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Abstract—This paper introduces an efficient adaptive redundant
architecture, which makes use of the averaging cell (AVG) principle
in order to improve the reliability of nanoscale circuits and systems.
We propose an adaptive structure that is able to cope with non-
homogeneous variability and time-varying effects like degradation
and external aggressions, which are expected to be key limiting fac-
tors in future technologies. First, we consider static heterogeneity of
the input variability levels and derive a methodology to determine
the weight values that maximize the reliability of the averaging
system. The implementation of these optimal weights in the AVG
gives place to the unbalanced AVG structure (U-AVG). Second, we
take into consideration that circuits are exposed to time-dependent
aggression factors, which can induce significant changes on the lev-
els of variability, and introduce the adaptive AVG structure (AD-
AVG). It embeds a learning mechanism based on a variability mon-
itor that allows for the on-line input weight adaptation such that
the actual weight configuration properly reflects the aging status.
To evaluate the potential implications of our proposal, we compare
the conventional AVG architecture with the unbalanced (U-AVG)
and the adaptive (AD-AVG) approaches in terms of reliability and
redundancy overhead by means of Monte Carlo simulations. Our
results indicate that when AVG and U-AVG are exposed to the
same static heterogeneous variability, U-AVG requires 4× less re-
dundancy for the same reliability target. Subsequently, we include
temporal variation of input drifts in the simulations to reproduce
the effects of aging and external aggressions and compare the AVG
structures. Our experiments suggest that AD-AVG always provides
the maximum reliability and the highest tolerance against degrada-
tion. We also analyze the impact of nonideal variability monitor on
the effectiveness of the AD-AVG behavior. Finally, specific reconfig-
urable hardware based on resistive switching crossbar structures
is proposed for the implementation of AD-AVG.

Index Terms—Averaging cell (AVG), degradation, fault toler-
ance, hardware redundancy, nanoscale technology, reliability.
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I. INTRODUCTION

COMPUTER architecture constitutes one of the key and
strategic application fields for new emerging devices at

nanoscale dimensions, potentially getting benefit from the ex-
pected high-component density and speed. However, these fu-
ture technologies are expected to suffer from a reduced device
quality, exhibiting a high level of process and environmental
variations as well as performance degradation due to the high
stress of materials [1]–[4]. This clearly indicates that if we are to
make use of those novel devices, we have to rely on fault-tolerant
architectures.

The necessity of producing reliable systems from unreliable
devices was addressed for the first time by Neumann [5] in the
1950s. He proposed different circuit architectures based on hard-
ware redundancy and demonstrated that it is possible to perform
computation with an arbitrary level of reliability despite the use
of unreliable devices. Since then, these fault-tolerant architec-
tures have been refined and combined in many different ways in
order to improve the reliability while minimizing the cost over-
head. To date, three major groups of fault-tolerant architectures
based on hardware redundancy have been proposed and studied:
1) multiplexing techniques, which rely on the replication of de-
vices and interconnects [6]–[8], 2) reconfiguration techniques,
which consist of redundant structures capable of detecting, lo-
cating, and avoiding manufacturing defects by using different
hardware parts in different ways [9], [10], and 3) voting-based
techniques, which implement the idea of modular redundancy
and obtain the result by a voting process [11], [12].

Focusing on voting-based fault-tolerant systems, we observe
that 1) most of the approaches make use of majority gates (MAJ)
as decision operation [12], [13] and 2) the granularity at which
the voting-based strategies are applied span from device and
gate levels to more complex functional blocks. However, gen-
erally speaking, there are two possible ways to implement the
voting process: 1) majority voting (digital) [14] and 2) aver-
aging voting (analog) [15]. Given that the main parameter to
be optimized after securing the reliability requirement is the
overhead cost, the analog-based voting systems may have sig-
nificant advantages over the digital one, since they can provide
an effective means for absorbing faults [16]. A typical imple-
mentation for the analog voting is the averaging cell (AVG),
which has been demonstrated to provide higher reliability than
majority voting at a lower cost [16]–[18]. AVG underlying prin-
ciple is to average several input replicas in order to compute
the most probable output value. This approach is quite effective
in case the AVG inputs are subject to independent drifts with
the same/similar magnitude. In practice, however, input devia-
tions can be nonhomogenous, the case in which the balanced
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average cannot provide a response that minimizes the output
error probability.

In this paper, we focus on AVG structures and modify them
adding a reconfiguration capability with the objective of improv-
ing their design such that they become more robust and tolerant
to nonuniform variability scenarios typical for new-technology
generations [19]. In this line of reasoning, we propose two con-
secutive steps to improve the AVG design and adapt it to time-
varying heterogeneous variability scenarios. First, we consider
the heterogeneity of the input variability levels. Given that dif-
ferent replicas present in the AVG structure may experience
different levels of variability/reliability, we propose an AVG
that makes use of a weighted average with unbalanced weights
(U-AVG). Regarding this approach, we derive a methodology to
determine the weight values that maximize the reliability of the
AVG output. A description of this methodology can be found
in [20]. Second, we take into consideration the fact that, when
deployed in the field, circuits are exposed to time-dependent ag-
gression factors, which induce temporal variations in the levels
of variability. The aging and external aggressions can gradually
change the input variability levels and this may result in signif-
icant differences between the input variabilities considered at
unbalanced AVG (U-AVG) design time and the ones exhibited
by its inputs at maturity. To be able to minimize the effects of
such nonuniform aging, we introduce an adaptive AVG (AD-
AVG), which embeds a learning mechanism that allows for the
on-line input weight adaptation such that the actual weight con-
figuration properly reflects the aging status. The proposed AVG
adaptation mechanism relies on 1) obtaining the input levels
of variability, by means of a variability monitor, 2) calculating
the new weight values that maximize the reliability of the AVG
output for the current variability scenario, and 3) updating the
AVG structure often enough in order to keep the pace with the
degradation dynamics.

