
Generic, Orthogonal and Low-cost March Element based Memory BIST

Ad J. van de Goor1,2

1ComTex
Voorwillenseweg 201

2807 CA Gouda, The Netherlands
Ad.vd.Goor@kpnplanet.nl

Said Hamdioui2 Halil Kukner2

2Delft University of Technology
Faculty of EE, Mathematics and CS

Mekelweg 4, 2628 CD Delft, The Netherlands
S.Hamdioui@tudelft.nl

Abstract

This paper contributes to the field of MBIST architecture

and implementation by addressing the two most area-

critical components: the Command Memory (ComMem)

and the Address Generator (AddrGen). The ComMem area

is minimized by using a novel MBIST architecture, based

on the Generic March Element (GME) concept. A GME is a

March Element which specifies the required operations and

the generic data values; it can be specified independent of

the algorithm stresses. The AddrGen area is minimized by

using an efficient implementation, based on a single Up-

counter and a set of multiplexors. The experimental results

show that the proposed MBIST outperforms the existing

MBISTs in terms of area, power, speed, and flexibility. E.g.,

for a 16Kx16-bit memory, the proposed MBIST consumes

about 40% less area and operates at least 1.6 times faster

than the state-of-the art.

Keywords: Memory Testing, MBIST, Generic March Ele-

ments, Orthogonality, Address Generators.

I. Introduction

Memory Built-In Self-Test (MBIST) is a common industrial

practice for testing the large number of embedded mem-

ories in a System-on-chip. This important topic has been

addressed by many authors [1]- [2]. When implementing

MBIST engines, tradeoffs are made on: (a) the number

of supported algorithms, (b) the flexibility of the MBIST

engine (in order to cope with the unexpected), (c) the

implementation speed, and (d) the area overhead.

When MBIST performs tests, memory accesses have

to be done at-speed using Back-to-Back (BtB) mem-

ory cycles [4] - [9]. Systems require large, high speed

memories, while the technology scaling exhibits a large

spread in implementation parameters, resulting in speed-

related (delay) faults [5], [8], [11], [12]. Their detection

Fig. 1. AG­Overhead

requires non-linear algorithms (such as GalPat, GalRow

and GalColumn) and special stresses [4], [3], [12], [17].

However, the implementation for such MBISTs is not that

easy; one typically has to exploit expensive prefetching and

pipelining techniques to satisfy the BtB cycle requirement

[3], [6]. Therefore, an architecture which can support a

large variety of algorithms (linear and non-linear), and a

large variety of stresses (e.g., different address sequences),

while allowing for a simple implementation, is the key to

a flexible and low-cost MBIST.

Figure 1 shows the relative area -in % - taken by the

main MBIST components for three MBIST designs [3],

[16], [13]. These components consist of Control (Ctrl),

test algorithm Command Memory (ComMem), Instruction

fetch and decode (Instr), Address Generator (AddrGen)

and the Data Generator (DataGen). The figure clearly

shows that two components take up most of the area: the

ComMem consumes about 39%, and the AddrGen about

28%. Therefore, optimizing their area will significantly

reduce the overall area; this is the target of this paper.

This paper proposes a new MBIST engine which re-

duces the ComMem area and provides higher flexibility

and at-speed testing, by using a novel architecture, based

on the Generic March Element (GME) concept. The GME

is a March Element (ME) primitive which specifies the

required operations and the generic data values. This is

orthogonal to all other stresses, such as the address order,

the address direction, the counting method, etc. It will be

shown that the set of GMEs, required to compose most

industrial algorithms, is small; this reduces the size of the

Paper 8.1
978-1-4577-0152-8/11/$26.00 c©2011 IEEE

INTERNATIONAL TEST CONFERENCE 1



ComMem. In addition, the AddrGen area is minimized

through the use of a single Up-counter, which, together

with a set of muxes, can generate the required address

sequences. The experimental results show that the proposed

MBIST outperforms the existing MBISTs in terms of speed

and area overhead. E.g., for a 16K x 16-bit memory, the

area overhead is 7% and the speed is 500MHz; this is 40%

less area overhead and 50% faster than the state-of-the art

[13].

