithreaded programs running on multicore
processors, there is one more source of non-determinism,
which is shared memory accesses. These accesses are much
more frequent than interrupts or signals. Therefore, efficient
deterministic execution of replicas in such systems is much
more difficult to achieve.

One method to ensure redundant processes access shared
memory in the same order is record/replay. Both software
and hardware methods exist for that purpose. An example
of hardware approach is Karma [14] which intercepts the
cache coherence protocols to record inter-processor data
dependencies and later use these recorded data dependencies
to replay. Respec [4] is a software-based method. It logs
the ordering of acquisition and release of synchronization
objects, such as mutexes, to make replicas acquire the
synchronization objects in the same order. It also performs
checkpoint/rollback to perform recovery.

The disadvantage of employing record/replay for deter-
ministic shared memory accesses is that it requires com-
munication between the replicas, making the fault tolerant
scheme less reliable as the shared memory used for commu-
nication can itself become corrupted by one of the replicas.
Moreover it requires extra memory.

To eliminate this communication and memory require-
ment, we can employ deterministic multithreading, where
a multithreaded process have always the same memory
interleaving for the same input. The ideal situation would
be to make a multithreaded program deterministic even in
the presence of race conditions, that is, provide strong deter-
minism. This is not possible to do efficiently with software
alone though. One can use a relaxed memory model where
every thread writes to its own private memory, while data
to shared memory is committed only at intervals. However,
stopping threads regularly for committing to shared memory
degrades performance as demonstrated by CoreDet [1],
which has a maximum overhead of 11x for 8 cores. We
can reduce the amount of committing to the shared mem-
ory by only committing at synchronization points such as
locks, barriers or thread creation. This approach is taken by
DTHREADS [7]. Here one can still imagine the slowdown
in case of applications with high lock frequencies. Moreover,
since in this case committing to the shared memory is done
less frequently, more data has to be committed, thus also
making it slow for applications with high memory usage.
This is why hardware approaches have been proposed to
increase efficiency of deterministic execution. An example
of such approach is Calvin [3], which uses the same concept
as CoreDet for deterministic execution but make use of a
special hardware for that purpose.

Since performing deterministic execution in software
alone is inefficient, one can relax the requirements to im-

Leader process Follower process

ReadsWrites

Checkpoint process

Creates/Starts on error/
Kills when taking next 

checkpoint

Watchdog process

Creates

Creates/Signals

Starts on timeout 
error

Kills on timeout error

Kills on timeout 
error

ReadsWrites

Shared Memory

Kills on error

Signals on error

Kills on error

Figure 1. Block diagram of our fault tolerance scheme
prove efficiency. For example, Kendo [5] does this by only
supporting deterministic execution for well written programs
that protect every shared memory access through locks. In
other words, it supports deterministic execution only for
programs without race conditions. The authors of Kendo call
it Weak Determinism. Considering the fact that most well
written programs are race free and there exist tools to detect
race conditions, such as Valgrind [15], Weak Determinism is
sufficient for most well written multithreaded programs.

The basic idea of Kendo is that it uses logical clocks for
each thread to determine when a thread will acquire a lock.
The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from
portability problems. First of all, it requires deterministic
hardware performance counters for counting logical clocks.
Many popular platforms (including many x86 platforms)
do not have any hardware performance counters that are
deterministic [8]. Secondly, Kendo needs modification of
the kernel to allow reading from the hardware performance
counters.

III. FAULT TOLERANCE SCHEME

Our fault tolerant scheme is intended to reduce probability
of failures in the presence of transient faults. The block
diagram of our fault tolerance scheme is shown in Figure 1.

Initially, the leader process (which is the original process
highlighted in the figure) creates the watchdog and follower
processes. The follower process is identical to the leader
process and follows the same execution path. The execution
is divided into time slices known as epochs. An epoch starts
and ends at a program barrier. At the end of each epoch, the
memories of the leader and follower processes are compared.
If no divergence is found, a checkpoint is taken and output
to files or screen is committed. The previous checkpoint
is also deleted. The checkpoint is basically a suspended
process which is identical to the leader process at the time
the checkpoint is taken. If a divergence is found at the end
of an epoch, execution is restarted from the last checkpoint
by resuming the checkpoint process and killing the leader
and follower processes. This can also happen inside an
epoch, if the follower sees that the parameters of system
calls logged by the leader do not match those read by the
follower, in which case it signals the leader process to restart
execution from the last checkpoint. When the checkpoint
process starts, it becomes the leader and creates its own
follower. The watchdog process is used to detect timeout



State Machine 
Replication

Record/Replay
Deterministic 

Multithreading

Error Checking 
and Recovery

Double Modular 
Redundancy with 

checkpoint/
rollback

Triple Modular 
Redundancy with 

Fault Masking

Reliable 
System

Unreliable 
System

Approach used 
in this paper

Approach used by 
Respec and our 
previous work

Figure 2. Steps used by our fault tolerance scheme
errors and recover from them. This is done by having the
watchdog process signal the checkpoint process to start on
a timeout error.

