
TLM Modelling of 3D Stacked Wide I/O DRAM Subsystems

A Virtual Platform for Memory Controller Design Space Exploration

Matthias Jung, Christian Weis,
Norbert Wehn

University of Kaiserslautern, Germany
Microelectronic System Design Research Group

{jungma,weis,wehn}@eit.uni-kl.de

Karthik Chandrasekar

Delft University of Technology, Netherlands
Computer Engineering

k.chandrasekar@tudelft.nl

ABSTRACT
Three-dimensional stacked Wide I/O DRAMs have been
proposed as a promising solution to overcome the pin-limited
memory performance growth, the power vs. bandwidth di-
lemma and the Memory Wall. This new DRAM architecture
and organisation requires a new generation of DRAM mem-
ory controllers.

In this paper, we present a new methodology using virtual
platforms to model the backend of a 3D-DRAM memory
subsystem (channel controller and Wide I/O DRAM) with
special SystemC TLM2.0 phase extensions. This method-
ology enables us to explore the complete design space of
memory controllers at the system level at very fast simula-
tion speeds with precise timing accuracy. We show simula-
tion speedups of up to 377x with a timing accuracy of 99%
compared to an equivalent cycle and pin accurate SystemC
based RTL simulation.

Categories and Subject Descriptors
B.3.3 [Performance Analysis and Design Aids]: Simu-
lation; B.3.1 [Semiconductor Memories]: Dynamic mem-
ory (DRAM)

General Terms
Performance, Measurement

Keywords
Virtual Platforms, TLM, Simulation acceleration, Design
Space Exploration, 3D-Stacked DRAMs

1. INTRODUCTION
Today’s high-performance and embedded applications are

characterised by ever increasing demands on the memory
bandwidth and capacity. Due to this reason the need for
a higher number of I/Os of the memory subsystem is con-
tinuously growing [1]. However the number of I/O pins is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

limited by the package and power considerations. The en-
ergy consumed per bit for accessing off-chip memory is many
times higher than the energy required for on-chip memory
accesses. This is due to complex and power hungry I/O
transceiver circuits that have to deal with the electrical char-
acteristics of the interconnections between the chips.

Moreover, the maximum achievable memory bandwith in
current off-chip DRAMs is lesser than the bandwidth re-
quirements of modern high performance and embedded com-
puting systems. This problem is known as the Memory
Wall [2].

Three-dimensional stacked memories have been proposed
as a promising solution for these problems. These memo-
ries reduce the distance between CPU and external RAM
from centimetres to micrometres by means of TSV (through
silicon via) technology. The available bandwidth has in-
creased but more importantly this technology provides a
major boost in energy efficiency in comparison to standard
off-chip SDR or DDR/2/3 DRAM devices [3, 4]. The com-
bination of high bandwidth communication with the lower
power consumption of 3D integrated memory is an ideal fit
for high-performance and embedded applications.

An optimal architecture of a 3D-DRAM with respect to
bank structure, number of layers and channels is presented
in [5]. Figure 1 shows a 3D-DRAM cube that is composed
of four independent vertical channels, each consisting of 8
independent banks. Every channel has its own channel con-
troller (CCx) that is connected via microbumps and TSVs
to the DRAM layers.

MPSoC

3D-DRAM Cube

 Controller
FrontendCC2

CC0

V
e

r�
ca

l C
h

an
n

e
l

Figure 1: 3D-DRAM Cube with Vertical Channel
Architecture

A
rb

it
ra
�

o
n

&

M
ap

p
in

g

Scheduler

Scheduler

Scheduler

Scheduler

C
o

re
 1

C
o

re
 n

..
.