The outline of this paper is as follows. Section 2

provides the list of algorithms of interest and their stresses.

Section 3 gives an analysis of the algorithms and shows

that they can be composed of only a few different GMEs.

Section 4 proposes the GME-MBIST engine architecture

to minimize the ComMem. Section 5 shows the minimal

AddrGen implementation. Section 6 presents the simula-

tion results and compares them with the existing MBIST

designs, while Section 7 ends with conclusions.

II. Memory algorithms and their specification

This section introduces the notation for the algorithms and

stresses, and gives the list of algorithms of interest to the

MBIST engine.

A. Algorithm notation

The algorithms in this paper consist of linear and non-

linear algorithms, described with an extended notation for

march algorithms. March algorithms are the most common

algorithms used for testing memories [10]. An example of

a march algorithm is MATS+ [19], defined as: {m(w0);
⇑(r0, w1); ⇓(r1, w0)}. The special symbols m, ⇑, and ⇓
are the Address Orders (AOs); they determine the way one

proceeds from one address to the next address. ⇑ denotes

an ascending AO (e.g., 0,1,2,3,...), ⇓ denotes a descending

AO, while m denotes that the AO can be chosen freely.

MATS+ consists of three March Elements (MEs), which

are separated by the ’;’ symbol. The ME e.g., ’⇑(r0, w1)’
specifies the ⇑ AO, while to each address a read operation

with expected value ’0’ will be applied, after which a ’1’

will be written.

B. Set of targeted algorithms

Memories can exhibit static and dynamic faults. Static

faults are not time or speed dependent; their detection

does not require at-speed testing. Dynamic faults are speed

dependent and do require at-speed tests. Especially Address

Decoder Delay Faults (ADDFs) [2], [8], [22] are increasing

in importance, because address decoders typically consist

of pre-decoders, connected to local word line decoders and

local column decoders via long wires with many via’s. The

wiring is susceptible to resistance and capacitance vari-

ations, while the increasing number of via’s experiences

extra resistive defects, causing RC delays.

Table I lists a set of algorithms which can be considered

candidates for a possible MBIST implementation. Other

algorithms may be added if desired; nevertheless, this will

not change the concept ’GME’ based MBIST engine. To

help the understanding, the GalPat algorithm (i.e., Alg#17)

will be explained [10]. This algorithm is non-linear and has

a time complexity of O(n2). It has the property that for

a given victim cell (v-cell), Address Transitions (ATs) are

made from all other memory cells, which are denoted ag-

gressor cells (a-cells). GalPat detects all ADDFs, because

each cell will become v-cell and ATs are made between

all cells. The algorithm applies a Read-after-Read (RaR)

sequence, which means that a ’rx’ operation is applied

to the a-cell, followed by a ’rx’ operation to the v-cell

[20], [22]. In the march notation for GalPat ’⇑v(w1v ,

⇑−v(r0, r1v), w0v)’ denotes a nested ME; it is applied

to each v-cell, as specified by the AO ’⇑v’. The AO ’⇑−v’

means that all a-cells are visited; these are all addresses,

except the v-cell, which has to be skipped; hence the

subscript ’-v’.

C. Algorithm stresses/MBIST requirements

In order to be able to apply the algorithms listed in

Table I, the MBIST has to satisfy many requirements

and support different features, either related to the oper-

ations of the algorithm itself (see Section III), or to the

algorithms stresses. An algorithm stress specifies the way

the algorithm is performed, and therefore influences the

sequence and/or the type of the memory operations. Stress

is important for the Fault Coverage (FC) of the algorithm

[17]-[20]. The following algorithm stresses are of interest

for this paper:

1) The Address Direction (AD): It specifies the direction

of the address sequence, which can be: Fast-row,

Fast-column and Fast-diagonal, which increments

or decrements the row address (column address,

diagonal address) most frequently. It is specified with

the subscripts r, c and d of the AO; e.g., r⇑ indicates

⇑ AO with the Fast-row AD.
2) The Counting Method (CM): It determines the ad-

dress sequence. It has been shown that the CM

is important for detecting Address Decoder Delay

Faults (ADDFs) [2], [8], [23]. The most common

CM is the Linear CM, denoted by the superscript ’L’

of the AO (e.g., L⇑), where L specifies the address

sequence 0,1,2,3, etc. Because it is the default CM,

the superscript ’L’ is usually deleted.

