
Heterogeneous Hardware Accelerators
Interconnect: An Overview

Cuong Pham-Quoc, Zaid Al-Ars, Koen Bertels

Delft University of Technology, the Netherlands
Email: {P.PhamQuocCuong, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract. In this paper, we present an overview of interconnect solu-
tions for hardware accelerator systems. A number of solutions are pre-
sented: bus-based, DMA, crossbar, NoC, as well as combinations of these.
The paper proposes analytical models to predict the performance of these
solutions and implements them in practice. Measurement results show
that the NoC solution combined with a bus-based system provides the
best performance as predicted by the analytical models. The NoC so-
lution achieves a speed-up of 2.4× compared to the bus-based system,
while consuming the least amount of energy. However, the NoC has the
highest resource usage of up to 20.7% overhead.

1 Introduction
With the rapid development of technology, it is possible to integrate more than
7 billion transistors [1] into one system. However, the more transistors are inte-
grated in the system, the more challenges need to be addressed such as power
consumption, thermal emission and memory bottleneck. Therefore, homogeneous
and heterogeneous multi-core are being increasingly used to overcome these is-
sues.

Hardware/software co-design is one of the important approaches for multi-
core design. In such systems, there is usually one traditional general purpose
processor (GPP) and one or more hardware accelerators that function as co-
processors to speed up the processing of special kernels of applications running
on the GPP. With the rising number of cores, the communication between cores
increases the requirements on interconnect parameters such as low-latency and
area-efficiency.

Although bus systems are usually used as interconnect in most heterogeneous
hardware accelerator systems due to their certain advantages [2], they become
inefficient when the number of cores rises. Moreover, in data intensive applica-
tions, such as multimedia computing, HD digital TVs, etc., a large amount of
data needs to be transferred from core to core. Therefore, data communication
is usually a primary anticipated bottleneck for system performance. Obviously,
optimization of the interconnect taking the data communication into account is
an essential demand.

In this work, we present an overview on the interconnect solutions used for
hardware accelerator systems. To improve the performance of bus-based inter-
connects, a DMA, a crossbar and a combination of both are used to consolidate
the bus-based architecture. Moreover, Network on Chip (NoC), a state-of-the-
art interconnect approach, can be used to improve the communication between

hardware accelerators. In this work, we present the interconnect solution mod-
els to estimate the performance improvement of each interconnect compared to
the bus-based interconnect. The experimental results show that the best system
in terms of execution time and energy consumption is the system with a bus
and a NoC, where the bus is used for the data exchange between the GPP and
the hardware accelerators while the NoC is responsible for the data communica-
tion between the hardware accelerators. However, such system take a toll of up
to 20.7% additional hardware resource compared to the bus-based interconnect
system.

The rest of the paper is organized as follows. Section 2 briefly describes the
related work. Section 3 presents in detail different interconnect solutions used
in the heterogeneous hardware accelerator systems and their comparison. We
implement an experiment to validate the comparison between the interconnect
solutions in Section 4. The discussion on the different interconnect solution is
presented in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

In this section, we discuss the different interconnect techniques available in Sec-
tion 2.1, followed by the way these techniques are used at the system level in
Section 2.2.

2.1 Interconnect techniques

Point-to-point interconnect is considered as the simplest interconnect solution
for a system-on-chip (SoC). In a point-to-point interconnect architecture, the
producer processing element (PE) is directly connected to the consumer PE.
However, the biggest drawback of this architecture is the large number of wires
required. This leads to difficulty in routing. Designs using this architecture are
reported in [3], [4].

The bus architecture is a low cost interconnect for SoCs. The two standard
and well-know bus architectures are AMBA developed by ARM [5] and Core-
Connect developed by IBM [6]. Only CoreConnect has been adopted in Xilinx
Virtex FPGA families. The main disadvantage of the bus architecture is the
competition among modules (GPP, IO, memory controllers, etc) to access the
bus introducing arbitrary latencies. This competition potentially degrades the
performance of the system.

