
The Q
2
Profiling Framework: Driving

Application Mapping for Heterogeneous

Reconfigurable Platforms

S. Arash Ostadzadeh, Roel Meeuws, Imran Ashraf,

Carlo Galuzzi, and Koen Bertels
�

Computer Science and Engineering

Department of Software and Computer Technology

Delft University of Technology, Delft, The Netherlands

���������	
�	��
����������
��������
������

�
�����������������	�������

Abstract. Heterogeneous multicore architectures pose specific challenges re-

garding their programmability and they require smart mapping schemes to

make efficient use of different processing elements. Various criteria can drive

this mapping, such as computational intensity, memory requirements, and area

consumption. In order to facilitate this complex mapping task, there is a clear

need for tools that investigate the use of such critical resources, like memory

and hardware area. For this purpose, we developed the Q2
profiling framework.

It consists of two main parts: an advanced memory access profiling toolset,

which provides detailed information on the runtime memory access patterns

of an application and a statistical modeling component, which makes hardware

area predictions early in the design phase based on software metrics. These

tools are integrated using a partitioning methodology. We demonstrate the ef-

fectiveness of our framework using three applications in our experiments. One

application is further detailed in a case study to illustrate the use of our method-

ology. Experimental results show application speedup of up to 2.92×.

1 Introduction

Multicore architectures, especially when containing heterogeneous processing ele-

ments, pose specific challenges regarding their programmability. Programming such

platforms implies, among other things, determining what parts of the application

should be mapped on what processing elements. Various criteria can drive this map-

ping, such as the nature of the computation or the number of cycles required by

individual tasks. However, in multicore platforms, data communication is often the

primary bottleneck in achieving the anticipated speedups. This is especially true for

legacy applications, which have to be ported to such platforms. Furthermore, in the

case of reconfigurable architectures, the application development process involves

building and synthesizing hardware blocks, which is quite time-consuming. As a con-

sequence, there is a need for fast and early predictions of the hardware costs of the

different parts of an application.

�
This research is partially supported by the Artemisia iFEST project (grant 100203), the

Artemisia SMECY project (grant 100230), and the FP7 Reflect project (grant 248976).

O.C.S. Choy et al. (Eds.): ARC 2012, LNCS 7199, pp. 76–88, 2012.

c© Springer-Verlag Berlin Heidelberg 2012



The Q
2
Profiling Framework: Driving Application Mapping 77

Efficient mapping of the application is the main concern of the Q2 profiling frame-

work. Q2
is part of a semi-automatic tool platform for integrated HW/SW co-design,

targeting heterogeneous computing systems containing reconfigurable components.

The profiling framework focuses on the data communication that occurs inside the

application and on the estimation of reconfigurable resource consumption expected

for each part of the application. The ultimate goal is to efficiently partition the appli-

cation into hardware and software. The profiling data is utilized to guide developers

in reducing the data communication between the hardware and the software compo-

nents so as to maximize the potential speedup, while satisfying resource constraints.

HW/SW partitioning has been an active field of research in the last decade. Many

approaches have been proposed, which address the problem in diverse ways. Gener-

ally, the process can be carried out based on various levels of granularity, ranging from

fine-grained basic blocks or loops [11,2] to coarse-grained functions [15,8]. Apart from

the traditional partitioning methods, different heuristic and evolutionary approaches

have also been investigated to address this problem [16].

Our partitioning methodology is similar to the one presented in [8], which supports

the partitioning of an application between several processing elements (SW/SW parti-

tioning) at the function-level, as well as HW/SW partitioning utilizing some profiling

information. However, in [8], as in most other approaches, partitioning is performed

based on the call graph, whereas we utilize the Quantitative Data Usage (QDU) graph

[14], annotated with Quipu area estimates [13] as the main reference. The data com-

munication between functions in the application is extracted automatically by our

advanced profiling toolset. In this way, complex data-flows between functions can be

made clear, enabling developers to find better partitions compared to the ones ob-

tained using only the call graph and general execution time profiling data.