Another CM is the Address Complement (Ac) CM.

It specifies an address sequence: 000, 111, 001, 110,

Paper 8.1 INTERNATIONAL TEST CONFERENCE 2



TABLE I. Set of candidate algorithms

# Name B(GME#) Description

1 Scan 0(0,1) {⇓ (w0);⇑ (r0);⇑ (w1);⇓ (r1)}
2 MATS+ 0(0,2) {m (w0);⇑ (r0, w1);⇓ (r1, w0)}
3 March C- 0(0,1,2) {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)}
4 March C+ 0(0,1,3) {m (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0);⇓ (r0)}
5 PMOVI 0(0,3) {⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}
6 March B 0(0,4,5,6) {m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}
7 Alg. B 0(0,6,7) {m (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0); ⇓ (r0, w1, r1, w0)}
8 March G 0(0,3,4, {m (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);

5,6) ⇓ (r0, w1, w0);Del100;m (r0, w1, r1);Del100;m (r1, w0, r0)}
9 March U 0(0,2,7) {m (w0);⇑ (r0, w1, r1, w0);⇑ (r0, w1);⇓ (r1, w0, r0, w1);⇓ (r1, w0)}

10 March LR 0(0,1,2,7) {m (w0);⇓ (r0, w1);⇑ (r1, w0, r0, w1);⇑ (r1, w0);⇑ (r0, w1, r1, w0);m (r0)}
11 March LA 0(0,1,8) {m (w0);⇑ (r0, w1, w0, w1, r1);⇑ (r1, w0, w1, w0, r0);⇓ (r0, w1, w0, w1, r1); ⇓ (r1, w0, w1, w0, r0);⇓ (r0)}
12 March SS 0(0,1,9) {m (w0);⇑ (r0, r0, w0, r0, w1);⇑ (r1, r1, w1, r1, w0);⇓ (r0, r0, w0, r0, w1); ⇓ (r1, r1, w1, r1, w0);m (r0)}
13 March RAW 0(0,1,10) {m (w0);m (r0, w0, r0, r0, w1, r1);m (r1, w1, r1, r1, w0, r0);

m (r0, w0, r0, r0, w1, r1);m (r1, w1, r1, r1, w0, r0);m (r0)}
14 March SR 0(0,7,13) {⇓ (w0);⇑ (r0, w1, r1, w0);⇑ (r0, r0);⇑ (w1);⇓ (r1, w0, r0, w1);⇑ (r0, r0)}
15 BLIF 0(0,11) {m (w0);⇑ (w1, r1, w0);⇑ (w1);⇑ (w0, r0, w1)}

16 dADF-RaW-AC 0(0,2) {m (w0);⇑AC (r0, w1);⇑AC (r1, w0);⇓AC (r0, w1);⇓AC (r1, w0)}
17 GalPat 1(0,2) {m (w0);⇑v (w1v,⇑−v (r0, r1v), w0v);m (w1);⇑v (w0v,⇑−v (r1, r0v), w1v)}
18 GalRow 1(0,3) {m (w0);⇑v (w1v,⇑R−v (r0, r1v), w0v);m (w1);⇑v (w0v,⇑R−v (r1, r0v), w1v)}
19 GalCol 1(0,3) {m (w0);⇑v (w1v,⇑C−v (r0, r1v), w0v);m (w1);⇑v (w0v,⇑C−v (r1, r0v), w1v)}
20 Gal9R 0(0,12) {m (w0);⇑v (w1v, (r0, r1v), w0v);m (w1);⇑v (w0v, (r1, r0v), w1v)}