To evaluate the potential practical implications of our pro-
posal, we compare the basic AVG, the U-AVG, and the AD-
AVG in terms of reliability and area overhead by means of
Monte Carlo simulations as follows. We first expose AVG and
U-AVG structures to static heterogeneous input variability and
observe that for the same targeted reliability U-AVG requires
4× less redundancy, thus by implication of substantially less
area overhead. Subsequently, we include the temporal variation
of input drifts in our simulations to reproduce the effects of ag-
ing and external aggressions and compare the static AVG (AVG
and U-AVG) with the AD-AVG. Our experiments suggest that
for the same redundancy overhead, the AD-AVG always pro-
vides the maximum reliability and tolerates larger amounts of
accumulated degradation. Finally, we investigate the impact that
a nonideal variability monitor may have on the effectiveness of
the AD-AVG learning capability.

The paper is organized as follows: In Section II, we present
the AVG architecture and give some details of its main fea-
tures. In Section III, we introduce the idea of U-AVG, derive
the analytic expression of the optimal set of weights, and simu-
late and compare the standard cell with the unbalanced weights
approach. In Section IV, we propose the adaptive technique
AD-AVG and evaluate its behavior in a scenario of changing

Fig. 1. AVG organization.

heterogeneous input variability. Finally, in Section V, we pro-
pose a possible implementation of the adaptive technique AD-
AVG and demonstrate how the weight reconfiguration and input
variability measurement can be satisfied.

II. AVG

The AVG, widely known for its application in the four-layer
reliable hardware architecture [18] stems from the perceptron,
the McCulloch–Pitts neuron model [21], [22]. Associated with
fault-tolerant techniques based on redundancy, the AVG graph-
ically depicted in Fig. 1 can calculate the most probable value
of a binary variable from a set of error-prone physical replicas.
While the MAJ-based voting technique operates in the digital
domain, the AVG performs a weighted average of the repli-
cated inputs in the analog domain, and thus is potentially more
robust.

The AVG output ŷ is an estimation of the ideal variable y
according to

y′ = W (y1 , . . . , yR ) =
1

∑R
i=1 ki

R∑

i=1

kiyi (1)

ŷ = T (y′) =
{

Vcc if y′ ≥ Vcc/2
0 if y′ < Vcc/2 (2)

where yi are R replicas of the ideal input variable y:

yi = y + ηi i = 1, . . . , R (3)

and each of the input replicas yi has associated an independent
drift ηi that modifies its ideal value y. As a consequence, input
signals yi are observed in the system as continuous voltage
levels, where 0 and Vcc stand for ideal logical values “0” and
“1,” respectively.

Without loss of generality, in this work, we use Vcc = 1 V
throughout all the simulations. We also assume positive mag-
nitudes for all the averaging weights ki ≥ 0, i = 1, . . . , R. In
order to simplify the mathematical formulation, we use normal-
ized weights ci = ki/

∑R
j=1 kj instead of ki . We model drift

magnitudes as the Gaussian random variables with null mean
ηi ∼ N(0, σi). We consider them as mutually independent; thus,
our model explores random effects between replicas. Systematic
alterations, which affect all the replicas in the same direction,
are evaluated in the Appendix. They are shown to cause in-
dependent effects on reliability; random and systematic effects
can be studied and counteracted independently. Moreover, sys-
tematic effects are usually static and they can be mitigated by
calibration in the initial stages of system operation.

When y′ is processed by the threshold operation T (y′), an
error is produced if and only if the deviation in the weighted
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Fig. 2. Output error probability Pe against the ratio between the weighted
average standard deviation σy ′ and Vcc . The highlighted point corresponds
to the reliability reference value P m ax

e ≡ 10−4 and the maximum admissible
variability level σm ax /Vcc = 0.1344.

average ε = y′ − y reaches Vcc/2 or −Vcc/2, depending on the
logic value y. Since this deviation parameter ε can be expressed
as a linear combination of normally distributed variables ηi , by
the properties of the normal distribution, the probability density
function fε(ε) can be described as a normal distribution with
parameters

με = E

{
R∑

i=1

ciyi

}

− y = 0 (4)

σ2
ε = E

{
(y′ − y)2

}
= σ2

y ′ . (5)

And the variance of the weighted average σ2
y ′ can be expressed

in terms of the input variances σ2
i and the averaging weights ci ,

i = 1, . . . , R

σ2
y ′ =

R∑

i=1

c2
i σ

2
i . (6)

Thus, using the complementary Gauss error function, we can
analytically formulate the output error probability as follows

Pe =
∫ ∞

Vc c /2
fε(ε)dε =

1
2
× erfc

(
Vcc√
8σy ′

)

. (7)

Fig. 2 depicts the relationship between Pe and the ratio σy ′/Vcc .
It presents a monotonically increasing behavior. Thus, given a
reliability requirement Pmax

e , there is a maximum admissible
output standard deviation σmax for any given Vcc . In this paper,
we take Pmax

e ≡ 10−4 as the reference value for the reliability
requirement. Therefore, the maximum admissible weighted av-
erage standard deviation is σmax = 0.1344 V with Vcc = 1 V.

Previous AVG-based work [17] assumes homogeneous input
drifts (all the inputs have the same variability level σy ), case in
which a balanced weight set produces a weighted average y′ with
the minimum standard deviation σy ′ = σy/

√
R and, therefore,

the output error probability Pe is minimized. However, when

the input drifts lose homogeneity due to aging and variability
effects, the output standard deviation increases dramatically and
so does the output error probability Pe .