The crossbar is a well-known architecture for providing a high-performance
and minimum latency interconnect. The main drawback of a crossbar is its cost.
An n×n crossbar can quickly become prohibitively expensive as its cost increases
by n2. To reduce the cost, many studies focusing on application-specific crossbars
have been reported such as in [7], [8].

In recent years, many Network-on-Chip architectures for FPGA have been re-
ported such as DyNoC [9], FLUX [10] and CuNoC [11]. For low-latency applications-
specific NoCs, driven by task graph, ReNoC [12] and Skip-links [13] are used.
Scalability is the main advantage of NoC. Moreover, NoCs are emerging as a high
level interconnect solution ensuring parallelism and high performance. However,
there are still several issues that need to be addressed such as latency, power
consumption and especially high area cost.

2.2 System-level interconnect solutions
The Molen architecture [14], is a heterogeneous, shared memory multicore sys-
tem for software/hardware co-design. The Molen architecture consists of two
types of processing elements (PEs): one General Purpose Processor (GPP) and
one or more Reconfigurable Processor(s), also so-called Custom Computing Unit(s)
(CCUs). GPP has the main memory to contain application data while each
CCU has each local memory (CCUMem) to contain its local data. The CCU
exchanges parameters with GPP by exchange registers (CCUXreg) through an
on-chip standard bus. While the GPP can access the main memory and the ac-
celerator local memories, the accelerators can access only its local memory. The
GPP and the accelerator local memories are also connected through an on-chip
bus. When accelerator functions are needed, the GPP transfers data from the
main memory to the local memory of the accelerator and copies the result back
to the main memory.

The MORPHEUS architecture [15] has an ARM9 embedded RISC processor
taking care for the control flow and synchronization, and three heterogeneous
reconfigurable engines (HREs) for accelerating application kernels. The control
infrastructure is done via an AMBA AHB bus which connects HREs and the
ARM9 processor. The control flow is also performed via exchange registers, simi-
lar to the Molen architecture. A NoC is used to transfer data among HREs, main
memory and off-chip memory. The data transfers via the NoC may be triggered
by a Direct Network Access (DNA) hardware module. The MORPHEUS plat-
form is implemented using STMicroelectronics CMOS090 technology. Although
the platform shows very good simulation results, the NoC takes a huge resource
toll up to 944Kgate.

A Warp processor [16] consists of a main general purpose processor, an effi-
cient on chip profiler, an on-chip computer aid design module (CAD) and a warp-
oriented FPGA (w-FPGA). The main processor executes the software part of an
application while the critical software regions are synthesized and mapped onto
the w-FPGA. The selection, synthesis and mapping the critical software kernels
are done automatically by the profiler and the CAD module. The w-FPGA and
the processor share the main data cache by using a mutually exclusive execu-
tion model. The main process, CAD module and the w-FPGA are connected
together through an on-chip standard bus to configure the w-FGPA as well as to
provide a mechanism for communication and synchronization between the main
processor and the w-FPGA.

LegUp [17] is an open source high-level synthesis tool for FPGA-based pro-
cessor/accelerators systems. The target system contains a processor connecting
with custom hardware accelerators through a standard on-chip bus interface.
The current version is implemented on the Altera Cyclone II FPGA with an Al-
tera Avalon Bus as the interface for processor and accelerators communication.
In this version, a shared memory architecture is used for exchanging variables
between the processor and the accelerators. The shared memory uses an on-
FPGA data cache and off-chip memory. The authors indicate that limitations of
the bus system need to be further investigated.

3 Different Interconnect Solutions
In this section, we introduce different interconnect solutions used in heteroge-
neous hardware accelerators and give a comparison between them in terms of

the total execution time of the hardware accelerators. In this work, we mainly
focus on the data communication between the hardware accelerators.

3.1 Definitions and assumptions
Before presenting different interconnects used in heterogeneous hardware accel-
erator systems, we need to define some equations used to compare the quality
of the interconnect techniques. The following terminology is used:

– Hardware accelerator function: A hardware accelerator function is de-
fined by Function(H,DG

i , D
H
i , D

G
o , D

H
o); where H is the computation time

of the hardware accelerator, DG
i and DH

i are the total amount of data input
generated by the GPP and the other hardware accelerators, respectively.
Similarly, DG

o and DH
o are the total amount of data output consumed by the

GPP and the other hardware accelerators, respectively. All the amount of
data is in byte. All values are considered for one execution of the hardware
accelerator.