As the available area in contemporary FPGAs continues to increase, the size of the

code segments that are mapped into the hardware is no longer a restriction. In fact,

it is often more efficient to map larger sections of the code into the hardware. Con-

sequently, the utilization of HW/SW partitioning at fine granularities will diminish

in future reconfigurable systems, while coarser grained approaches will gain in rel-

evance. As a result, we believe that mapping a rather large function or, in general, a

combination of several coupled functions, will not be elusive anymore. To the best of

our knowledge, the work presented in this paper is the only approach which proposes

such merging of functions based on accurate profiling information. Merging tightly

communicating functions not only presents a comprehensive view on the whole task,

but also allows developers to perform optimizations, particularly for memory require-

ments, in a feasible and efficient way. In this paper, we show the need for and the

usage of the proposed profiling framework by mapping three real applications onto

the Molen reconfigurable architecture [5].

The main contributions of this paper can be summarized as follows:

– the presentation of the Q2
profiling framework;

– the introduction of a HW/SW partitioning methodology based on detailed dy-

namic and static profiling data;

– the utilization of dynamic profiling information for reducing the data communi-

cation between hardware and software partitions;

– the presentation of experimental results on three well-known applications.



78 S.A. Ostadzadeh et al.

The rest of this paper is structured as follows. Section 2 briefly describes the research

context of the work presented in this paper. In Section 3, we describe theQ2
profiling

framework. Subsequently, a detailed case study of an image processing application is

presented in Section 4. After that, the experimental results on two other applications

are presented in Section 5. Finally, Section 6 concludes the paper.

2 Research Context

The work presented in this paper, although not restricted to any specific platform, has

been developed in the context of the Delft WorkBench (DWB). The DWB addresses

the entire design cycle from profiling and partitioning to synthesis and compilation

of an application. It focuses on four main steps within the entire heterogeneous sys-

tem design. The first step is related to application profiling. In the second step, code

partitioning is investigated along with possible code segments parallelization. Follow-

ing the decision to map particular code segments onto the hardware, a retargetable

compiler generates new object code, which contains calls to reconfigurable hardware

blocks for selected segments of the code. Finally, in the last step, VHDL generation, the

identified code segments are translated into HW blocks.

The Molen polymorphic processor has been used for the experiments in the work

presented in this paper. The Molen architecture is based on the co-processor archi-

tectural paradigm. It couples a General Purpose Processor (GPP) and a reconfigurable

co-processor (RP). The GPP controls the execution and (re)configuration of the RP. An

instruction fetched from memory goes to the arbiter, which partially decodes the in-

struction and issues the instruction to either processors. One of the advantages of the

Molen paradigm is that it can be easily ported to various platforms. In our case, we have

used the Xilinx XC5VFX200T Virtex5 FPGA as a platform. The PowerPC on this FPGA

is used as the GPP and the rest of the 30K slices is available for (re)configuration. The

advancement in technology will lead to FPGAs with even larger sizes. This, in turn,

will increase the possibility of mapping larger code segments on hardware.

3 Q
2
Profiling Framework

Fig. 1 depicts the two pillars of the Q2
profiling framework. The static profiling part

extracts code characteristics from the application source code. These characteristics

are used by a linear model to make fast and early predictions of hardware implemen-

tation details, such as FPGA area estimates. The dynamic profiling part focuses on

extracting data communication information by examining the runtime behavior of

the application and, therefore, is not as fast as the static part.

3.1 Quipu Modeling Approach

With the growing adoption of heterogeneous and reconfigurable computing plat-

forms, it has become important to have efficient prediction models to drive early

HW/SW partitioning. Therefore, we incorporate the Quipu high level quantitative

prediction modeling approach [13] in the Q2
framework. This approach accurately



The Q
2
Profiling Framework: Driving Application Mapping 79

Partitioning FrameworkProfiling Data
(XML)

Quantitative Data 
Usage Graph

Dynamic ProfilingStatic Profiling

Code Revision

R
es

ou
rc

e 
U

sa
geK
er
n
el

Li
b
ra
ry

Fig. 1. The Q2
Profiling framework within the DWB

models the relation between hardware and source code related software metrics using

several statistical techniques. The proposed approach generates models that predict

hardware-related indicators for reconfigurable components, such as the number of

slices, the number of flip-flops, and the number of wires. It employs automatic model

selection, artificial neural networks, (logistic) regression, and data transformations.