The approach used in this paper is different from Respec
and our previous work [6] in the way it makes sure that
leader and follower processes are identical in the presence
of non-deterministic shared memory accesses. While Respec
and our previous work used the record/replay technique,
where the leader logs the synchronization operations (to
access shared memory) in a queue which is then read by
the follower to have the same order of synchronization op-
erations, in this paper, we use deterministic multithreading,
which does not require such type of communication, thus
improving isolation and fault tolerance. The difference in
these two approaches is illustrated in Figure 2. Note that in
this approach, we still use shared memory between leader
and follower, but only to log results from non-deterministic
functions and type, input parameters and results of system
calls, besides using it for memory comparison at the end of
epochs for error checking.

At this moment, our fault tolerance scheme does not
work with programs that use inter process communication
(through pipes and shared memory for example). The only
form of I/O allowed is disk I/O and screen output. Moreover,
our scheme assumes that there are no data races in the
program. Lastly, we have not added functionality to handle
asynchronous signals. However, this functionality can be
added for user space by handling asynchronous signals
at synchronous points, such as system calls, as done by
Scribe [13].

IV. IMPLEMENTATION

In this section, we discuss the implementation of our
fault tolerance scheme. We start by Section IV-A, where
we discuss how deterministic execution of the replicas is
performed. This is followed by Section IV-B which discusses
error detection. Finally in Section IV-C, we discuss our
recovery mechanism.

A. Deterministic execution

For deterministic execution, we need to ensure that repli-
cas use the same memory addresses. We also need to ensure
determinism in the presence of non-deterministic functions
and shared memory accesses. Moreover, we need to make
sure that the leader and follower processes use the same

memory addresses. For this we need to have a deterministic
memory allocation scheme. Finally we also need to make
sure that we have deterministic I/O. Below we discuss how
we handle these issues.

1) Replica creation: Our library assumes that threads in
the application are created once at the start of the application.
Therefore, we create the follower process at point in the code
where the threads are created. For this purpose, we replace
the pthread create function with our own to make sure the
threads of the replicas use the same memory addresses. More
detail on this can be found in [6].

2) Memory allocation: We implement our own memory
allocation functions to allocate memory deterministically.
Our implementation replaces the locks in the original mem-
ory allocation functions with our own deterministic locks.
The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes,
for example, the flag used to distinguish the leader process
from the follower process. For these variables, we use a
separate memory, which is allocated with the mmap system
call. This memory is not compared for error detection.

3) Deterministic shared memory accesses: We use
Kendo’s algorithm to perform deterministic execution. How-
ever, unlike Kendo which requires deterministic hardware
performance counters, which are not available on many
platforms, we insert code to update logical clocks at compile
time. This also means that we do not need to modify the
kernel which is required by Kendo to read from performance
counters. Figure 3 shows the point of compilation where
our compiler pass executes, which is between the point
where the LLVM IR (Intermediate Representation) code is
translated to the final binary code by the LLVM backend.

The unit of our logical clock is one instruction. For in-
structions which take more than one clock cycles, the logical
clock is updated according to the approximate number of
clock cycles they take.

The Kendo’s method of acquiring locks deterministically
works by giving lock to the thread with the minimum clock
first. So basically our purpose is not only to reduce the code
that updates the clocks but also to update the clocks as soon
as possible, so that logical clock of the thread waiting for
a lock becomes minimum more quickly. In fact, at compile
time it is possible to increment the clock even before some
instructions are executed, since at compile time we can count
the number of instructions. Therefore in all optimizations we
apply, besides trying to reduce the clock update overhead, we
also try to increment the clock as soon as possible. Without
any optimization, we update the clock at start of each of the
basic block of LLVM IR. If there is a function call inside
that block, we split that block, such that each block either
contains no function call or starts and ends with a function
call. Then we update the clock at the top of each block if
that block contains no function calls, otherwise we update



Source Code 
of Program

Translated to 
LLVM IR

LLVM IR with 
code for 
updating 

clocks

Final 
Executable 

Binary File of 
the Program

Our Pass
LLVM 

Frontend
LLVM 

Backend

Figure 3. Our tool modifies the LLVM IR code by inserting code for
updating logical clocks, used for deterministic multithreading

the clocks in between the function calls. By splitting blocks
in such a way, we can more easily apply optimizations.