21 Butterfly 1(0,4) {m (w0);⇑ (w1v,⇑BF (r0, r1v), w0v);m (w1);⇑ (w0v,⇑BF (r1, r0v), w1v)}
22 Walk 1/0 1(0,5) {m (w0);⇑v (w1v,⇑−v (r0), r1v, w0v);m (w1);⇑v (w0v,⇑−v (r1), r0v, w1v)}
23 WalkRow 1(0,6) {m (w0);⇑v (w1v,⇑R−v (r0), r1v, w0v);m (w1);⇑v (w0v,⇑R−v (r1), r0v, w1v)}
24 WalkCol 1(0,6) {m (w0);⇑v (w1v,⇑C−v (r0), r1v, w0v);m (w1);⇑v (w0v,⇑C−v (r1), r0v, w1v)}

25 HamWh 1(0,7) {m (w0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0);⇑ (r0, w1h, r1);⇑ (r1, w0h, r0)}

26 HamRh 1(0,8) {m (w0);⇑ (r0, w1, r1h, r1);⇑ (r1, w0, r0h, r0);⇑ (r0, w1, r1h, r1); ⇑ (r1, w0, r0h, r0)}

27 HamWDhrc 1(0,9) {m (w0);ր (w1h
v
,⇑R−v (r0), r1v,⇑C−v (r0), r1v, w0v);

⇑ (w1);ր (w0h
v
,⇑R−v (r1), r0v,⇑C−v (r1), r0v, w1v)}

28 HamWDhc 1(0,10) {⇑ (w0);ր (w1h
v
,⇑C−v (r0), w0v);⇑ (w1);ր (w0h

v
,⇑C−v (r1), w1v);

29 MOVI 0(0,3) {iN−1

0
[⇓i (w0);⇑i (r0, w1, r1);⇑i (r1, w0, r0);⇓i (r0, w1, r1);⇓i (r1, w0, r0)]}

30 DELAY 0(0,2,14) {m (w0);Del50;⇑ (r0, w1);Del50;⇓ (r1, w0)}

⇑AC : Address Complement addressing N : number of memory address bits

⇑i: 2i addressing k: Butterfly maximum distance
⇑v : all cells except the v-cell Del50 and Del100: 50 and 100 ms delay elements
⇑R−v : all cells in the same row as the v-cell, except the v-cell ր: all cells on the main diagonal
⇑C−v : all cells in the same column as the v-cell, except the v-cell h: number of Hammer operations

⇑BF : cells with a distance of 2k to the North, East, South and West of the v-cell : 8 neighbor cells

010, 101, 011, and 100 [10], [8]; each bold address

is the 1’s complement of the preceding address.

The 2i CM is yet another CM; typically used by

the MOVI algorithm [10], [8]. It repeats the PMOVI

algorithm N times (N = is the number of memory

address bits) with an address increment/decrement

value of 2i; with 0 ≤ i ≤ N − 1.
3) The Data Background (DB): It is the data pattern

which is actually in the cells of the memory cell

array. The four DBs commonly used in industry are:

Solid (sDB): all 0s (i.e., 0000.../0000... ) or all 1s.

Checkerboard (bDB): 0101.../1010.../0101.../1010...

Column Stripes (cDB): 0101.../0101.../0101.../0101...

Row Stripes (rDB): 0000.../1111.../0000.../1111...

A ’w0’ means that the selected DB is applied; a ’w1’

means that the inverse of that DB is applied.

III. Analysis of the algorithms

Inspecting Table I reveals that many algorithms use the

same March Elements (MEs); they may only differ in the

address order and/or the data value. E.g.,

MATS+ (Alg #2): {m(w0);⇑(r0, w1);⇓(r1, w0)}

March C- (Alg #3): {m(w0);⇑(r0, w1);⇑(r1, w0);
⇓(r0, w1); ⇓(r1, w0);m(r0)}

The first and second MEs of both tests are the same; the

third ME of MATS+ is the same as that of March C-, except

that the address orders are different. In addition, all MEs

of March C- have the form of m(rD,wD) where the data

value ’D’ can be either 0 or 1, and m can be either ⇑ or ⇓,

except the first and the last MEs, Hence, March C- can be

implemented with three Generic March Elements (GMEs):

m(wD), m(rD,wD) and m(rD); MATS+ requires only the

first two GMEs. Note that a GME is a March element only

specifying the operations and their generic data values; it

is orthogonal to all other specifications, such as the address

order, etc.