Frontend

Cycle Accurate Core
and Bus Models

Pre-Recorded Tracefiles

Backend

Special DRAM TLM Protocol

Controller
Channel

Controller
Channel

Controller
Channel

Controller
Channel

Channel
DRAM

Channel
DRAM

Channel
DRAM

Channel
DRAM

Figure 2: Virtual platform for 3D-DRAM controller exploration with 4 channels

These new memory architectures require a new generation
of DRAM controllers to exploit the full bandwidth and en-
ergy efficiency of 3D-DRAMs. Some examples are presented
in [3, 6, 7, 8, 9]. However, the design space for a 3D-DRAM
controller is huge with respect to different mappings, config-
urations, scheduling and arbitration algorithms. Therefore
a flexible model is needed for an effective and fast investi-
gation. The exploration of these new controllers with tradi-
tional cycle and pin accurate (CA) Register Transfer Level
(RTL) models provides the needed accuracy. However, the
RTL models are inflexible in terms of the large design space
and the very long simulation times. This is due to the large
number of signals, processes and events that have to be sim-
ulated [10]. However it is possible to simulate at a higher
level of abstraction without loosing simulation accuracy.

One way to achieve a higher level of abstraction is us-
ing Transaction Level Modeling (TLM) [11] for system level
simulation. TLM has emerged as standard methodology for
Electronic System Level (ESL) design. Since 2012, TLM
is part of the IEEE1666 SystemC standard [12]. TLM can
help speeding up the simulation by replacing all pin-level
events with a single function call. For instance, a single
bus transaction produces approximately 75 events in a RTL
simulation compared to only a handful of events in a TLM
simulation [13]. It is possible to reach speedup factors up to
10.000 [12].

However, simulation speed comes at the cost of reduced
timing accuracy. For the purpose of modeling DRAM con-
troller architecture, the standard TLM coding styles are not
accurate enough to reflect a realistic behaviour. In this pa-
per, we present an effective way to extend the Approximately
Timed (AT) TLM protocol with DRAM related phases to
achieve the needed accuracy.

The rest of the paper is structured as follows: Section 2
describes the state of the art regarding DRAM simulation.
Section 3 presents the simulation environment using virtual
platforms and the implementation of the DRAM controller
backend model. In Section 4 the TLM model is compared
to a cycle accurate implementation with respect to speedup
and accuracy. Finally, the paper concludes with Section 5.

2. RELATED WORK
Various approaches exist to integrate and simulate the

memory subsystem. DRAMSim2 [14] is a memory system
simulator that uses cycle accurate and highly detailed C++
models of the controller and the DRAM. Thus it is not suit-
able for fast and exhaustive system level investigations. The
model of the gem5 system simulator [15] is not detailed
enough to reflect a realistic DRAM subsystem behaviour.
A TLM based DRAM model is available from OCP-IP [16].
In contrast to our implementation it uses a clock based cal-
culation of state and delay of DRAM and controller, which
leads to an increase in simulation time. The commercial
DesignWare TLM Library [17] from Synopsys and Sonics’
MemMax Memory Subsystem [18] include AT DDR3 mem-
ory controller models that are not changeable and they do
not disclose any details. With our proposed methodology we
enable the exploration of the huge and complex design space
of the Wide I/O DRAM subsystem using virtual platforms.

3. VIRTUAL PLATFORMS
The TLM2.0 platforms for design space exploration are

created with the help of the Synopsys Platform Architect
tool [19]. It permits the modeling of different types of sys-
tem architectures with cycle accurate bus and core models.
To get even faster simulations we record transaction traces
and replay them with elastic trace players [20]. The abil-
ity to process traces from other simulators like gem5 [15] or
Simplescalar [21] opens up the opportunity of using multiple
sources for analysis and explorations.

Figure 2 shows the architecture of the flexible virtual plat-
form of our 3D-DRAM multi-ported memory subsystem.
The platform contains either cycle accurate core and bus
models (e.g. ARM processor models from Carbon) or elas-
tic trace players for generating input data for the subse-
quent 3D-DRAM memory subsystem. The subsystem con-
sists of a frontend and a backend part. The frontend con-
tains an arbitration and mapping block that handles the
incoming transactions and forwards them to the different
channel schedulers according to specific priority schemes and

mappings. The single channels of the subsystem are inde-
pendent. Therefore each channel has its own scheduler and
controller. The scheduler module collects transactions and
reorders them with respect to latency and power savings
and issues them to the backend with the channel controller
that takes care of the correct use of the DRAM. This virtual
platform gives us the flexibility for exhaustive explorations.