These models take a high-level language description as input, enabling hardware pre-

diction in the early design stages. In this paper, we focus only on using Quipu area

estimation models for the combination of the DWARV C-to-VHDL compiler and the

Xilinx FPGA toolchain, although different combinations can be considered as well.

The approach is generic and not limited to any particular platform or toolchain by

allowing the generated models to be recalibrated for different tools and platforms,

contrary to the majority of existing techniques. Furthermore, a major strength of

Quipu models is their linear nature. Although the statistical techniques used to create

the models may be very time-consuming, the resulting prediction models require only

a few multiplications in addition to parsing the source code. This allows for the in-

tegration of Quipu models in highly iterative design processes, where new estimates

are required many times in a short period of time. Additionally, as Quipu models are

based on measurements from C code, very early predictions become possible, allow-

ing designers to make important decisions on hardware mapping at an early stage.

In order to characterize the software complexity as it relates to hardware, Quipu

utilizes Software Complexity Metrics (SCMs) [12]. Currently, we use 92 SCMs as a

base for our model. Most of these metrics are counts of different operators, but other

metrics, such as the Cyclomatic complexity, the number of definition-use pairs, or

more complex data-flow metrics, are also included. Quipu consists of a set of tools

and a kernel library. In the modeling flow, Quipu extracts SCMs and hardware-related

indicators from a kernel library. The library contains 235 kernels from a wide variety

of application domains, contrary to many existing techniques, which use libraries of

tens of kernels at most. This allows us to build models that are generally applicable.

It is also possible to build domain-specific models by using, for example, only the 54

cryptography-related kernels out of the 235 kernels considered. An overview of the



80 S.A. Ostadzadeh et al.

Table 1. Overview of the kernel library, the number of kernels and their main algorithmic

characteristics in each application domain

Domain Kernels Floating Point Bit-based Streaming Control

Bioinformatics 6 0 ×
Compression 9 0 × ×
Cryptography 54 0 × × some

DataProcessing 9 0 ×
DSP 24 10 × × some

ECC 15 0 × × ×
Mathematics 49 21

Multimedia 58 20 some × ×
Physics 11 11

Total 235 62

kernels in this library is provided in Table 1. The Quipu modeling approach consists

of the following tools:

– The Metrication tool - This tool extracts the software complexity metrics from

C kernels in the library or from a different application. The tool is implemented in

the CoSy compiler system [7] and, as such, can adopt some of the more high-level

optimizations and transformations that are used in the modeled toolchain, such

as common subexpression elimination or dead code elimination.

– The HardwareMeasurement tool - This tool processes the log files of the hard-

ware toolchain and parses the netlists, in order to obtain hardware characteris-

tics. These include, for example, the number of slices, the number of wires, and

the clock period.

– TheModeling Scripts and the Prediction tool - Quipu automatically evaluates

different statistical modeling techniques and generates an

optimized model instance for a particular toolchain. This model can later be used

by the Prediction tool to make predictions for examined kernels.

3.2 QUAD Dynamic Memory Profiling Toolset

Traditionally, a general profiler, such as gprof [9], is utilized to identify application

hotspots at the function-level in terms of the execution time. gprof provides sample-

based execution timing estimates, in addition to an accurate call graph. On the other

hand, Maip, its counterpart in our Q2
profiling framework, provides accurate mea-

surements for the contribution percentage of individual functions with respect to the

whole execution time of an application. Furthermore, Maip distinguishes between

memory access related and computation related operations.

The Quad toolset
1
consists of several tools developed to provide a comprehen-

sive overview of the memory access behavior of an application, as well as, to extract

fine-grained detailed memory access related statistics. The Quad [14] core module

1
The Quad toolset is available at http://sourceforge.net/projects/quadtoolset/



The Q
2
Profiling Framework: Driving Application Mapping 81

primarily detects the actual data dependencies at the function-level. Quad measures

data dependency as producer/consumer bindings. More precisely, actual data depen-

dency arises when a function consumes data that was produced earlier by another

function. It should be noted that the conventional argument passing by the caller

function to the callee does not necessarily imply that the data will be used later by

the called function. Furthermore, Quad does not rely on the common approach of

data dependency detection based on hierarchies of function calls (conventionally de-

picted with a call graph), as it merely traces byte transfers between the functions via

memory accesses without any connection to the control dependencies of functions.