We apply the following optimizations to reduce the logical
clock updating overhead as well as reduce waiting time for
threads waiting for a lock, by incrementing clocks ahead of
time.

Optimization 1 (Function Clocking) As discussed previ-
ously, the sooner the clocks are updated, the better, and leaf
functions (functions that do not call any function) with only
one basic block are perfect candidates for such an optimiza-
tion. Clocks can be removed from such functions and instead
be added to the basic blocks calling such functions. Besides
functions with only one blocks, our method also considers
leaf functions with multiple blocks, given that there are no
loops in such functions. If our pass sees that all possible
paths taken by such a function do not differ by much, we
calculate the mean value for all possible paths and use that
mean value to update the clock. We call such leaf functions
as clocked functions. By intuition, we can judge that it is
also possible to clock functions which call only clocked
functions. In this way, we can even clock functions which
are not necessarily leaf functions.

Optimization 2 (Conditional Blocks Optimization) This
optimization is based on the principle that if a block has
two or more successors, given that those successors are not
merge nodes, we can make the successor with the least clock
zero and subtract its original value from all its siblings, while
also adding its original clock to the parent block. Another
principle of this optimization is that if all predecessors of a
merge block have that merge block as their only successor,
the clocks could be shifted from the merge node to them. It
should be noted that after having parsed all the blocks of a
function and applying this optimization, if it is still possible
to apply this optimization once more, it is applied.

Optimization 3 (Averaging of Clock) This optimization
is based on the fact that paths emanating from a block in
a function could be matching close together in total clock
values. One can imagine it as a specialized case of Function
Clocking. For Function Clocking, we just considered the
paths emanating from the entry block, but here we also
check for paths besides the entry block. When forming
paths for a block, we only consider blocks dominated by it
(execution must pass through the dominating block to reach
its dominated blocks). We also make sure there are no loops
or unclocked functions in such paths. If we find such a block
in a function, we remove clocks from all the blocks in the
averaged path and assign the mean clock value to that block.

Optimization 4 (Loops Optimization) This optimization
considers the fact that loops are often executed multiple

times. So for example, if you have a for loop, the increment
operation will take place just before the next iteration.
Therefore we check for back edges and if we see that the
clock of the block from which the backedge is originating
is less that a certain threshold value and is also less than
the clock of the block it is jumping to, we merge its clock
value to that block’s clock and remove clock updating code
from it.

4) System Calls, Non-deterministic functions and I/O:
We use LD PRELOAD to preload the system call wrappers
found in glibc with our own version which perform logging
of type, input parameters and output of the system calls.
Type and input parameters are then read by the follower
for error detection, while the output logged by the leader is
used directly by the follower, instead of actually executing
the system call. Working only with user-space wrappers of
system calls is possible, because most of the system calls are
usually called through their user-space wrapper functions.
This method will not work however, if for example, a
system call is made without using the wrapper function, for
example, by using inline assembly. So, with our library, the
programmer needs to make sure to not make a system call
directly. Since the glibc library sometimes also make system
calls directly, for example, by making the clone system
call in pthread create function, we provide our version of
pthread create. We also provide our own version of non-
deterministic functions such as rand and preload them using
LD PRELOAD. Follower uses the output logged by the
leader for such functions. Each system call is protected by
a deterministic lock to make sure that system calls occur in
the same order in the replicas. For the system call mmap,
which modifies the address space of the process, we take
a special approach. The follower still uses the returned
addressed by the leader, but use it as a parameter combined
with MAP FIXED flag to call the mmap function, to ensure
that the follower uses the same memory addresses as the
leader.

For I/O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is
only performed after making sure that no error occurred
during an epoch. For that purpose, no output is committed
during an epoch. Instead it is buffered. Our library overrides
the write and read system call wrappers to allow buffering
of the data. The buffers are committed at the end of an
epoch after comparing the buffer contents of the leader
and follower by using hash-sums. For this purpose, each
file opened for writing is allocated a special buffer. It
is important that addresses of these buffers are the same
for the leader and follower process. For this purpose, we
use a deterministic memory allocation scheme like the one
described in Section IV-A2. For sequential file reading, the
file offset value is saved at the end of each epoch, so that
the file can be rewinded to the previous value in case of
rollback.



B. Error detection

At regular intervals of 1 second, known as epochs, dirtied
(modified) memory pages of the leader and follower pro-
cesses are compared. However, the epoch time is reduced to
100 ms if a file or screen output occurs during the epoch.
Instead of comparing each memory one by one, the leader
and follower processes calculate hash-sums of the dirtied
(modified) memory pages, which are then compared. If a
discrepancy is found, a fault is detected.