In this paper, we study in detail the benefits that can be further
obtained from the AVG structure by considering extra informa-
tion related to the specific input variability levels. Accordingly,
we propose the use of a variability monitor that provides the
required measures. First, we assume ideal measurements from
the monitor. In Section IV, we develop, further, the idea and out-
line a possible implementation together with the limitations that
may result. The main objective of our proposal is to improve the
fault-tolerant capabilities of the AVG structure by adjusting the
values of the averaging weights in accordance with the monitor’s
information. This approach allows us to deal with scenarios of
heterogeneous variability.

III. U-AVG

The AVG provides robustness when all inputs are under the
same aggression factors, case in which balanced weights pro-
vide the best drift compensation. However, in practice, this may
not be the case, as some replicas may have a larger drift with
respect to others. As a consequence, due to this decompensa-
tion, the balanced weights approach becomes suboptimal. In this
section, while preserving the AVG architecture, we consider the
nonhomogeneity of aggression factors and degradation effects.
We propose to adjust the AVG weighting scheme according to
the following principle: assign greater weight to the less de-
graded and more reliable inputs, and lower weight to the ones
that are more prone to be unreliable. Intuitively speaking, such
an approach should improve the overall reliability.

In order to motivate the use of unbalanced averaging, we first
analyze a simple case of heterogeneity when all inputs are ex-
posed to homogeneous variability except one that has a higher
standard deviation than the others. In this example, we demon-
strate that a significant weighted average y′ variability reduction,
measured in terms of standard deviation σy ′ , can be achieved if
we modify the weights according to our U-AVG proposal, when
compared with the AVG with balanced weights. After this ex-
periment, we analytically demonstrate the existence of optimal
weights that minimize the output error probability Pe (or equiv-
alently σy ′ , the standard deviation of the weighted average) in
any possible heterogeneous variability scenario. Then, we find
a general formula that allows us to calculate the optimal set of
weights in any circumstance. We conclude this section with the
theoretical redundancy level R savings that our U-AVG proposal
can provide against the AVG.

A. Heterogeneous Variability Scenario (Simple Case)

In this experiment, we reproduce the most simple case of
heterogeneous variability scenario. We simulate the AVG with
homogeneous level of variability for all the inputs replicas ex-
cept to the qth input; we assign standard deviation σq to the qth
input while all the rest have the same standard deviation σ. In
this experiment, we first consider the conventional AVG, which
uses balanced weights ci = 1/R, i = 1, . . . R. In this case, the
resulting output variance can be expressed as (8). This formula
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Fig. 3. Output standard deviation of AVG and U-AVG with 2, 3, 5, and 10
inputs subject to heterogeneous variability scenario. The scenario is modeled
with a standard deviation σ = 0.1 V in all the inputs except from the qth that
has σq ranging between 0.1 and 0.4 V.

is deduced from (6) and the σi model presented earlier

σ2
y ′ =

R − 1
R2 σ2 +

1
R2 σ2

q . (8)

Fig. 3 reproduces, in continuous lines, the analytic expression
of the output standard deviation σy ′ against different levels of
variability in the qth input. One can observe that for R = 3,
σ = 0.1 V, and σq = 0.4 V, the modeled heterogenous scenario
implies more than doubling the output standard deviation with
respect to the homogeneous case: from σy ′ = 0.06 V to σy ′ =
0.14 V.

Next we investigate how much better the overall performance
can be when we properly configure the weight values ci such
that they reflect the fact that the qth input has a different vari-
ability. Using the general output variance expression in (6), an
optimization problem can be derived. There are R − 1 inputs
with standard deviation σ and normalized weight c, while the
remaining input has a higher standard deviation σq > σ and a
different normalized weight cq . Note that (R − 1)c + cq = 1
must hold

min(σ2
y ′)|cq

⇒ d

dcq

(
(R − 1)c2σ2 + c2

q σ
2
q

)
= 0. (9)

Making the appropriate calculations to minimize the output vari-
ance σ2

y ′ by adjusting the value of weights c and cq , the following
expression for the optimum weight copt

q can be deduced

copt
q =

1

(R − 1)σ 2
q

σ 2 + 1
. (10)

This formula, depicted in Fig. 4, clearly demonstrates that the
optimal distribution of weights only depends on the ratio be-
tween the input variances, or equivalently on the relative relia-
bility levels. In the particular case of R = 2, we can easily verify
that the set of optimal weights is (1/2, 1/2) when the variances
or reliabilities are equal. If the variances ratio is higher than 1,
then the input qth is less reliable and the optimal weight copt

q

decreases. And vice versa, if the variances ratio is lower than

Fig. 4. Optimal weight copt
q against the ratio of input variances σ2

q /σ2 in a
simple case of heterogeneous variability scenario. All the replicas have the same
variance σ2 except form the input qth that has variance σ2

q .

1, the optimal weight copt
q increases with respect to the equili-

brated case. Fig. 4 also shows the impact of redundancy level
R on the relationship between copt

q and the input variances. We
observe that it corresponds to a compression to the origin with
scale factor R − 1.

The improvements achieved by the new weight configuration
are depicted in Fig. 3 with dashed lines. One can observe in the
figure that the U-AVG approach minimizes the output standard
deviation compared to the AVG. Retrieving the previous ex-
ample (R = 3 and σ = 0.1 V), but now considering the U-AVG
approach, we can observe that an increase in the qth standard de-
viation σq from 0.1 to 0.4 V only increases the output standard
deviation from 0.06 to 0.07 V. Thus, in this particular exam-
ple, a 50% net reduction in the output standard deviation σy ′

is achieved by the U-AVG with respect to the AVG. Moreover,
one can deduce from the figure that the adjustment of weights
is critical for low R (redundancy) values, which suggest that
U-AVG may potentially require a lower redundancy than AVG
for the same targeted reliability.