– Data communication: A communication between two functions is defined
by Cij(Fi, Fj , Dij); where Fi and Fj are the producer and the consumer func-
tion, respectively, and Dij is the total amount of data in bytes transferred
from Fi to Fj . The functions Fi and Fj can be accelerated on hardware as
well as run on the GPP.

– The average time taken by the GPP for transferring 1 byte from the main
memory to a hardware accelerator local memory or vice versa is tg, and
the average time for transferring 1 byte from a hardware accelerator local
memory to another one on the bus using direct memory access (DMA) is td.
These values are platform dependent, however td < tg.

The above mentioned actual amount of data can be measured by using profiling
tools such as the QUAD toolset [18].

Hardware accelerator systems, such as Molen and LegUp, usually use a het-
erogeneous memory hierarchy in which the main memory is connected to the
GPP while each hardware accelerator has its local memory to store data. In
this work, we assume that the memory hierarchy is as follows: 1. GPP can ac-
cess the main memory as well as the local memories of hardware accelerators
through a standard on-chip bus; and 2. Hardware accelerators can access their
local memory only.

In this work, we use the word “local memory” to refer to the local memory of
a hardware accelerator. The word “main memory” is used for the main memory
of the system which is connected to the GPP.

3.2 Bus-based interconnect
The bus system has some certain advantages compared with other interconnect
techniques such as being compatible with most Intellectual Property (IP) blocks
including GPPs [2]. Therefore, the bus system is considered as interconnect for
most heterogeneous hardware accelerator systems. In these systems, GPP uses
the bus to transfer data between the main memory and the local memories.
Figure 1 depicts an architecture using the bus system as interconnect.

Consider HW1(H1, D
G
1i, D

H
1i, D

G
1o, D

H
1o) and HW2(H2, D

G
2i, D

H
2i, D

G
2o, D

H
2o) accelerators

communicating together with the communication C12(F1, F2, D12). In most hard-
ware accelerator systems, such as Molen and LegUp, whenever the hardware

Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2 ...

GPP
Main Mem.

BUS

Local Mem.

...
Crossbar

Local Mem.

HWn

Local Mem.

HW1 HW2

Local Mem.

HWn

GPP
Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2

Local Mem.

HWn

GPP

NoC

Fig. 1: The bus is used as interconnect

accelerator is executed, the GPP transfers input data from the main memory to
the local memory and copies back the result of the hardware accelerator from
the local memory to the main memory. Following this model, the total execution
time of the two hardware accelerators is shown in (1). We refer to this model as
the baseline model that we compare other interconnect solution with.

Tb = H1 +H2 + (D1i +D1o +D2i +D2o)tg (1)

where Di = DG
i +DH

i and Do = DG
o +DH

o .
The main advantage of the bus-based interconnect is that the system is sim-

ple. The bus-based system can be implemented on most hardware platforms.
However, the biggest disadvantage of this system is that the communication
between hardware accelerators is not taken directly into consideration but has
to go through the main memory. This leads to a high volume of data needed
to be transferred through the bus. Additionally, the data movement performed
by the GPP with the bus is usually very slow. The higher the amount of data
communication performed, the lower is the achieved performance of the system.

In the next sections, we introduce techniques used to consolidate the bus to
improve the performance of such systems.

3.3 Bus-based with a consolidation of a DMA

DMA is a technique that allows to access system memory independently of the
GPP. DMA is usually shared the bus with the GPP and other local memories.
The main advantage of DMA is that while DMA transfers data, the GPP can do
other work. Moreover, DMA usually takes less time than the GPP for moving
the same amount of data. The main disadvantage of DMA is the bus competition
because it shares the bus with GPP and local memories. In addition, hardware
resource overhead is also a disadvantage of DMA.