All connections are implemented in the TLM2.0 Approx-
imately Timed (AT) coding style. An exception is the con-
nection between controller and channel: For this connection
we extended the TLM non-blocking protocol with DRAM
specific phases. With these phase extensions we can achieve
the required accuracy to observe e.g. the detailed impact
of different address mappings or reordering algorithms of
the scheduler. We separated the channel controller from the
DRAM channel model to provide the interoperability to
analyse various DRAM device models. The design of these
phases and the implementation of the channel controller and
the DRAM model is explained in the following sections.

3.1 Design of the Phases
The TLM non-blocking base protocol consists of follow-

ing phases: BEGIN_REQ, END_REQ, BEGIN_RESP and END_RESP.
Instead of simulating every clock cycle, the simulator is trig-
gered only at the BEGIN (<) and END (>) phase events. Using
the JEDEC Wide I/O Single Data Rate standard [22] we
have defined additional application specific phases for the
different DRAM commands by means of the DECLARE_EXTEND
ED_PHASE() macro. These phases are calibrated to the cycle
accurate behaviour of the Wide I/O standard, although it
could be easily adopted to any DRAM. Three of the impor-
tant phases (ACT, PRE, RD) and their timing dependencies
are presented in this section.

Activate - ACT
DRAMs are organised in banks, rows and columns. To ac-
cess data in a row of a certain bank in the DRAM, the
Activate command (ACT) must be issued before any read
or write operation can be executed. The ACT command
opens an entire row of the memory array that is transferred
into the bank’s row buffer (sense amplifiers), which serves as
a cache. Then the DRAM accepts a read or write command
after the RAS to CAS delay tRCD. The TLM phase-pair
consists of BEGIN_ACT and END_ACT and its duration is equal
to tRCD (see Figure 3).

The minimum time interval between successive ACT com-
mands to the same bank is determined by the row cycle time
of the device (tRC). The minimum time interval between
ACT commands to different banks is tRRD (see Figure 4).

tRCD

CLK

CMD ACT NOP NOP RD

ADD B0 B0

TLM ACT

Figure 3: The design of the ACT command phases

Precharge - PRE
If a certain row in a bank is active it must be precharged
(PRE) before another row can be activated. The minimum
time between PRE and ACT is defined as tRP . The TLM
phase-pair consists of BEGIN_PRE and END_PRE and its dura-
tion is equal to tRP .

A bank cannot be precharged until at least tRAS time after
the previous ACT (see Figure 4). The row cycle time can be
calculated as tRC = tRAS + tRP .

tRRD

tRAS tRP

tRC

CLK
CMD ACT NOP ACT NOP PRE ACT NOP ACT

ADD R0B0 R0B1 B0 R0B2 R0B0

TLM:
Bank0 ACT PRE ACT

Bank1 ACT

Bank2 ACT

Figure 4: Duration and dependencies of PRE

Read - RD
The read command (RD) is used to initiate a burst read
access to an active row with a certain burst length. It is
possible to turn on auto precharge in the configuration. If
auto precharge is selected, the row being accessed will be
precharged at the end of the read burst if the minimum tRAS

timing is fullfilled (closed page mode). If auto precharge is
not selected, the row will remain open for subsequent ac-
cesses (open pagemode). When no auto precharge command
has been issued, data from a read burst may be concatenated
by a subsequent RD command. The first data element from
the new burst follows the last element of a completed burst.
The new RD command should be issued tBL after the first
RD command, where tBL is the burst length of the last
RD before. The TLM phase-pair consists of BEGIN_RD and
END_RD and its duration is equal to the read latency tRL plus
the burst length tBL (see Figure 5).