B. Existence of Optimal Weighted Averages

Continuing with the idea of making use of nonbalanced
weights, we demonstrate in the following that there always ex-
ists a set of weights copt

i , i = 1, . . . , R, that optimally minimizes
the output error probability Pe , or equivalently the standard de-
viation of the weighted average σy ′ . First, we present a Lemma
that displays this idea for individual input replicas.

Lemma 1: Given a weighted average

y′ =
1

∑R
i=1 ki

R∑

i=1

kiyi

with positive weights ki ≥ 0 and R input random variables yi ,
i = 1, . . . R, following statistically independent normal distri-
butions. There always exists a unique value kopt

q for the qth
weight, q ∈ (1, . . . R), that optimally minimizes the standard
deviation of the weighted average σy ′ .
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Proof: Recalling the expression of the weighted average vari-
ance in (6), and substituting the definition of normalized weights
(ci = ki/

∑R
j=1 kj ), we can express the dependence of σ2

y ′ on
the weight kq

σ2
y ′ =

k2
q σ2

q +
∑R

i=1,i 
=q k2
i σ2

i
(
kq +

∑R
i=1,i 
=q ki

)2 . (11)

Differentiating with respect to kq and matching to zero, we get
the following optimal value for the qth weight:

dσ2
y ′

dkq
= 0 ⇒ kopt

q =
1

∑R
i=1,i 
=q ki

R∑

i=1,i 
=q

k2
i

σ2
i

σ2
q

. (12)

Differentiating two times with respect to kq and substituting
kq = kopt

q , we obtain a positive value. This confirms that in-
deed the value obtained kopt

q corresponds to the unique weight
value that optimally minimizes the σ2

y ′ value, and the standard
deviation σy ′ as well

d2
(
σ2

y ′
)

dk2
q

∣
∣
∣
∣
∣
kq =k o p t

q

=
2σ2

q

∑R
i=1,i 
=q ki

(
kopt

q +
∑R

i=1,i 
=q ki

)3 ≥ 0.

�

Lemma 1 demonstrates that if we look at the value of a partic-
ular weight kq , we can find a value that optimally minimizes the
weighted average variance, and therefore minimizes the output
error probability. In Fig. 5, we plot a sensitivity of the output
error probability Pe to the modification of a specific weight in its
normalized form cq . For the analysis, we assume different lev-
els of variability in the qth input modeled with the parameter σq

ranging between 0.0 and 0.4 V. The rest of inputs are considered
altogether with a fixed contribution to the weighted average vari-
ability when the value of weight cq is null: σy ′ |{cq =0} = 0.2 V.
One can observe in the figure, the different locations of the Pe

minimum and the relation between optimal weights and differ-
ent levels of variability. It clearly shows that it is possible to
minimize the output error probability Pe if we properly tune the
value of weight cq .

The following conclusions can be drawn from Fig. 5.
1) There is always one and only one cq value in the range

from 0 to 1 that minimizes the error probability Pe in each
possible variability environment.

2) The optimum cq value is never exactly equal to 0. Even
for large levels of deviation in the qth input with respect
to the others, it is useful to have a contribution from the
input q.

3) The optimum cq value is never exactly equal to 1, except
from the singular case with σq = 0 V, which in practice
never occurs. Even for small levels of deviation in the
qth input with respect to the others, it is useful to have a
contribution from the rest of inputs.

4) To minimize the output error probability Pe , higher
weights (close to 1) should be assigned to less deviating
inputs and vice versa.

Fig. 5. Variation of the error probability Pe against the weight cq . Standard
deviation in the input q ranges from σq = 0.0 V to σq = 0.4 V and the standard
deviation of the weighted average due the rest of inputs is σy ′ |{c q =0} = 0.2 V.

5) When the deviating effect in the qth input σq is equal to
the deviating effect of the rest of inputs σy ′ |{cq =0}, the
optimum cq value is 0.5. Note in Fig. 5 that the curve with
the minimum at cq = 0.5 holds σq = σy ′ |{cq =0}.

So far we have proved the existence of an optimal value for
a particular weight independently from the rest of the weights.
However, the optimization of the entire set of weights requires
an extra effort because the isolated optimization of averaging
weights does not give rise to a global optimum. For exam-
ple, if we optimize the values of the weights ki from i = 1
to i = R following the Lemma 1, we do not achieve a glob-
ally optimum. The optimal weight values found in the proof
of Lemma 1 depend on the values of the other weights [see
(12)]. Therefore, when we modify a weight the optimal value
for the rest of weights changes. As we are looking for the
globally minimum output error probability we need a further
step.

In the following, we state and prove the Theorem that leads
to the global optimization of weights. Before this, we want to
note the existence of multiple sets of optimal weights if we
use nonnormalized weights. Let us assume that the optimal
set of weights that minimizes the variance σ2

y ′ of a particular
AVG is (k∗

1 , k
∗
2 , . . . , k

∗
R ). Then (αk∗

1 , αk∗
2 , . . . , αk∗

R ) is also an
optimal set of weights. Indeed, as the weighted average variance
only depends on the normalized weights [see (6)], any scaling
operation in the set of weights does not affect its value. The
following Theorem uses normalized weights ci in order to avoid
multiple solutions.

Theorem 1: Given a weighted average y′ =
∑R

i=1 ciyi of R
variables normally distributed yi ∼ N(y, σi), ∀i ∈ (1 . . . R),
and averaging weights that satisfy the normalization condi-
tion

∑R
i=1 ci = 1, there always exists a set of weights copt

i ,
i = 1, . . . , R, that optimally minimizes the standard deviation
of the weighted average σy ′ .
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Proof: We use recursion to prove this Lemma. Let us express
the variance of the weighted average as follows:

σ2
y ′ =

R∑

i=1

c2
i σ

2
i = c2

Rσ2
R +

R−1∑

i=1

c2
i σ

2
i

= c2
Rσ2

R + (1 − cR )2
R−1∑

i=1

(
ci

1 − cR

)2

σ2
i

︸ ︷︷ ︸
S 2

R −1

.