In this model, a DMA is used to consolidate a bus. DMA is responsible for
transferring data from one local memory to another local memory. Different
from the baseline model, a communication profiling is used to improve the data
communication operation. Consider the 2 above hardware accelerators HW1 and
HW2, the outputs DH

1o and DH
2o of the hardware accelerators are transferred to

other hardware accelerators by DMA rather than being written back to the main
memory. In other words, the GPP is only responsible for transferring DG

1i and
DG

2i from the main memory to the local memories as well as DG
1o and DG

2o from
the local memories to the main memory. Other data movement is performed
by DMA. Following this model, the total execution time for the two hardware
accelerators is as follows.

Td = H1 +H2 + (DG
1i +DG

1o +DG
2i +DG

2o)tg + (DH
1i +DH

2i)td (2)

The time needed to transfer the results of HW1 and HW2 (DH
1o and DH

2o)
to other local memories is not considered in this equation since it is taken into
account by the execution time of the other hardware accelerators.

The total reduction in time compared to the baseline model is as follows.

∆d = (DH
1o +DH

2o)tg + (DH
1i +DH

2i)(tg − td) (3)

3.4 Bus-based with a consolidation of a crossbar

Crossbar is a high-performance and minimum latency interconnect technique.
Although the cost of crossbar increases by n2 where n is the number of inputs,
small crossbar is area-efficient and delay-optimized. In this model, we consider
a 2 × 2 crossbar to share the local memories of the two hardware accelerators
which communicate together. Figure 2aa depicts the system using a crossbar as
a consolidation to the bus. The main advantage of the crossbar is that there is
no need to move data between the two hardware accelerators connected to the
crossbar. The main disadvantage of the crossbar is the two hardware accelerators
cannot be executed in parallel due to the fact that a conflict can incur at the
shared memories.

Consider the 2 hardware accelerators HW1 and HW2 above. With the cross-
bar, HW1 can access not only its local memory but also local memory of HW2.
Therefore, neither GPP nor DMA is needed to transfer D12 from local mem-
ory of HW1 to local memory of HW2. The GPP is responsible for transferring
other data. Based on this model, the total execution time of the two hardware
accelerators is as follows.

Tc = H1 +H2 + (DG
1i +DG

1o +DG
2i +DG

2o +DH
1i +DH

2i −D12)tg (4)

Similar to the DMA model, The time needed to transfer the results of HW1

and HW2 (DH
1o and DH

2o) to other local memories is not considered in this equa-
tion since it is taken into account by the execution time of the other hardware
accelerators.

The total reduction in time compared to the baseline model is as follows.

∆c = (DH
1o +DH

2o +D12)tg (5)

3.5 Bus-based with both a DMA and a crossbar

Due to the advantages of both DMA and crossbar, they can be considered as
consolidations to the bus to improve the performance of the system at the same
time. Consider again the 2 above hardware accelerators HW1 and HW2 and their
communication. With the DMA, the data input for the two hardware accelerators
from other hardware accelerators (DH

1i and DH
2i) are done by DMA. The GPP can

do other work while the DMA performs the data movement. The total execution
time of the two hardware accelerators is as follows.

Tdc = H1 +H2 +DGtg +DHtd (6)

Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2 ...

GPP
Main Mem.

BUS

Local Mem.

...
Crossbar

Local Mem.

HWn

Local Mem.

HW1 HW2

Local Mem.

HWn

GPP
Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2

Local Mem.

HWn

GPP

NoC

(a)

Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2 ...

GPP
Main Mem.

BUS

Local Mem.

...
Crossbar

Local Mem.

HWn

Local Mem.

HW1 HW2

Local Mem.

HWn

GPP
Main Mem.

BUS

Local Mem.

HW1

Local Mem.

HW2

Local Mem.

HWn

GPP

NoC

(b)

Fig. 2: (a) The crossbar is used as a consolidation to the bus; (b) The NoC is
used as interconnect of the hardware accelerators

where DG = DG
1i +DG

1o +DG
2i +DG

2o and DH = DH
1i +DH

2i −D12.
Similar to the DMA model, The time needed to transfer the results of HW1

and HW2 (DH
1o and DH

2o) to other local memories is not considered in this equa-
tion since it is taken into account by the execution time of the other hardware
accelerators.