The exact amount of byte transfers and the number of Unique Memory Addresses (Un-

MAs) used in the transfer process are also measured. Based on the efficient Memory

Access Tracing (MAT) module implemented in Quad, which tracks every single access

(read/write) to a memory location, a variety of statistics related to the memory access

behavior of an application can be calculated. This includes, for example, the ratio of

local to global memory accesses in a particular function call. In addition to the Quad

core module, there are several other tools available in the Quad toolset. Anyhow, they

are not in the focus of this work. All the tools in the dynamic profiling part of Q2
are

implemented utilizing the Pin [3] Dynamic Binary Instrumentation (DBI) platform.

3.3 Partitioning Methodology

The outputs of both profiling parts are used to derive a suitable HW/SW partitioning

of the application. For this purpose, we follow these steps:

– Execution Time Profiling - MAIP determines the computational hotspots.

– Hardware Estimation - All functions in the application are annotated with FPGA

hardware area estimates, as predicted by the respective Quipu models.

– Initial Partitioning -With the knowledge of the computational hotspots and the

respective area predictions, an initial partitioning is determined. In this respect,

as many computation-intensive kernels as possible are moved to the hardware, so

as to speed up their execution, while satisfying the area constraints.

– Data Communication Analysis - The data communication of the kernels in the

initial partitioning set is then analyzed using Quad. Because the set of functions

that is analyzed has been reduced, Quad can run much faster. Additionally, it

helps the developer to focus on the main data communication bottlenecks.

– Final Partitioning - Certain kernels in the initial partitioning can still heavily

communicate with other functions in software, implying a heavy communication

overhead. Therefore, an additional set of kernels may be moved to hardware, if

possible, so as to reduce the amount of data communicated between hardware

and software.

4 Case Study

In this section, we present a concise analysis of an image processing application,

Canny Edge Detection (CED), to illustrate the Q2 methodology and the added value

of the Q2
profiling framework. Canny [6] is a well-known edge detection algorithm,



82 S.A. Ostadzadeh et al.

which outperforms other edge detection methods. Given an image, the algorithm first

eliminates any noise. It then finds the image gradient to highlight regions with high

spatial derivatives. The next step is to track along these regions and suppress any

pixel that is not at the maximum. The gradient array is further reduced by hysteresis.

We have used the implementation provided by the CVL at the University of South

Florida [1]. The performed procedure can be clearly divided into the following four

main steps: 1) the use of a Gaussian filter to remove the noise, 2) the determination of

the edge strength, 3) the application of Non-Maximal Suppression, and 4) the application

of hysteresis.

We examine the memory access behavior of the application to spot the main flow

of the data along the top contributing kernels and further utilize the profiling data

in HW/SW partitioning. The profiling data is also used to spot deficiencies related

to the application memory usage, resulting in some code optimizations to improve

the performance of the application mapped onto the Molen reconfigurable architec-

ture. In this case study, we specifically show the following qualities related to the Q2

framework:

– the analysis of the data communication between the kernels in the application;

– the prediction of hardware resource utilization for the different kernels;

– the detailed analysis of the application to decide on HW/SW partitioning;

– the introduction of some manual application source code optimizations derived

by the inspection of the extracted profiling data;

– the preparation of an executable version of the application that can run on the

Molen machine respecting the restrictions previously mentioned.

TheCED implementation consists of three source files containing 12 functions. For the

experiments, we used a sample grayscale PGM image with a resolution of 800×600

pixels and 8 bpp. The standard deviation of the Gaussian filter was set to 2.0. The
values of low and high thresholds for hysteresis were both set to 0.5.

All experiments were performed on two different platforms. We used the Quad

toolset on an Intel 32-bit Core2 Duo E8500 @3.16 GHz, running Linux kernel v2.6.34.

The source code was compiled with gcc v4.5.0 using level two optimizations and with-

out function inlining. An embedded PPC 440 @400 MHz is integrated in a Xilinx Vir-

tex5 FX 200T with 2.0 MB BRAM FPGA. The utilized Quipu prediction models were

generated for the DWARVC-to-VHDL compiler and the Xilinx ISE 13.2 synthesis tools

targeting the same Virtex5 FPGA containing a Molen machine implementation. The

implementation requires 7283 slices, leaving 23437 slices available for accelerating

application kernels. Simulations were performed using Modelsim 6.5f.