(13)

If we look at the S2
R−1 definition, we observe that it corresponds

to a weighted average with the first R − 1 input replicas. The
averaging weights defined as c∗i ≡ ci/(1 − cR ) add the unity,
and therefore accomplish the normalization condition. Hence,
S2

R−1 can be regarded as a new minimization problem with
R − 1 normalized weights c∗i independent from cR .

Thereby, the σ2
y ′ minimization problem can be split into two

independent subproblems (type 1 and type 2).
1) First, to minimize S2

R−1 as a function of R − 1 normalized
weights c∗i , i = 1, . . . , R − 1.

2) Second, to minimize σ2
y ′ as a function of a single weight

cR (σ2
y ′ = c2

Rσ2
R + (1 − cR )2 S2

R−1). In this case, S2
R−1

is regarded as a constant factor obtained from the first
minimization subproblem.

The second subproblem presents a straightforward solu-
tion. The minimization of σ2

y ′ as a function of cR , being

S2
R−1 independent from cR , leads to the optimal value copt

R =
S2

R−1/(S2
R−1 + σ2

R ). Substituting copt
R in the second derivative

yields a positive value and confirms that copt
R corresponds to the

unique minimum of the function.
In turn, the first subproblem can be split again into two in-

dependent subproblems as before (type 1 and type 2). If we
keep splitting the problem this way, R − 2 times in succession,
we get a subproblem that cannot be split again. It corresponds
to a function S2

2 that only depends on two normalized weights
and two input variances. Thus, it can be solved like the second
subproblem type.

So far we have decomposed the problem into R − 2 subprob-
lems of type 2 plus one of type 1 that can be solved optimally.
As a result, we have demonstrated that the whole problem can
be solved optimally, and there exists an optimal set of weights
that minimizes the weighted average variance. �

C. Optimal Unbalanced Weights

In the previous section, we demonstrated that there exists an
optimal set of weights that minimizes the output error proba-
bility for the AVG structure. Therefore, there must be a way to
express the optimal values of weights independently of the other
weights and that is only function of the input variability levels.
In order to find this formula, we perform the following analytic
computation. We minimize the variance of the weighted average
σ2

y ′ , or equivalently its standard deviation that is directly related
to Pe as (7) indicates. To perform this minimization considering
all the weights ci simultaneously, we have to use the Lagrange

multipliers introducing the additional restriction of normalized
weights. The target function is the variance σ2

y ′ and the vari-
ables to optimize are the magnitudes of the averaging weights
ci . The normalized weights condition (

∑R
j=1 cj = 1) must hold.

Therefore, the target function is

F (c1 , c2 , . . . , cR , λ) = σ2
y ′ − λ

⎛

⎝
R∑

j=1

cj − 1

⎞

⎠ . (14)

Differentiating with respect to the normalized weights ci , i =
1, . . . R, recall (6), and the Lagrange multiplier λ, we obtain the
following equations

d(F )
dci

= 2copt
i σ2

i − λ, i = 1, . . . , R (15)

d(F )
dλ

= 1 −
R∑

j=1

copt
j . (16)

Matching to zero (15), we obtain that the optimal weights are
inversely proportional to the input variances

copt
i =

λ

2σ2
i

. (17)

Equation (16) equal to zero expresses the condition of normal-
ized weights; combining both conditions, we deduce the value
of λ

λ =
2

∑R
j=1 1/σ2

j

. (18)

Now we can calculate the explicit formula for the optimal
weights

copt
i =

1
∑R

j=1 σ2
i /σ2

j

i = 1, . . . , R. (19)

This is the configuration of weights that optimally minimizes
the error probability Pe . Observe that copt

i values are only de-
pendent on the input variances σ2

i . Depending on the input drifts
distribution, each weight should be tuned according to (19) in
order to achieve the lowest possible output error probability Pe .
Now we can verify all the conclusions extracted from Fig. 5.
We can see how the optimal weights are small when the input
variance is large and vice versa.

We can also calculate the magnitude of the minimum possible
variance for the weighted average that we obtain when we apply
the optimal set of weights. Using (6) and the expression of
optimal weights copt

i = λ/(2σ2
i ), we get a closed expression for

the minimum weighted average variance

σ2
y ′min =

λ

2
=

1
∑R

j=1 1/σ2
j

. (20)

Therefore, it is possible to express each optimal weight in terms
of its input variance and the minimum possible variance of the
weighted average

copt
i =

σ2
y ′min

σ2
i

i = 1, . . . , R. (21)
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The optimal configuration has all the weights directly propor-
tional to the constant σ2

y ′min and inversely proportional to the
respective input variance σ2

i . We note that the particular case in
which one or more inputs have null variability σi = 0 has to be
treated separately. If this situation happens, then the output error
probability minimization is straightforward: it would suffice us
to assign the maximum weight to the input with null variability
cq = 1 and we would obtain the lowest possible output error
probability, Pe = 0, according to (6) and (7). However, this can
never reflect a real case as, in practice, there is always at least a
small noise contribution that affects all the inputs.

D. AVG Versus U-AVG

To assess the implications of our proposal, we carry on a reli-
ability analysis for AVG with balanced and unbalanced weights.
Given a nonuniform input drift scenario, we calculate the per-
centage of circuits that satisfies the reference reliability require-
ment stated in Section 1 (Pe < 10−4). We use this condition as
a criterion to define the yield of the AVG circuit. In order to
simulate realistic environments with heterogeneous variability,
we generate the per replica drift variances following the Gamma
distribution function

σ2
i ∼ Γ(x; k, φ) =

{ 1
φk Γ(k) x

k−1e−x/φ , if x ≥ 0
0, otherwise.