The total reduction in time compared to the baseline model is as follows.

∆dc = (DH
1o +DH

2o)tg + (DH
1i +DH

2i)(tg − td) +D12td (7)

3.6 NoC-based interconnect

NoC is emerging as a high level interconnect solution ensuring parallelism and
high performance. Although there are some certain disadvantages such as area
overhead and the compatibility with processing cores, a well designed NoC can
be used as the interconnect among the hardware accelerators. In this model, we
use both the bus and the NoC as the interconnect. The NoC is used to transfer
data from one local memory to another while the bus is used to exchange data
between the GPP and the hardware accelerators. Figure 2b shows a system
using a NoC as interconnect of the hardware accelerators. Using only the NoC
as interconnect is an alternative solution. However, this solution will incurr a
higher hardware overhead for the network interface at the GPP and higher delay
in the communication between the GPP and the local memory compared to the
bus.

With the NoC, the communication among the hardware accelerators is done
in parallel with their execution. In other words, the output of one hardware
accelerator is sent directly to the local memory of the consuming hardware ac-
celerator through the NoC. Therefore, neither GPP nor DMA is required for data
movement among the local memories. Consider the 2 above hardware accelera-
tors HW1 and HW2. The total execution time of the two hardware accelerators
is as follows.

Tn = H1 +H2 + (DG
1i +DG

1o +DG
2i +DG

2o)tg (8)

The total reduction in time compared to the baseline model is as follows.

∆n = (DH
1i +DH

1o +DH
2i +DH

2o)tg (9)

However, the compatibility of the NoC and the hardware accelerators as well
the the local memories needs to be addressed. The network interfaces should
be developed to encapsulate the data and address generated by the hardware
accelerators to the network package at the hardware accelerator side and to
decode the network package to the data and address at the local memory side.

4 Experiments
4.1 Experimental setup

In this section, we introduce the application and the way we implement the
experiment considering all the aforementioned interconnect solutions. We use
the Molen architecture as the base system. Xilinx ML510 board [19] containing
a xc5vfx130t FPGA device is used as our hardware system. In this experiment,
we use the jpeg application from powerstone benchmark [20]. The QUAD toolset
is used to generate the data communication profiling for the application first.
We then choose the most suitable functions to accelerate on hardware. Figure 3
shows the communication profiling graph for the jpeg application.

huff_ac_dec 151516 bytes (300 UMA)

dquantz_lum

75608 bytes (75608 UMA)

jpeg_check

116 bytes (44 UMA)

huff_dc_dec

1220 bytes (1220 UMA)

1202 bytes (1202 UMA)

1200 bytes (1200 UMA)

28 bytes (2 UMA)

j_rev_dct

76808 bytes (76808 UMA)

76842 bytes (76810 UMA)

76808 bytes (76808 UMA)

main

105984 bytes (2222 UMA)

13184 bytes (2466 UMA)

38404 bytes (68 UMA)

4 bytes (4 UMA)

Fig. 3: The communication profiling graph generated by QUAD tool for the jpeg
application

In this experiment, 4 functions (huff ac dec, huff dc dec, dquantz lum and
j rev dct) are accelerated on hardware. The application is implemented using
the Molen architecture first. The DWARV tool [21] is used to compile the func-
tions from C code to VHDL code. In the Molen architecture, only the bus system
is used as interconnect. The GPP is the PowerPC embedded in the FPGA device
and hardware accelerators are mapped on to the reconfigurable area. The Pow-
erPC is run at 400MHz while the hardware accelerators are executed at 100MHz.
BRAMs is used as local memories. We then extend the system with the DMA,
the crossbar, both the DMA and the crossbar, and the NoC.