If a RD transaction is being executed, a subsequent WR
can be issued after the completion of this RD command. If
a WR command is issued, the following RD command has
to wait a minimum time of tWTR (write to read delay) .

tRL tB L

CLK
CMD RD NOP NOP NOP NOP NOP NOP NOP

ADD RBC

DQ 1 2 3 4

TLM RD

Figure 5: Duration of the RD command

The phases of all other DRAM commands such as Write
(WR), Precharge-All (PREA), Refresh (REFA) etc. and their
interdependencies are implemented in a similar way. An
important restriction is that two phases must not begin at

ACT RD RD PRE ACT RD

ACT RD WR RD

REQ RESPREQ
RESP

REQ RESPREQ RESPREQ RESPREQ

Time in (ns)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

page hit page miss

RD to WR

Input of
Channel

Controller

*

WR to RD

O
u

tp
u

t
of

 C
h

an
n

el
 C

on
tr

ol
le

r

Bank0

Bank7

. . .

TL
M

 P
h

as
es

Figure 6: Example of a typical TLM trace with DRAM related phases

the same cycle since this would lead to a conflict on the
command bus. If this case occurs the second phase must be
shifted for one clock cycle.

Figure 6 shows an example of a typical trace with DRAM
specific TLM phases, which are depicted per bank. The first
line shows the input of the standard TLM2.0 target socket of
the channel controller and the following lines the output to
the DRAM. The controller of this example is able to handle
a new request every clock cycle. It has a input buffer size of
four, which leads to stalling in case the buffer is full.

In Figure 6 the previously discussed timing dependencies
are shown, e.g. the ACT in Bank7 needs to be shifted by
one clock cycle because of the scheduled RD command in
Bank0 (*). The second RD command in Bank0 can start
already after tBL of the first RD (page hit). The third RD
command on Bank0 has to access another row. Therefore
a PRE and an ACT command are issued in advance (page
miss). The dependencies of consecutive RD and WR com-
mands are shown at the end of the trace example.

3.2 Implementation
TLM transactions are sent through initiator sockets and

received through target sockets. In the AT coding style the
initiator calls the nb_transport_fw function (called forward
path) of the target to issue a transaction. The target receives
the transaction and stores it in the payload event queue
(PEQ) that queues the transaction until it is ready to be ex-
ecuted. Then a callback function is called that processes the
transaction. The target calls the nb_transport_bw function
of the initiator (called backward path) to answer the request
of the initiator with an END phase.

The controller and DRAM TLM models have to deal with
the timings discussed in the last section. Figure 7 shows the
basic structure of the controller backend model, that consists
of standard TLM2.0 payload event queues (PEQ), a status
table for the DRAM bank states and timing check functions
(TC) for the DRAM commands.

If a new transaction is sent from scheduler and enters the
channel controller with the BEGIN_REQ phase it is stored in
the input PEQ. The callback function of the PEQ is called
and an END_REQ is sent back to the scheduler. Then it is
checked whether there is a page miss, bank miss or page hit
according to the address and the current state of the target

bank (stored in the state table) to determine the appropriate
BEGIN phase that will be issued to the DRAM.

BANK0
BANK1
BANK2
 ...
BANK7

...

...

...

...

...

PEQ

State Table:

pa
ge
 m
is
s

ba
nk
 m
is
s page hit

page hit

nb_transport_fw

PEQ

BEGIN_PRE BEGIN_ACT BEGIN_RD BEGIN_WR

TC_PRE TC_ACT TC_RD TC_WR

END_PRE END_ACT END_RD END_WR

nb_transport_bw

nb_transport_fw nb_transport_bw

PEQ

Channel
Controller

DRAM
Channel

Send:

Receive:

Send:

Receive:

BEGIN_PRE BEGIN_ACT BEGIN_RD BEGIN_WR

END_PRE END_ACT END_RD END_WR

SCML Memory

from/to Scheduler

Target Socket

Initiator Socket

Target Socket

Figure 7: Architecture of the backend TLM model

The TC function corresponding to the selected BEGIN phase
is called next. This function checks the timing dependencies
within the target bank and across all other banks and returns
a waiting delay which is passed to the nb_transport_fw

function of the DRAM.
The transaction is passed with the determined BEGIN phase

to the DRAM device and in case of a RD or WR the data
is loaded from or stored in a SCML (SystemC Modeling Li-
brary) [23] memory that enables detailed debugging with
the Synopsys tools.

Then the transaction is issued back to the controller by
calling nb_tranport_bw with the appropriate END phase. In
case the controller received an END_PRE or an END_ACT, a BE-

GIN_ACT or BEGIN_RD/BEGIN_WR must be sent to the DRAM
after the associated timing checks. If the controller receives
an END_RD or an END_WR phase, the transaction is sent back
to the scheduler component with a BEGIN_RESP phase. The
scheduler acknowledges the transaction by issuing a END_RESP.

The TLM abstraction does not in anyway restrict our abil-
ity to analyse DRAM power consumption. In fact by logging
just the timestamps of the phases we can employ transac-
tion based [24, 25] and CA [25] simulators to obtain power
consumption estimates, as well.

4. EXPERIMENTS AND RESULTS
To measure the performance of the TLM backend model

we compare it against a handwritten cycle accurate (CA)
SystemC model. The two platforms are created in the Syn-
opsys Platform Architect [19] and use the same input stimuli
which are generated from the CHStone [26] and the Media-
bench [27] benchmarks.

The benchmark traces are generated by means of the Sim-
plescalar simulator with a 16KB L1 D-cache, 16KB L1 I-
cache, 128KB shared L2 cache and 32-byte cache line config-
uration. We filtered out the L2 cache misses for instructions
and data, and obtained a trace of the transactions meant for
the DRAM.

The TLM model is very fast with respect to runtime. For
instance the mediabench mpeg2encode runs 1h 41m with the
CA model compared to 42s with the TLM Model giving a
speedup of 145x. Similarly with the mediabench h263decode
we achieved a speedup of 377x compared to the CA imple-
mentation as shown in Table 1, Figure 8 and Figure 9. The
difference of the simulation times between the CA and TLM
model are very small and this results in a overall accuracy
of more than 99%.

1 s

10 s

100 s

1000 s

10000 s

m
ip

s

ad
p

cm

gs
m

ae
s

sh
a b
f

jp
eg

u
n

ep
ic

ad
p

cm
d

ec
o

d
e

ad
p

cm
en

co
d

e

jp
eg

en
co

d
e

jp
eg

d
ec

o
d

e

ep
ic

h
2

6
3

en
co

d
e

gs
m

d
ec

o
d

e

m
p

eg
d

ec
o

d
e

fr
ac

ta
l

m
p

eg
en

co
d

e

c-
ra

y-
1

.1

g7
2

1
d

ec
o

d
e

g7
2

1
en

co
d

e

h
2

6
3

d
ec

o
d

e

CA Model

TLM Model

Figure 8: Runtime of the Models

0

50

100

150

200

250

300

350

400

m
ip

s

m
o

-
o

n

ad
p

cm

gs
m

ae
s

sh
a b
f

jp
eg

u
n

ep
ic

ad
p

cm
d

ec
o

d
e

ad
p

cm
en

co
d

e

jp
eg

en
co

d
e

jp
eg

d
ec

o
d

e

ep
ic

h
2

6
3

en
co

d
e

gs
m

d
ec

o
d

e

m
p

eg
d

ec
o

d
e

fr
ac

ta
l

m
p

eg
en

co
d

e

c-
ra

y-
1

.1

g7
2

1
d

ec
o

d
e

g7
2

1
en

co
d

e

h
2

6
3

d
ec

o
d

e

Figure 9: Measured Speedup

For some traces we could only achieve a speedup of 2x.
The reason for this is the density of the traces that is calcu-
lated as follows:

Trace Density =
Number of Transactions

Simulated Time

If the trace density is high, the TLM model has to simu-
late more events in a certain time interval and the simula-
tion time converges to the CA implementation. As a result
smaller speedup is achieved. However if the trace density is
low the TLM model achieves much better performance as
the CA has to compute each clock event. This dependency
is shown in Figure 10 that depicts the different benchmarks
from Table 1 with respect to speedup and density.