Quipu Profiling. We modified the CED application, where necessary, so that the

kernels could be mapped to hardware. The modification involves moving dynamic

memory allocations and recursive function calls to function stubs, which call the ac-

tual kernels. Of course, these changes required new profiling results. In Table 2, the

top five kernels with their associated new time contributions are listed. We also per-

formed an investigation of the size of potential hardware designs. The results of the

area predictions are also presented in Table 2. The table lists the predicted number

of slices, as well as the percentage of that area with respect to the available area in



The Q
2
Profiling Framework: Driving Application Mapping 83

Table 2. The Area predictions and theoretical speedups for the kernels in CED

Kernel Area
a

% Exec. speedup
b

Slices % of area time single kernel cum.

hw_gaussian_smooth 1951 8.3% 70.59% 3.40× 3.40×
hw_derrivative_x_y 510 2.2% 2.49% 1.03× 3.71×
hw_magnitude_x_y 1442 6.2% 5.14% 1.05× 4.59×
non_max_supp 2132 9.1% 14.36% 1.17× 13.48×
hw_apply_hysteresis 765209 3265% 2.68% 1.03× 21.10×

a
Area predicted by a Quipu prediction model for the Virtex 5 FX 200T.

b
Theoretical application speedup, assuming 0s execution time for each kernel.

the Molen implementation. The kernels in the table are in the order of execution in

the CED application. Note that the apply_hysteresis kernel is exceedingly resource-

intensive, requiring 3265.0% of the target FPGA area. This big requirement can be

traced back to a local array of 32K 32-bit integers. The used Quipu model was gen-

erated for DWARV, which generates registers for such local arrays, requiring 1024K

flip-flops with additional logic and wiring. When we consider to merge several ker-

nels together, the predictions suggest that the first four kernels will easily fit together

on the target FPGA, requiring a total of 19.6% of the FPGA area.

In addition to the area predictions, the theoretical application speedups are also

reported in Table 2. These speedups are calculated using Amdahl’s law, assuming an

unlimited speedup for the kernel(s) in question, as follows:

lim
p→∞

p

1− f(p− 1)
=

1

f
=

1

1− s
, (1)

where p is the speedup factor of the accelerated part, f is the percentual contribution

of the sequential part, and s is the original percentual contribution of the accelerated

part. Note that these speedups are not predictions made by Quipu. Table 2 lists both

the speedup, when one kernel is accelerated, and the cumulative speedup, where each

kernel is accelerated togetherwith the previous ones. Observe that, as large parts of the

application are accelerated, the contributions of the remaining kernels become more

significant. For example, apply_hysteresis has a contribution of 2.68%, but, with much

of the application already accelerated, the difference in theoretical speedup is 56.8%.

As mentioned earlier, merging the first four kernels in Table 2 would yield a

hardware block that would fit on the target FPGA. The maximum speedup of the

application using that block would be 13.48×. Of course, the efficiency of accelerating

this block will never be 100% and the actual speedup will be lower.

QUAD Profiling. We utilized Quad to reveal the data communication between dif-

ferent functions of the CED application. Due to space limitations, only a part of the

resulting Quantitative Data Usage (QDU) graph is depicted in Fig. 2(a). It contains the

functions in the critical data path of the application. The graph allows to trace, at run-

time, what is happening to the input image. Furthermore, the extracted quantitative



84 S.A. Ostadzadeh et al.

values help to understand what are the memory requirements for each function to

accomplish its task.