In the extended systems, we develop our 2 × 2 crossbar to share the local
memories of the two hardware accelerators as depicted in Figure 2a. The Xilinx
DMA IP core is used for DMA. A 3 × 2 NoC developed by Karlsruhe Institute
of Technology, Germany [22] is adapted as the NoC in the experiment. We im-
plement network interfaces (NIs) for the communication between the hardware
accelerators as well as the local memories and the NoC. Table 1 presents the

hardware resource utilization for each interconnect component and the maxi-
mum frequency.

Table 1: Hardware resource utilization (#LUTs/#Registers) for each intercon-
nect component and the frequency

Component Resource utilization Max. frequency
Bus 1048/188 345.8MHz
DMA 700/556 252.7MHz
Crossbar 201/200 N/A
NoC 1854/2122 150MHz
NI HW Accelerator 396/426 422.5MHz
NI local memory 60/114 874.2MHz

4.2 Experimental results
In this section, we present the results for the jpeg application with different
interconnect scenarios. We name the scenarios as Bus-based, DMA, Crossbar,
DMA+Crossbar and NoC-based for the bus-based interconnect, bus with a
DMA, bus with a crossbar, bus with both DMA and crossbar and NoC-based
interconnect, respectively. In the jpeg application, we use two crossbars between
huff ac dec and huff dc dec as well as between dquantz lum and j rev dct.

Table 2 shows the computation time, the communication time and the to-
tal execution time for the hardware accelerators of the jpeg application. These
numbers are measured by the real execution using the FPGA board mentioned
above. The computation time is the time for the hardware accelerator process-
ing input data while the communication time is the time for data movement
between components. The execution total time of a hardware accelerator is the
sum of the computation time and communication time. As shown in the table,
the computation time does not change in different scenarios. The NoC-based
scenario is the most efficient interconnect since it reduces the communication
time by 74.3% compared to the bus-based model. Hence, the total execution
time in the NoC-based scenario results in a 2.4× speed-up compared to the bus-
based scenario. Based on the models presented in Section 3 and the information
from the communication profiling graph in Figure 3, the communication time of
hardware accelerators for each scenrios is computed theoretically. This theoret-
ical communication time is shown in Figure 4a normalized to the software time
of the hardware accelerators. The figure also compares the execution time nor-
malized to the software time of the hardware accelerators in different scenarios.
As shown in the figure, the theoretical communication time matches closely the
measured communcation time.

Table 2: Execution time of hardware accelerators
Scenario Computation Communication Total
Bus-based 2.07ms 7.52ms 9.59ms
DMA 2.07ms 2.54ms 4.61ms
Crossbar 2.07ms 2.87ms 4.94ms
DMA+Crossbar 2.07ms 2.20ms 4.27ms
NoC-based 2.07ms 1.93ms 4.00ms

Table 3 gives the speed-up of the hardware accelerators and the overall ap-
plication with respect to the software (the whole application is executed by the

GPP only) and the bus-based model. The results show that the NoC-based model
achieves a speed-up of up to 2.3× and 1.86× when compared to the bus-based
model and the software, respectively. The table also shows that the performance
of the bus-based model is even slower compared to the software due to the large
communication time between the GPP and the hardware accelerators. Figure 4b
shows the speed-up of hardware accelerators in different scenarios with respect
to the software and bus-based model.

Table 3: Speed-up of hardware accelerators

Scenarios
HW accelerators Overall Application

w.r.t Software w.r.t Bus-based w.r.t Software w.r.t bus-based
Bus-based 0.81× 1.00× 0.81× 1.00×
DMA 1.69× 2.08× 1.64× 2.02×
Crossbar 1.58× 1.94× 1.54× 1.90×
DMA+Crossbar 1.82× 2.25× 1.75× 2.16×
NoC-based 1.95× 2.40× 1.86× 2.30×

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Theoretical Comm.HW Acc.Comm.Comp.Software

(a)