1

10

100

1000

1,00E-08 1,00E-07 1,00E-05 1,00E-04

Sp
e

e
d

u
p

Trace Density

(l
o

g)

(log)

Figure 10: Performance of the TLM Model

In summary the results show that the simulation is speeded
up in orders of magnitudes while maintaining high accuracy.

5. CONCLUSIONS
Three-dimensional stacked DRAMs are the future of mem-

ory technology for high performance and embedded com-
puting. In this paper, we presented a virtual platform for
the exploration and optimisation of multi-channel Wide I/O
DRAM controllers. Towards this, we introduced a new DRAM
specific TLM protocol for the backend part of the controller
to obtain the needed accuracy to analyse the impact of dif-
ferent scheduling algorithms or arbitration schemes on the
latency and power on system level, while improving simula-
tion speed.

Due to the large speedup of the TLM models and the
flexibility of the platform, we are able to explore alternative
controller architectures in a fast and accurate manner.

Benchmark # Trans. Simulated Time Runtime CA Runtime TLM Accuracy Speedup Density
(µs) (s) (s)

chstone mips 993 87.348 5.53 2.25 98.98% 2 1.1E-05
chstone motion 1144 67.097 5.55 2.25 99.17% 2 1.7E-05
chstone adpcm 1211 188.125 5.75 2.23 99.65% 2 6.4E-06
chstone gsm 1202 88.751 5.55 2.26 99.29% 2 1.4E-05
chstone aes 1382 208.579 5.98 2.24 99.97% 2 6.6E-06
chstone sha 1503 803.847 7.50 2.27 99.99% 3 1.9E-06
chstone bf 1660 829.227 7.59 2.26 99.92% 3 2.0E-06
chstone jpeg 3247 4004.316 16.36 2.39 99.99% 6 8.1E-07
mediabench unepic 129245 29214.391 99.27 9.96 99.42% 9 4.4E-06
mediabench adpcmdecode 1059 11416.187 36.06 2.26 99.94% 15 9.3E-08
mediabench adpcmencode 1072 17370.592 51.73 2.25 99.96% 22 6.2E-08
mediabench jpegencode 173995 107826.614 317.70 12.45 100.0% 25 1.6E-06
mediabench jpegdecode 43143 54131.091 156.88 4.94 99.96% 31 8.0E-07
mediabench epic 182957 151658.953 439.88 13.33 100.00% 33 1.2E-06
mediabench h263encode 858099 1448583.227 4005.70 56.11 100.00% 71 5.9E-07
mediabench gsmdecode 19734 116129.692 318.65 3.39 99.96% 93 1.7E-07
mediabench mpegdecode 72043 268409.430 746.23 7.37 100.00% 101 2.7E-07
mediabench fractal 33895 176513.378 488.85 4.18 99.99% 117 1.9E-07
mediabench mpegencode 616935 2196276.902 6029.20 41.48 100.00% 145 2.8E-07
mediabench c-ray-1.1 21627 365540.557 997.03 3.53 99.99% 282 5.9E-08
mediabench g721decode 19350 472404.358 1275.99 3.55 99.99% 359 4.1E-08
mediabench g721encode 14655 418781.118 1131.07 3.07 99.99% 368 3.5E-08
mediabench h263decode 9866 391013.384 1052.30 2.79 99.99% 377 2.5E-08

Table 1: Runtimes and Simulation Times for Different Benchmarks

REFERENCES

[1] P. Stanley-Marbell, et al. Pinned to the walls; Impact
of packaging and application properties on the memory
and power walls. In proc. ISLPED 2011, Aug. 2011.