The comparison is made even faster by assigning each
thread to calculate hash-sum of different portions of the
memory. The leader keeps its hash-sums in shared memory
so that the follower can read it from there for comparison.
We perform memory comparison at barriers which are al-
ready found in the program rather than stopping and creating
a barrier. This improves the performance, as threads already
wait for each other at barriers. Otherwise we create barriers
at system call points if necessary (at the end of an epoch
that is).

Since our scheme runs at the user level, we cannot note
down dirtied pages while handling page faults (from the
kernel), the way Respec does, which is the most efficient
method possible. Therefore, we take special steps to improve
its performance. At start of each epoch, we give only read
access to allocated memory pages. Whenever a page is
accessed for writing, the OS sends a signal to the accessing
thread. In the signal handler, the address of the memory
page is noted down and both read and write accesses are
given to that memory page. In this way, we only need to
compare the dirtied memory pages at the end of an epoch.
Sending signals on each memory page access violation can
slow down execution. Therefore, to reduce the number of
such signals, we exploit the concept of spatial locality of
data and segmented memory into multiple pages. A write on
any part of a read protected segment of N pages is handled
by giving write access to all the N pages in that segment.

Some functions, like that for comparing memories, change
the stacks differently for the leader and follower threads. For
those purposes, we switch to a temporary stack, so that the
original stack remains unaltered from such functions.

The watchdog process is used to detect and recover from
timeout errors. Details can be found in [6].

C. Recovery

As discussed previously, for fault recovery, we use check-
point/rollback. Whenever the leader takes a checkpoint, it
kills the previous checkpoint. If the leader process detects an
error, or the watchdog process detects a hang, a signal is sent
to the last checkpoint process, so that the checkpoint process
can start execution. The leader and its follower are killed at
that point. The checkpoint process then assumes the role of
the leader and forks its own follower. It also creates a new
checkpoint. Checkpoints are taken only at barrier points. For
creating a multithreaded follower, we have implemented a

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

Fluidanimate Ocean Water-nsq Radiosity Raytrace

O
ve

rh
ea

d 
(%

)

Benchmark

Deterministic Execution Overhead
Epoch Overhead

Overall Overhead

Figure 4. Overhead of our Fault Tolerance Scheme

special multithreaded fork function that replicates the leader
process to create the follower. More detail on this can be
found in [6].

V. PERFORMANCE EVALUATION

We selected 5 benchmarks, 1 from the PARSEC [2] and
4 from the SPLASH-2 [9] benchmark sets. We ran all
our benchmarks on an 8 core (dual socket with 2 quad
cores), 2.67 GHz Intel Xeon processor with 32GB of RAM.
All programs were compiled with maximum optimization
enabled (level -O4 for clang/llvm). All benchmarks were
run with 4 threads, meaning we had 8 threads overall for
the 2 redundant processes.

A. Results

The results are shown in Table I. In this table, by
Redundant Exec, we mean results obtained by allowing the
leader and follower processes execute freely, without any
deterministic execution and fault tolerance, while Deter-
ministic Exec overhead is the overhead with deterministic
execution only, whereas Overall Exec overhead includes all
the components of our fault tolerance scheme. For overall
execution, the results are shown with memory grouping
size of 4. Figure 4 shows the different overheads sepa-
rately. The epoch overhead here represents overhead of
checkpointing, signals for noting dirtied (modified) memory
pages and watchdog process. For benchmarks with high lock
frequencies (Fluidanimate and Radiosity), the overhead of
deterministic execution is expectedly quite large, whereas for
Ocean, which has high memory usage, epoch overhead is the
most. This is because for Ocean, large number of signals are
received when memory pages are modified during an epoch.

B. Deterministic execution overhead

Figure 5 shows the deterministic execution performance
improvement that we get by applying optimizations on the
compiler pass that inserts code to update the logical clocks.
The lower portion of the bars (in white color) in Figure 5
shows the overhead of deterministic execution with the
optimizations, while the upper portion (in blue color) shows
the additional overhead when optimizations are not applied.