DMA 0.338199 1017095 DMA 1.688190851 2.077791
Crossbar 0.381383 1146964 Crossbar 1.577265932 1.941267
DMA+Crossbar 0.292428 879443 DMA+Cros 1.824168044 2.245149
NoC-based 0.256382 771040 NoC-based 1.947713986 2.397206

jpeg resour
LUTs

Bus-based 11755
DMA 12455
Crossbar 11956
DMA+Cros 12656
NoC-based 14197

jpeg Energy
sw 8.18 0.81 Bus-based 12.916

1.64 DMA 12.916
1.64 Crossbar 13.22
1.75 DMA+Cros 13.257
1.86 NoC-based 13.411

D_iG
huff_dc_de 2466
huff_ac_de 2466
dquantz_lu 68
j_rev_dct 4

Real
Bus 7.518455
DMA 2.542738

0

0.5

1

1.5

2

2.5

3

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Speedup w.r.t SW Speedup w.r.t. bus-based

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Resource utilization Energy consumption

(b)

Fig. 4: (a) Comparison between execution times normalized to software time; (b)
Speed-up of hardware accelerators with respect to software and bus-based model

Table 4 shows the hardware resource utilization for all scenarios. The results
show that the NoC-based model requires additional 20.7% resources (which takes
2.9% of FPGA resources) compared to bus-based model. Figure 5 compares the
hardware resource utilization and the energy consumption in different scenarios
normalized to bus-based model. As shown in the figure, although the hardware
resource utilization is the largest in NoC-based scenario, it is the smallest energy
consumption scenario. The energy consumption is calculated as power consump-
tion (estimated with Xilinx PowerAnalyzer) multiplied by the overall application
execution time. For all scenarios, the power consumption is almost identical, with
a slight increase following the increasing hardware resource utilization.

Table 4: Hardware resource utilization (#LUTs/#Registers)
Scenario Accelerator Interconnect Total
Bus-based 10707/11722 1048/188 11755/11910
DMA 10707/11722 1748/744 12455/12466
Crossbar 10707/11722 1249/388 11956/12110
DMA+Crossbar 10707/11722 1949/944 12656/12666
NoC-based 10707/11722 3490/2850 14197/14572

DMA 0.338199 1017095 DMA 1.688190851 2.077791
Crossbar 0.381383 1146964 Crossbar 1.577265932 1.941267
DMA+Crossbar 0.292428 879443 DMA+Cros 1.824168044 2.245149
NoC-based 0.256382 771040 NoC-based 1.947713986 2.397206

jpeg resour
LUTs

Bus-based 11755
DMA 12455
Crossbar 11956
DMA+Cros 12656
NoC-based 14197

jpeg Energy
sw 8.18 0.81 Bus-based 12.916

1.64 DMA 12.916
1.64 Crossbar 13.22
1.75 DMA+Cros 13.257
1.86 NoC-based 13.411

D_iG
huff_dc_de 2466
huff_ac_de 2466
dquantz_lu 68
j_rev_dct 4

Real
Bus 7.518455
DMA 2.542738

0

0.5

1

1.5

2

2.5

3

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Speedup w.r.t SW Speedup w.r.t. bus-based

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bus-based DMA Crossbar DMA+Crossbar NoC-based

Resource utilization Energy consumption

Fig. 5: Comparison of resource utilization and energy consumption normalized
to bus-based model

5 Discussion
In previous sections, we presented the five different interconnect architecture het-
erogeneous hardware accelerator systems. We implemented an experiment with
the jpeg application. In this section, we discuss the interconnect architectures in
terms of hardware resource utilization, hardware accelerator speed-up and the
energy consumption.

Based on the models as well as the experiment, the NoC-based model is the
best in terms of execution time but it uses the most hardware resource when
compared to others. The more resources are used the more power consumption is
needed. On the other hand, the bus-based with consolidation of DMA, crossbar
or a combination of both has a moderate improvement in speed-up and uses a
limited amount of hardware resources.

Although modern devices, such as FPGA, contain a abundant amounts of
resources, we have to choose trade off the number of resources and the price of
the device. Moreover, the energy consumption is one of the main issues needed
to be taken into consideration especially in battery-based systems. Energy con-
sumption depends not only on power consumption but also the total execution
time.

Based on the models, the designers can choose which interconnect solution
is the most optimized for their systems. The designers have to choose trade
off between the performance and the resource utilization. Depending on the
requirements of the application as well as the resources available, the decision is
made.