Data Communication Bottlenecks.Modifying the CED application to comply with

the hardware mapping restrictions, in turn, causes some changes in the data commu-

nication patterns of the application. As an obvious result, new data communication

channels are formed between the introduced function stubs and the corresponding

hardware-compliant kernels. However, this characteristic will not reinforce the data

communication problem, as the connections between the stubs and their correspond-

ing kernels are limited to providing the starting address of allocated memory blocks

and some related basic data elements. There is only one exception in the case of ap-

ply_hysteresis, whose body can not be moved entirely to hardware, due to the in-

vocation of a recursive function, follow_edges. Therefore, a considerable amount of

data transfer is established between the extracted hw_apply_hysteresis and the cor-

responding function stub, apply_hysteresis (850kb using 425k UnMAs). The newly

formed communication channel may be considered as a source of potential mem-

ory bottleneck and needs proper handling. Primarily, apply_hysteresis is dependent

on the data that is provided by the nms andmagnitude arrays. The data-flow originat-

ing from magnitude_x_y is now divided into separate flows for apply_hysteresis and

hw_apply_hysteresis. From the total amount of 225k memory accesses, approximately

70% is accounted for hw_apply_hysteresis and the rest for apply_hysteresis. Neverthe-

less, both functions strictly access a whole part of the magnitude array. In essence,

magnitude should be made available for both functions as a whole, regardless of the

number of accesses carried out on the data residing in the array.

Not every heavy data communication yields a potential memory bottleneck. A

more detailed investigation is required to pinpoint problems related to memory ac-

cesses. Special attention has to be given to the size of the accessed memory blocks,

the locality, the reusability and, most significantly, to the placement of the data (on-

/off-chip data allocation), where applicable. For our experiments, there was no off-

chip data allocation due to the Molen restrictions. However, this property must be

considered in the general case. A review of the critical data path reveals several po-

tential problematic memory access bottlenecks, which limit the performance of the

application. Loading the image from an external source is the first obstacle.

Beginning with hw_derrivative_x_y, there is a series of data communication via dif-

ferentmemory blocks,which is responsible for themain performance bottleneck of the

application. In each (sub)phase, one or more memory blocks are used as input to pro-

duce an output block. The data movement is performed through hw_magnitude_x_y,

non_max_supp, hw_apply_hysteresis, apply_hysteresis, and follow_edges. Optimizing

the CED application should be centered around the block processing. This, in a sub-

sequent analysis, requires thorough examination of the exact life span of each block,

the data dependencies between them, and the possible merging/reusing of the rele-

vant data.

Optimization. After a careful analysis of the results, we observed that all hardware-

compliant kernels up to hw_apply_hysteresis fit together on the reconfigurable fabric.

Furthermore, together, they would exhibit a significant potential speedup of 13.46×.



The Q
2
Profiling Framework: Driving Application Mapping 85

Image

hw_gaussian_smooth

7131876 bytes
(480000 UnMA)

make_gaussian_kernel
100 bytes

(60 UnMA)

42072000 bytes
(44 UnMA)

hw_magnitude_x_y

non_max_supp

4758090 bytes
(956810 UnMA)

hw_apply_hysteresis

159898 bytes
(159898 UnMA)

apply_hysteresis

71108 bytes
(71108 UnMA)

follow_edges

94186 bytes
(93922 UnMA)

478605 bytes
(478605 UnMA)

480000 bytes
(480000 UnMA)

867597 bytes
(435605 UnMA)

302657 bytes
(156225 UnMA)

21024000 bytes
(1920000 UnMA)

hw_derrivative_x_y

3840000 bytes
(960000 UnMA)

1920000 bytes
(1920000 UnMA)

2324712 bytes
(1874256 UnMA)

1433 bytes
(1433 UnMA)

2870 bytes
(1319 UnMA)

90970 bytes
(46575 UnMA)

78537 bytes
(45049 UnMA)

(a) The Partial QDU graph for the hardware

version of CED

Instance Area Maip %time speedup

T
h
eo
re
ti
ca
l

cumulative 7711 92.58% 13.48×
merged 5874 92.58% 13.48×
optimized 5808 92.57% 13.46×
Instance Area Time (ms) speedup

R
ea
l

simulation n/a 88.5 2.92×
(b) Area predictions and theoretical speedups

for the kernels in CED

read_pgm_image

hw_gaussian_nms

53324 bytes
(4864 UnMA)

make_gaussian_kernel

42072000 bytes
(44 UnMA)

33866802 bytes
(5756810 UnMA)

hw_apply_hysteresis

638503 bytes
(638503 UnMA)

apply_hysteresis

71108 bytes
(71108 UnMA)

follow_edges

94186 bytes
(93922 UnMA)

(c) Partial QDU graph for the hardware version

of CED after merging

Fig. 2. Merging identified kernels. (a) QDU before merging, (b) Area predictions and speedups,

(c) QDU after merging.