Table II lists the set of GMEs, required for the support

of the algorithms of Table I [18]. Because the # of GMEs

is more than 16, the set of GMEs is divided into banks,

each with up to 16 GMEs. The number 16 is dictated by

the fact that the MBIST engine is controlled by commands

having a length which is a multiple of 4 bits, while a 4-bit

filed in the commands is used to specify the GME. In this

Paper 8.1 INTERNATIONAL TEST CONFERENCE 3



TABLE II. Generic March Elements
B GME# GME Description Alg.#

0 0 m (wD) 1-30
0 1 m (rD) 1,3-4,10-13

0 2 m (rD,wD) 2-3,9-10,16,30

0 3 m (rD,wD, rD) 4-5,8,29

0 4 m (rD,wD, rD,wD, rD,wD) 6-8

0 5 m (rD,wD,wD) 6,8

0 6 m (rD,wD,wD,wD) 6-8

0 7 m (rD,wD, rD,wD) 7,9-10,14

0 8 m (rD,wD,wD,wD, rD) 11

0 9 m (rD, rD,wD, rD,wD) 12

0 10 m (rD,wD, rD, rD,wD, rD) 13

0 11 m (wD, rD,wD) 15

0 12 mv (wDv , (rD, rDv), wDv) 20

0 13 m (rD, rD) 14
0 14 Del50 30
0 15 Del100 8

1 0 m (wD) 1-30
1 1 m (rD) 1,3-4,10-13

1 2 ⇑v (wDv ,⇑−v (rD, rDv), wDv) 17

1 3 ⇑v (wDv ,⇑X−v (rD, rDv), wDv) 18-19

1 4 ⇑ (wDv ,⇑BF (rD, rDv), wDv) 21

1 5 ⇑v (wDv ,⇑−v (rD), rDv , wDv) 22

1 6 ⇑v (wDv ,⇑X−v (rD), rDv , wDv) 23-24

1 7 ⇑ (rD,wD
h
, rD) 25

1 8 ⇑ (rD,wD, rD
h
, rD) 26

1 9 ր (wDh
v ,⇑R−v (rD), rDv , 27

⇑C−v (rD), rDv , wDv)

1 10 ր (wDh
v ,⇑C−v (rD), wDv) 28

x ∈ {R,C}; Data Value D ∈ {0, 1};D = inverse of D

proposal the GMEs of most linear algorithms are placed in

Bank 0, while the GMEs of the hammer and the non-linear

algorithms are placed in Bank 1. Conceptually, the number

of banks can be arbitrary large as will be explained with

’load bank’ instruction. The first 2 GMEs of both banks

are made the same in order to reduce the amount of bank-

switching, for which a special command is available; see

Section IV-B. The first column ’B’ of Table II lists the

Bank, the second column the Generic March Element #

(GME#); each GME is assigned a unique # in a bank. Last,

the column ’Alg#’ lists the algorithms of Table I which use

the corresponding GME#. The column B(GME#) in Table I

shows which Bank ’B’ and GMEs of Table II are used for

the corresponding algorithm. For example, PMOVI (i.e.,

Alg#5) is composed of GME#0 and GME#3 of Bank 0

denoted as 0(0,3). Table II shows that only a small number

of GMEs are required to support the algorithms of Table

I. Many commercial sets of algorithms would require less

than 16 GMEs.