6 Conclusion
This paper presented an overview of interconnect solutions for hardware acceler-
ator systems. The paper investigated the impact of augmenting the solutions to
an existing bus-based infrastructure. Performance models for bus-based, DMA,
crossbar, DMA+crossbar and NoC systems were discussed. Measurements made
using these system match the predicted analytical performance models. The
NoC solution provides the highest performance achieving a speed-up of 2.4×
compared to the bus-based system, while consuming the least amount of energy.
However, the NoC has the highest resource usage of up to 20.7% overhead.

References

1. NVIDIA, “NVIDIA Kepler GK110 Architecture Whitepaper,” 2012.

2. P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” in DATE, 2000.

3. C. Dick, “Computing the discrete fourier transform on FPGA based systolic ar-
rays,” in International Symposium on Field-programmable gate arrays, 1996, pp.
129–135.

4. ARM Limited, “Multi-layer AHB overview,” 2001.
5. ——, “AMBA specification (rev 2.0),” 1999.
6. IBM, “Coreconect bus architecture,” 1999.
7. J. Y. Hur, T. Stefanov, S. Wong, and S. Vassiliadis, “Systematic customization of

on-chip crossbar interconnects,” in Reconfigurable computing: architectures, tools
and applications, 2007, pp. 61–72.

8. S. Murali, L. Benini, and G. De Micheli, “An application-specific design methodol-
ogy for on-chip crossbar generation,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 26, no. 7, pp. 1283 –1296, july 2007.

9. C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der
Veen, “DyNoC: A dynamic infrastructure for communication in dynamically re-
confugurable devices,” in Field Programmable Logic and Applications, 2005, pp.
153–158.

10. S. Vassiliadis and I. Sourdis, “FLUX interconnection networks on demand,” J.
Syst. Archit., vol. 53, no. 10, pp. 777–793, oct 2007.

11. S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda, “CuNoC: A scalable dynamic
NoC for dynamically reconfigurable FPGAs,” in Field Programmable Logic and
Applications, 2007, pp. 753–756.

12. M. B. Stensgaard and J. Sparso, “ReNoC: A network-on-chip architecture with
reconfigurable topology,” in International Symposium on Networks-on-Chip, 2008,
pp. 55–64.

13. C. Jackson and S. J. Hollis, “Skip-links: A dynamically reconfiguring topology for
energy-efficient NoCs,” in International Symposium on System on Chip, 2010, pp.
49–54.

14. S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.
Panainte, “The MOLEN polymorphic processor,” Computers, vol. 53, no. 11, pp.
1363–1375, 2004.

15. M. Kuhnle, M. Hubner, J. Becker, A. Coppola, L. Pieralisi, R. Locatelli, G. Maruc-
cia, T. DeMarco, F. Campi, A. Deledda, C. Mucci, and F. Ries, “An intercon-
nect strategy for a heterogeneous, reconfigurable SoC,” Design Test of Computers,
vol. 25, no. 5, pp. 442 –451, 2008.

16. R. Lysecky and F. Vahid, “Design and implementation of a microblaze-based warp
processor,” ACM Trans. Embed. Comput. Syst., vol. 8, pp. 1–22, 2009.

17. A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-based pro-
cessor/accelerator systems,” in International Symposium on Field programmable
gate arrays, 2011, pp. 33–36.

18. S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “QUAD: a mem-
ory access pattern analyser,” in Reconfigurable computing: architectures, tools and
applications, 2010.

19. Xilinx, “Ml510 reference design,” June 23 2009.
20. J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power M•CORE

architecture,” in ISCA Workshop, 1998.
21. R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels, “DWARV

2.0: A CoSy-based C-to-VHDL hardware compiler,” in Field Programmable Logic
and Applications, 2012.

22. J. Heisswolf, R. Koenig, and J. Becker, “A scalable NoC router design providing
QoS support using weighted round robin scheduling,” in Parallel and Distributed
Processing with Applications Workshops, 2012.