Finally, the bulk of the communication occurred in this group of functions. In the

following, we continue our evaluation by merging these kernels, providing additional

profiling results, and implementing certain optimizations that the results suggest.

The initial merging process consisted of the concatenation of the subsequent func-

tion calls. In the case of CED, this process was trivial. However, in case the to-be-

merged functions have no direct connections in the call graph, the process may be-

come more complex. In the table in Fig. 2(b), we observe that, prior to the merging,

the predicted area consumption was 7711 slices with a theoretical speedup of 13.48×.

After the merging, the potential speedup remains the same, but the predicted area de-

creases to 5874 slices. The reason for this behavior is very likely the increased reuse of

calculations and variables. The used Quipumodel was generated for the DWARV com-

piler and Xilinx ISE synthesizer, which use common compiler front-end optimizations

and resource sharing, which can significantly reduce the required area.

Now that we have a merged kernel, the Quad results also change accordingly. In

Fig. 2(c), we see that most of the memory locations and accesses are now internal to

the merged hw_gaussian_nms kernel. When we carefully investigate these new re-

sults, we see that the number of UnMAs is roughly 12 times as large as our input

image (800×600×12×1 byte = 5760000 bytes). As subsequent phases of CED use dif-

ferent temporary data objects, we analyzed how the corresponding memory blocks

might be reused. By determining the live ranges of different memory regions, we ob-

served that the maximum amount of memory needed at the same time is 7 times the

size of one image block. Therefore, we optimized the merged kernel to reuse mem-

ory blocks when they are no longer needed. The table in Fig. 2(b) indicates that this



86 S.A. Ostadzadeh et al.

optimization does not influence the potential speedup, but the required amount of

memory is reduced significantly. Furthermore, the required area remains effectively

the same at 5808 slices.

In order to evaluate the proposed adjustments, VHDL code was generated for the

merged hw_gaussian_nms kernel and simulated for the target platform using Model-

sim 6.5f. Using exactly the same kernel input data as the one used on the PPC, the

simulation took 177 million cycles. The synthesis of the kernel suggested a maximum

clock speed of 235 MHz. Assuming a conservative 200 MHz results in an execution

time of 88.5 ms. On the PPC, the execution took 292 ms, accounting for a kernel

speedup of 3.44× and an application speedup of 2.92×. Because of the merging we

performed, the kernel speedup has a big impact on the application speedup, as the

merged kernel represents most of the computational work.

5 Experimental Results

Table 3 provides a summary of the results for three well-known applications. The first

application is the MELP vocoder [4], used mainly for secure voice in radio devices.

MELP uses extensive look-up tables and models of the human voice to extract and re-

generate speech and, as such, it is a computation intensive application. CED has been

discussed in detail in Section 4. N-Body [10] is a widely used technique to investigate

the evolution of particles in various fields of science, such as physics or astronomy.

The N-Body simulation proceeds over time steps, each time computing the net force

on every body and thereby updating its position and other attributes. The system is

then updated by moving each body to its new position. The simulation is performance

hungry, because of the large number of particles involved in such application.

Table 3 shows that four kernels for each application have been selected in the

final partitioning as potential candidates to be mapped onto the hardware. For each

application, the total execution time of the merged kernel containing the selected

candidates is reported in Table 3. In case of MELP, Quipu predictions have an error

of 8%, whereas in case of N-Body this error is about 30%. According to Quad, data

communication between the HW and SW parts is reduced considerably as a result of

the selected partitioning. The data reduction is measured by comparing two scenarios

Table 3. Summary of the Q2
profiling results and the partitioning based on those results

App.
a

Number of kernels Exec.

time
b

Area (slices) Comm.

Red.
c

Speedup

Tot. Map. Pred. Act. Err.(%) Theor. Act.

MELP 59 4 51.8% 6534 6043 8.1% 57.1% 1.80× 1.30×
Canny 12 4 92.6% 5381 7307 26.4% 22.7% 13.48× 2.92×
N-Body 10 4 99.7% 11730 8209 30.0% 42.9% 136.99× n/a

a
Application(App.), Execution(Exec.), Total(Tot.), Mapped(Map.), Predicted(Pred.), Actual(Act.), Error(Err.)

b
Percentage contribution reported by the Maip profiler for all the mapped kernels together.

c
The communication reduction as reported by Quad.