Table I
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS

Benchmark Fluidanimate Ocean Water-nsq Radiosity Raytrace
Original Exec Time (ms) 1142 1870 1416 962 677
Locks/sec 6266655 5397 132798 6072689 225635
Pages Compared 3639 40195 380 8739 114
Epochs 3 3 2 2 1
Redundant (Redt) Exec Time and Overhead 1204 (5%) 1872 (0%) 1441 (2%) 980 (2%) 697 (3%)
Deterministic Exec Time and Overhead with No Optimization (w.r.t Redt Exec) 3072 (155%) 2022 (8%) 2102 (46%) 1892 (93%) 813 (17%)
Deterministic Exec Time and Overhead with Optimizations (w.r.t Redt Exec) 2603 (116%) 2014 (8%) 1688 (17%) 1534 (57%) 767 (10%)
Overall Exec Time and Overhead (w.r.t Redt Exec) 2639 (119%) 2391 (28%) 1771 (23%) 1584 (62%) 795 (14%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

Fluidanimate Ocean Water-nsq Radiosity Raytrace

O
ve

rh
ea

d 
(%

)

Benchmark

Deterministic Execution Overhead
Additional Overhead Without Optimizations

Figure 5. Improvement in Deterministic Execution Performance by
applying optimizations

We get improvement in performance due to two reasons.
Firstly, because of reducing the clock updating code and sec-
ondly by updating clocks ahead of time (See Section IV-A3
for discussion on the deterministic algorithm that we use
and why updating clocks ahead of time is beneficial). For
Radiosity, Optimization 1 (Function Clocking) is applicable
on a large number of functions, with some of them being
quite compute intensive. Therefore, by incrementing the
clocks for those clockable functions ahead of time, we
significantly reduce the waiting time for threads which are
about to acquire a lock. For Fluidanimate and Water-nsq, the
improvement was mostly due to the Optimization 4 (Loops
Optimization) because these benchmarks contain compute
intensive small loops. Optimization 3 (Averaging of Clock)
worked well for Raytrace because our compiler pass could
find such paths (for whom clocks could be averaged) in
it. Furthermore, Optimization 2 (Conditional Blocks Opti-
mization) was useful for reducing the clock overhead of
most of the benchmarks, because such conditional paths are
commonly found in programs.

VI. CONCLUSION

In this paper, we described the design and implementation
of a user-level leader/follower based fault tolerance scheme
for multithreaded applications running on multicore proces-
sors. Instead of using record/replay technique to ensure de-
terministic shared memory accesses by the replicas, we used
deterministic multithreading, where the redundant processes
do not need to communicate with each other for ensur-
ing deterministic shared memory accesses. This improves
isolation between the redundant processes, increasing fault
tolerance and reliability, besides consuming less memory. To
increase portability, we avoid using any special hardware
for deterministic execution and modifying the kernel. We

instead implemented a compiler pass that inserts code to
update logical clocks for deterministic multithreading. We
also applied several optimizations to reduce the overhead of
logical clock updating code. In the absence of faults, our
fault tolerance scheme, adds an average overhead of 49%
for selected benchmarks, with 4 threads.

ACKNOWLEDGMENT

This research has been funded by the projects Smecy
100230, iFEST 100203 and REFLECT 248976.

REFERENCES

[1] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Coredet: a com-
piler and runtime system for deterministic multithreaded execution. SIGARCH
Comput. Archit. News, 38:53–64, March 2010.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
characterization and architectural implications. PACT ’08, pages 72–81.

[3] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Deterministic or not? free
will to choose. HPCA ’11, pages 333 –334, feb.

[4] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn. Respec: Efficient online multiprocessor replay via speculation and
external determinism, ASPLOS ’10, pages 77–90.

[5] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient deterministic
multithreading in software. ASPLOS ’09, pages 97–108.

[6] H. Mushtaq, Z. Al-Ars, and K. Bertels. A user-level library for fault tolerance
on shared memory multicore systems. DDECS ’12, pages 266–269.

[7] E. D. B. Tongping Liu, Charlie Curtsinger. Dthreads: Efficient deterministic
multithreading. SOSP ’11, pages 327–336.

[8] V. Weaver and J. Dongarra. Can Hardware Performance Counters Produce
Expected, Deterministic Results? FHPM ’10.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: characterization and methodological considerations. ISCA ’95, pages
24–36.

[10] R. Baumann. Soft errors in advanced semiconductor devices-part i: the three
radiation sources. Device and Materials Reliability, IEEE Transactions on,
1(1):17 –22, March 2001.

[11] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf, and
K. Sankaralingam. Sampling + dmr: practical and low-overhead permanent fault
detection. ISCA ’11, pages 201–212.

[12] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv., 22:299–319, December 1990.

[13] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight application exe-
cution replay on commodity multiprocessor operating systems. SIGMETRICS
’10, pages 155–166.

[14] A. Basu, J. Bobba, and M. D. Hill. Karma: scalable deterministic record-replay.
ICS ’11, pages 359–368.

[15] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. PLDI ’07, pages 89–100.