(22)

We use scale parameter φ = 2 and different shape values k in or-
der to reproduce increasing values of the input replica variances.
This probability distribution function allows us to efficiently
generate positive random values of variability. Additionally, it
presents the infinite divisibility property, very useful in Sec-
tion IV-A where we recursively generate consecutive stages of
degradation.

In the following experiment, we simulate the AVG behavior in
different technology scenarios. Each scenario is modeled with
heterogeneous input drift variances σ2

i following the Gamma
distribution function with different mean values. We basically
perform 10 000 Monte Carlo simulations and estimate the yield
for both architectures (AVG and U-AVG). Fig. 6 presents the
simulation results against the redundancy factor. One can ob-
serve that U-AVG can deliver the same yield than AVG with a
much lower redundancy level R. For example, if we required
a 90% yield, given a variability scenario with E{σi} = 3σmax ,
we would need eight replicas with the AVG while only two with
the U-AVG. This corresponds to a 4× redundancy saving.

Thus far we have demonstrated that if we know the distri-
bution of deviations among the replicas at the design time, we
can provide better reliability levels at lower cost by configur-
ing the AVG weights accordingly. However, this improvement
is optimal only for certain static variability conditions of the
system. If the levels of variation gradually change in time due
to degradation and external aggressions, the unbalanced design
may become suboptimal. In the next section, we make a step
further and propose a dynamically adapting structure that mod-
ifies the weight values at run-time in order to keep track with
the possible variations of the input deviations.

Fig. 6. Yield analysis of AVG and U-AVG against the redundancy factor for
different technology scenarios. The simulated scenarios identified with letters
(from A to F) have associated heterogeneous input variances following the
Gamma distribution. The mean values for the standard deviation range from
E{σi} = σm ax in scenario A to E{σi} = 6σm ax in scenario F. σm ax corre-
sponds to the reference value 0.1344 V.

IV. AD-AVG

In the previous sections, we analyzed the reliability of AVGs
in static environments of variability. We introduced the concept
of heterogeneous variability scenario and we demonstrated the
advantages of configuring the averaging weights according to
the different input levels of variability. In this section, we also
consider time variation of the input levels of variability in order
to take into account the effects of aging and external aggressions,
such as temperature, and dynamically adjust the AVG configu-
ration such that we can tolerate the maximum possible amount
of variation. In this line of reasoning, we add to the AVG the
capability of dynamically reconfiguring the averaging weights
according to the time-varying input variabilities measured at
run-time. Our proposal is based on a reconfigurable crossbar
of resistive switching devices and a disagreement detector like
the one suggested in [23]. In Section V, we develop in detail
the proposed technology implementation. We call this dynamic
architecture the AD-AVG. In the following we analyze the main
characteristics of the AD-AVG structure: redundancy overhead,
reliability, and tolerance against degradation.

A. Degradation Model

In order to study the AD-AVG behavior in front of the degra-
dation effects and external aggressions, we need a model to
reproduce time-varying heterogeneous input drifts. The aging
process and the dynamics of input variability levels depends
on the particular technology used and the environmental con-
ditions. However, based on the main properties of degradation
and using a general expression for the probability distribution
function, we can construct the required degradation model. With
this purpose, we use the Gamma distribution function to gen-
erate positive random values of variability, see (22). Using the
infinite divisibility property of this distribution, we can easily
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simulate the influence of increasing amounts of degradation by
simply adding random Gamma-distributed increments to the
initial input variances.

For simulation purpose, we use the following methodology:
1) First, we generate the input variability levels using the

Gamma distribution function [see (22)]. These levels of
variability correspond to the initial imperfections already
present in fresh devices (nonutilized) mainly associated to
the manufacturing process. In the simulations, this initial
stage of the circuits corresponds to the 0 in the axis of
degradation in time (horizontal axis) and we assumed a
mean value of E{σ2

i } = (2σmax)2 (= 0.0724 V2).
2) Then, in order to simulate the AD-AVG at different mo-

ments of the replica’s life, we need to calculate the in-
put variabilities after the effect of increasing amounts of
degradation. To do so, we estimate recursively the input
variances at consecutive stages of degradation. We basi-
cally calculate the replicas’ variance in the stage n + 1 by
adding positive random increment αi to the variance in
the previous degradation stage n:

σ2
i [n + 1] = σ2

i [n] + αi [n]. (23)

The increments used to update the input variances are also
generated with the Gamma distribution function and re-
flect the effect of degradation occurred during the time
between consecutive stages of degradation. In the simu-
lations, we define the degradation in time unit so that it
corresponds to a mean increase in the replicas’ variance σ2

i

of magnitude E{αi} = (σmax)2 (= 0.0181 V2). We use
this normalized time scale because the exact relationship
between degradation and time is too complicated and de-
pends on the particular technology used, the stress applied
to the system and other environmental conditions.

B. Learning Versus Static AVG

Using the described degradation model, we can simulate re-
alistic situations of circuits that degrade in time. In the follow-
ing, we analyze the difference between using adaptive weights
(AD-AVG) and static weights (AVG and U-AVG). To do so, we
perform 10 000 Monte Carlo simulations of the AVG structures
with increasing amounts of degradation. Fig. 7 depicts the sim-
ulation results of yield for different size AVG circuits against
the degradation.

We observe that at degradation in time 0, there is no difference
between AD-AVG and U-AVG; both structures are configured
with the optimal set of weights and the AVG yield is maximized.
However, as the degradation increases, the U-AVG loses yield
quickly regardless of the redundancy level. The U-AVG weights
configuration is static and only optimal for the initial input
variability levels; when the circuit degrades, the configuration
of weights becomes suboptimal and after 18 degradation in time
units the U-AVG yield drops below the 0.5. On the other hand,
the AD-AVG technique is capable of tolerating much higher
amounts of degradation and it improves notoriously with the
redundancy level R. We can conclude that the AD-AVG always

Fig. 7. Yield of different size AD-AVG, U-AVG, and AVG against the amount
of accumulated degradation.