[2] Wm. A. Wulf et al. Hitting the memory wall:
implications of the obvious. SIGARCH Comput.
Archit. News, March 1995.

[3] C. Weis, et al. An energy efficient DRAM subsystem
for 3D integrated SoCs. In proc. DATE 2012, march
2012.

[4] G. Manil D., et al. DRAM selection and configuration
for real-time mobile systems. In proc. DATE 2012,
March 2012.

[5] C. Weis, et al. Design space exploration for 3D-stacked
DRAMs. In proc. DATE 2011, March 2011.

[6] Cadence Design IP: Wide-I/O Controller. Technical
report, Cadence Design Systems, Inc., 2012.

[7] M. Ghosh et al. Smart Refresh: An Enhanced
Memory Controller Design for Reducing Energy in
Conventional and 3D Die-Stacked DRAMs. In proc.
MICRO 2007, Dec. 2007.

[8] I. Loi et al. An efficient distributed memory interface
for many-core platform with 3D stacked DRAM. In
proc. DATE 2010, March 2010.

[9] Guangfei Zhang, et al. Heterogeneous multi-channel:
fine-grained DRAM control for both system
performance and power efficiency. In DAC 12, Jun.
2012.

[10] F. Kesel. Modellierung von digitalen Systemen mit
SystemC: Von der RTL- zur
Transaction-Level-Modellierung. Oldenbourg
Wissenschaftsverlag, 2012.

[11] Lukai Cai et al. Transaction level modeling: an
overview. In proc. CODES+ISSS ’03, 2003.

[12] IEEE Computer Society. IEEE 1666: SystemC
Language Reference Manual, 2012 edition, 2011.

[13] D.C. Black, et al. SystemC: From the Ground Up,

Second Edition. Springer, 2009.
[14] P. Rosenfeld, et al. DRAMSim2: A Cycle Accurate

Memory System Simulator. Computer Architecture
Letters, 10(1), Jan.-June 2011.

[15] Nathan Binkert, et al. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[16] Nan Li, et al. Design and Implementation of an
Accurate Memory Subsystem Model in SystemC.
Technical report, December 2010.

[17] DesignWare TLM Library.
http://www.synopsys.com/Systems/VirtualPrototyping
/VPModels/Pages/DW-TLM-Library.aspx, 2012.

[18] MemMax Scheduler. http://sonicsinc.com/wp-
content/uploads/2012/09/Sonics ProductBrief Mem
Max.pdf, 2012.

[19] Inc Synopsys. Synopsys Virtual Prototyping Solution.
http://www.synopsys.com/Systems/VirtualPrototyping
/Pages/default.aspx, 2012.

[20] Tim Kogel. Generating Workload Models from
TLM-2.0-based Virtual Prototypes for Efficient
Architecture Performance Analysis.
http://www.nascug.org/events/13th/tlm20 workload
models.pdf, Jun. 2010.

[21] Doug Burger et al. The SimpleScalar tool set, version
2.0. SIGARCH Comput. Archit. News, 25(3), June
1997.

[22] Jedec Solid State Technology Association. Wide I/O
Single Data Rate JESD 229, Dec. 2011.

[23] SystemC Modeling Library (SCML).
http://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi.

[24] Micron Technology Inc. Calculating Memory System
Power for DDR3. Technical report, 2007.

[25] Karthik Chandrasekar, et al. Improved Power
Modeling of DDR SDRAMs. In proc. DSD’11, 2011.

[26] Yuko Hara, et al. Proposal and Quantitative Analysis
of the CHStone Benchmark Program Suite for
Practical C-based High-level Synthesis. JIP, 17, 2009.

[27] Mediabench. http://euler.slu.edu/ fritts/mediabench/.