The Q
2
Profiling Framework: Driving Application Mapping 87

where, in one, only the top contributing kernel is mapped to the hardware and, in the

other, the merged kernel is mapped to the hardware. The overall theoretical speedup

forMELP is 1.8×, although the actual speedup is 1.3×. For CED, the actual speedup is

2.92×. The actual speedup could not be reported for N-Body because the simulation

scripts of our framework do not support the automatic generation of test benches for

multidimensional arrays.

6 Conclusions

Efficient application partitioning for heterogeneous architectures is a difficult task.

There are multiple factors to take into account, such as application speedup, area

constraints, and memory bottlenecks. In this paper, we introduced the Q2 profiling

framework that addresses this problem by providing a detailed insight into the men-

tioned aspects at early design stages. We have demonstrated how this profiling data

can drive partitioning using three different applications, exhibiting speedups of up to

2.92×. In the future, we plan to investigate speedup estimation and power issues, as

well as, to examine additional applications for mapping onto our target platform.

References

1. Canny Edge Detector, Image Analysis Research Lab., USF,

��� !""#�����$��%���������	�"�	&�"�	&�'	���%��$����#�

2. Baleani, M., et al.: HW/SW partitioning and code generation of embedded control applica-

tions on a reconfigurable architecture platform. In: CODES 2002, pp. 151–156 (2002)

3. Luk, C., et al.: Pin: building customized program analysis tools with dynamic instrumenta-

tion. In: PLDI 2005, pp. 190–200 (2005)

4. Supplee, L.M., et al.: MELP: the new federal standard at 2400 bps. In: IEEE International

Conference on Acoustics Speech and Signal Processing, pp. 1591–1594 (1997)

5. Vassiliadis, S., et al.: The Molen polymorphic processor. IEEE Transactions on Comput-

ers 53(11), 1363–1375 (2004)

6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.

Intell. 8, 679–698 (1986)

7. Experts, A.A.C.: Cosy: Compiler system, ��� !""�����%����"

8. Gohringer, D., et al.: A design methodology for application partitioning and architecture

development of reconfigurable multiprocessor systems-on-chip. In: FCCM 2010, pp. 259–

262 (2010)

9. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution profiler. SIGPLAN

Not. 17(6), 120–126 (1982)

10. Hut, P., Makino, J., McMillan, S.: Building a better leapfrog. The Astrophysical Jour-

nal 443(2), L93–L96 (1995)

11. Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., Stockwood, J.: Hardware-

software co-design of embedded reconfigurable architectures. In: DAC 2000,

pp. 507–512 (2000)

12. Meeuws, R.J.: A Quantitative Model for Hardware/Software Partitioning. Master’s thesis,

Delft University of Technology, Delft, Netherlands (2007)

http://marathon.csee.usf.edu/edge/edge_detection.html
http://www.ace.nl/


88 S.A. Ostadzadeh et al.

13. Meeuws, R.J., Galuzzi, C., Bertels, K.: High level quantitative hardware prediction modeling

using statistical methods. In: SAMOS 2011, pp. 140–149 (2011)

14. Ostadzadeh, S.A., Meeuws, R.J., Galuzzi, C., Bertels, K.: QUAD – A Memory Access Pattern

Analyser. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.) ARC 2010. LNCS,

vol. 5992, pp. 269–281. Springer, Heidelberg (2010)

15. Santambrogio, M., et al.: A novel SoC design methodology combining adaptive software

and reconfigurable hardware. In: ICCAD 2007, pp. 303–308 (2007)

16. Wang, G., Gong, W., Kastner, R.: Application partitioning on programmable platforms using

the ant colony optimization. Journal of Embedded Computing 2(1), 119–136 (2006)


	The Q2 Profiling Framework: Driving Application Mapping for Heterogeneous Reconfigurable Platforms
	Introduction
	Research Context
	Q2 Profiling Framework
	Quipu Modeling Approach
	QUAD Dynamic Memory Profiling Toolset
	Partitioning Methodology

	Case Study
	Experimental Results
	Conclusions
	References