Fig. 8. Yield analysis of different size AD-AVG and AVG against degradation.
Redundancy levels are chosen to meet the reliability requirements: 90% yield
after 7, 25, 45, and 75 degradation in time units.

provides the maximum yield given any particular redundancy
factor R.

Comparing the characteristic curves of U-AVG and AVG in
Fig. 7, we also observe that the unbalanced approach is better
than the AVG only for low redundancy levels (< 15). Since the
U-AVG does not improve with redundancy but AVG does, in
the conditions of this experiment, the AVG outperforms U-AVG
for redundancy levels higher than 15. This is an interesting
property of the static weight approaches. If we configure the
weights according to the information of variability levels of
fresh devices, the U-AVG will provide always better results at
degradation in time 0. However, as we consider higher levels of
redundancy, the AVG happens to outperform the U-AVG against
degradation. For this reason, we dismiss the U-AVG technique
and focus now on the comparison between AVG and AD-AVG.

Fig. 8 depicts the results of 10 000 Monte Carlo simula-
tions comparing the AD-AVG versus AVG, but instead of using
the same redundancy level, we impose the same reliability tar-
get under specific degradation conditions. The figure clearly
demonstrates that the AD-AVG consumes less redundancy than
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Fig. 9. Yield analysis of different size AD-AVG against degradation. Simula-
tions include the effect of different noise levels in the variability monitor (from
σs = 0 V to σs = 0.08 V).

AVG: from 9.5× redundancy saving for a 90% yield after seven
degradation in time units to 4.1× redundancy saving for a 90%
yield after 75 degradation in time units.

C. Noisy Variability Monitor in the AD-AVG

Thus far we assumed that the information which is driving
the learning process is provided by an ideal variability monitor.
In practice, this cannot be the case as there are many sources
of noise in a real environment such as temperature, external ra-
diation, interference within the same operating circuit, and dis-
cretization noise. We model these effects as an additive white
Gaussian noise with standard deviation σs . In the following
experiment, we analyze the influence of this noise in the ef-
fectiveness of the learning process. We perform 10 000 Monte
Carlo simulations of the AD-AVG against degradation including
the effect of different levels of noise in the variability monitor.
Fig. 9 reproduces the obtained results for the yield of different
size AD-AVG.

As expected, the noise added to the measures provided by
the variability monitor worsens the characteristic reliability of
the AD-AVG. We observe that the negative impact of noise
increases with the redundancy level. For example, if we want
a 90% yield in two-input AD-AVG with a noise affecting the
monitor with standard deviation σs = 0.06 V, then the lifetime
is reduced in two degradation in time units with respect to the
noise-free case, whereas the same noise in the case of five-input
AD-AVG reduces the lifetime in seven degradation in time units.
From this experiment, we can conclude that the use of sensors to
learn the variability changes over time is useful to improve the
reliability of AVG structures as long as the noise in the variability
monitor is small or comparable to the variability levels that it has
to measure. The characteristic reliability of AD-AVG degrades
with unreliable variability monitors, and therefore the particular
tradeoff between reliability and overhead should be analyzed in
each case.

Fig. 10. AD-AVG implementation in switching resistive crossbar technology.

V. AD-AVG IMPLEMENTATION

In this section, we suggest a possible implementation for
the AD-AVG technique. The structure graphically depicted in
Fig. 10 is based on the use of a variability monitor, a set of
weight drivers and a crossbar of switching resistive devices,
such as memristors [24], [25]. The dynamic adjustment of
weights requires, on one hand, a technique for gathering the
required information and, on the other hand, a technology with
high-reconfiguration capabilities to implement the adjustable
weights. The use of resistive switching crossbars provides this
reconfiguration feature and it represents a good candidate for
future technology with a high-integration capability.

The whole architecture can be decomposed in three layers.
The first one corresponds to the input layer and receives the
input signals from the replicas. The second layer performs the
averaging operation and is composed by the resistive switching
crossbar, the variability monitor and the weight drivers. Finally,
the third layer is the decision layer, it restores the binary output
value by means of a threshold function.

A. Variability Monitor

In this section, we propose a topology for the variability
monitor implementation. It is based on a disagreement detector
between the AD-AVG output ŷ and the signal provided by each
replica yi , i = 1, . . . R. This mechanism was already used by
Mathur and Avizienis in [23]. Checking at run-time, the differ-
ences between the AD-AVG output, which is statistically more
reliable than the inputs, and each of the input replicas, we can
establish a criterion for evaluating the relative variability of each
replica. For example, we can estimate the standard deviation as-
sociated to each replica σ̂i by counting the number of times ni

that the difference ŷ − yi exceeds a certain level L in a given
number of clock cycles N . With this number, we can access a
look up table that stores the relationship between ni and σ̂i :

σ̂i =
L√

2 inverfc (2ni/N)
, i = 1, . . . , N (24)

This mechanism allows us to keep the adapting process running
during the circuit normal operation, and therefore it does not
require any test implementation to obtain the information of
input variability levels.
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Fig. 11. Monte Carlo simulation of a five-input AD-AVG with the proposed
topology. The subplots correspond to the five input replica variances σ2

i , the
five adaptive averaging weights ci , and the variance of the weighted average
σ2

y ′ against the degradation.

B. Weight Drivers and Switching Resistive Crossbar

In order to implement adjustable averaging weights, we pro-
pose the use of switching resistive crossbars. These structures
consist of a grid of vertical and horizontal metal lines in which
every cross point has a resistive switching element such as a
memristor. These elements are capable of changing its charac-
teristic resistance between two different values according to its
state, Ron and Roff . In the case of memristors Ron 
 1MΩ and
Roff 
 1GΩ. This switching behavior can be easily controlled
with the weight drivers applying specific configuring voltages
to each of the vertical and horizontal lines. Using this feature,
we can set up a network of interconnects that averages the input
replicas with specific reconfigurable averaging weights.

Given a redundancy factor R from the initial stages of the
AD-AVG design, this parameter is associated with the number
of horizontal metal lines in Fig. 10. The number of vertical
metal lines N determines the maximum number of intercon-
nects per input, and therefore the maximum weight value. As a
consequence, N parameter has a direct impact on the maximum
accuracy when establishing the weight values. The total area
in the crossbar structure is proportional to the number of ver-
tical metal lines and the redundancy factor (Area ∝ R × N ).
Weight drivers receive the information regarding the relative
replica reliabilities generated by the variability monitor. Based
on these data, they connect or disconnect a different number
of cross-points in the switching resistive crossbar. In order to
increase the weight value of a particular input, they increase the
connected cross-points and vice versa, to decrease the weight
value they disconnect cross-points in the corresponding hori-
zontal line. Apart from the configurable region of R × N metal
lines, the switching resistive crossbar also has an additional hor-
izontal metal line connected to all the vertical metal lines. This
line corresponds to the average output y′, see the top horizon-
tal line in Fig. 10. This line is fed to a threshold function that
amplifies the signal and restores the binary value.

In order to prove the feasibility of the proposed implemen-
tation, we perform a Monte Carlo simulation of a five-input

AD-AVG with the described topology. The simulation uses the
degradation model introduced in Section IV-A. Fig. 11 depicts
the temporal evolution of the input variances σ2

i , the adaptive
averaging weights ci , and the variance of the weighted average
σ2

y ′ . We can observe how the input variances keep increasing
over time and how the averaging weights are modified in order
to minimize the weighted average variance.

VI. CONCLUSION

This paper introduces an AD-AVG structure targeting the
reliability improvement of nanoscale circuits and systems im-
plemented in future technologies with heterogeneous variability.
First, the potential advantages of adjusting the weights config-
uration according to the different input variability levels are
analyzed and a method for determining the optimal averaging
weight values that maximize the reliability of the AVG output
is derived. This approach is called the U-AVG. Monte Carlo
simulations of various U-AVG structures are performed in sce-
narios with heterogeneous variability and it is demonstrated that
U-AVG substantially improves the output reliability at a lower
cost than the classic balanced AVG, i.e., it requires 4× less re-
dundancy for the same specific reliability requirement. Then,
the U-AVG scheme is further extended by proposing a method-
ology to on-line learn the temporal variations on the input drift
levels induced by external aggressions and aging, when the cir-
cuit is deployed in the field. This learning augmented scheme
is called the AD-AVG. Further, Monte Carlo simulations of
different AVG, U-AVG, and AD-AVG instances in nonstatic
heterogeneous environments are performed and provide mean-
ingful information about the tolerance against degradation of
the different AVG approaches. It is observed that the U-AVG
rapidly loses performance with the circuits degradation and it is
outperformed by the conventional AVG for redundancy factors
higher than 15. Comparing the characteristic reliability of the
AVG versus the AD-AVG against degradation, significant re-
dundancy savings are obtained for the adaptive approach: from
9.5× to 4.1× redundancy reduction when imposing reliability
requirements of 90% yield after increasing amounts of accu-
mulated degradation. Apart from the significant advantages in
terms of redundancy overhead savings and improved tolerance
to degradation, the implications of using a nonideal variabil-
ity monitor for the learning process are also studied. Based on
this analysis, it is observed that monitor’s noise has a greater
negative effect on AD-AVGs with larger redundancy factors.
Given a requirement of 90% yield with variability monitor with
noise level σs = 0.06 V, the lifespan of two-input AD-AVG re-
duces two degradation in time units while that of five-input
AD-AVG reduces seven degradation in time units. Finally, a
possible implementation of the AD-AVG structure based on re-
sistive switching crossbars is sketched. The proposed topology
is capable of reconfiguring the averaging weights at run-time
and to measure the changes in the input variability levels. A
simulation of the final AD-AVG implementation is provided. It
is demonstrated that the AD-AVG proposal is potentially imple-
mentable with state-of-the-art technology.
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APPENDIX

SYSTEMATIC EFFECTS

In this paper, no systematic effects have been considered when
quantifying the reliability level. However, future scenarios tar-
geted here will probably include this kind of effects. Fluctuations
in temperature and voltage as well as systematic variations from
manufacturing processes usually imply coherent deviations in
many devices at the same time. In this appendix, we prove that
even when taking into account these systematic effects, the re-
sults provided in this paper are correct.

In Section II, the statistical model of drifts was developed
assuming no bias. The consideration of systematic effects can
be taken into account by adding a nonzero mean to the drift vari-
ables ηi ∼ N(δ, σηi

). Applying this change in all the replicas,
the statistical model of drift distribution becomes

fηi
(ηi) =

1
√

2πσ2
ηi

e
− 1

2
( η i −δ ) 2

σ 2
η i . (25)

As a consequence of this, the fault accumulation level ε will
have also mean value δ and the error probability will have the
following expression [see (7)]:

Pe =
∫ ∞

Vc c /2
fε(ε)dε =

1
2
× erfc

(
Vcc/2 − δ

√
2σ2

ε

)

. (26)

From (26), we can draw the conclusion that systematic effects
and random effects imply a reliability worsening in independent
ways. The effect of systematic deviation in devices is translated
into a reduction in the margin of tolerable variation Vcc/2 − δ.
On the other hand, random fluctuation impacts on the standard
deviation of the fault accumulation level σε . When applying
averaging technique with different weighting schemes, we can
reduce the effect of random variations through the reduction of
the standard deviation of the fault accumulation level, but this
will not imply a change to the bias effect δ.
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