IV. The GME-MBIST engine architecture

Figure 2 shows a high-level block diagram of the GME-

MBIST engine. The ’Memory under test’ is controlled by

a set of orthogonal signals, which can be combined in any

(GMER) 

O
rd

er

A
d

d
ress

A
d

d
ress

D
irectio

n

M
eth

o
d

C
o

u
n

tin
g

 

Address 
Generator

Background

Data

Data Value

Command 
Register

Command

Memory

Command 
Counter

Memory under

test 

Control 

Unit 

  Data  Generator
and Comparator

Generic March  
Element Register 

Fig. 2. High­level block diagram

way. For example, the GME is orthogonal to any of the

components of the Stress Combination (SC), for example

the AO and the AD; this allows for the application of any

GME with any SC.

The architecture of the GME-MBIST engine will be

described in terms of its registers and its commands. They

are used to implement the tests, as shown in the examples

of Section 4.3. Throughout the remainder of this section,

the basic architecture will be covered together with a

set of extensions, which illustrate the ease with which

new features and capabilities can be added to the basic

architecture.

A. The GME­MBIST registers

The GME-MBIST architecture supports a set of Basic

registers, which are part of the minimal GME-MBIST

engine, while the Extension registers support some of

the advanced features of the GME-MBIST engine. The

register naming convention is such that the register name

includes its size. For example, ’CC[5..0]’ denotes the

6-bit Command Counter, its most significant bit is bit-5,

its least significant bit is bit-0; ’AOR[0]’ denotes the

1-bit Address Order Register. Table III summarizes the

description of the register set of the GME-MBIST engine.

Basic registers

The basic registers are part of the minimal GME-MBIST

engine; their presence is mandatory [18], [13].

1) CC[5..0]: Command Counter. Size depends on Com-

mand Memory (ComMem) size; default: 6 bits. The

CC points to a location in the ComMem, which

contains the to-be-executed command.

2) CM[63..0,3..0]: Command Memory (ComMem). Size

depends on the used test set; default: 64x4-bit nib-

bles. The ComMem contains the commands which

specify the to-be-executed tests.

3) CR[7..0]: Command Register. Contains the first 2

nibbles of the command.

4) AOR[0]: Address Order Register. specifies ⇑ or ⇓
AO.

5) DVR[0]: Data Value Register. Specifies the Data

Paper 8.1 INTERNATIONAL TEST CONFERENCE 4



TABLE III. GME­MBIST engine registers
Reg. Name BE Description

CC[5..0] B Command Counter
CM[63..0,3..0] B Command Memory
CR[7..0] B Command Register
AOR[0] B Address Order Register
DVR[0] B Data Value Register
CMADR[1..0] B Counting Method & Addr. Direction Reg.
DBR[1..0] B Data Background Register
GMER[3..0] B Generic March Element Register

BR[0] E Bank Register
REPR[5..0] E Re-execute Entry Point Register
RCNTR[3..0] E Re-execute CouNT Register

BE = Basic or Extension

Value (DV) used by the GME operations as follows.

0: The GME operations assume the specified DB (see

DBR); 1: Use the inverted DB.

6) CMADR[1..0]: Counting Method & Address Direc-

tion Register. This register specifies the combination

of the to-be-used Counting Method (CM) and the

Address Direction; it can specify on of the following

four options: (1) Lr: Linear CM & Fast-row AD; (2)

Lc: Linear CM & Fast-column AD; (3) AC: Address

Complement CM; note that AD is not applicable to

CM; and (4) -: Reserved.

7) DBR[1..0]: Data Background Register. It specifies

one of the following data-backgrounds: (1) sDB:

solid DB; (2) bDB: checkerboard DB; (3) rDB: row

stripes DB; and (4) cDB: column stripes DB.

8) GMER[3..0]: Generic March Element Register. It is

a 4-bit register and specifies the to-be-applied GME

within the current bank. The GMER only contains

a number, rather than a complete specification of

a GME; the MBIST hardware uses the GME# to

generate the appropriate operation sequence and data

values.

Extension registers

The optional extension registers support additional features

of the GME-MBIST architecture [18], [13].

1) BR[0]: Bank Register. It specifies the bank from

which a GME has to be selcted. In this paper the

size of the BR is 1-bit, which allows for up to 32

GMEs. Depending on the application, it may have a

different size.

2) REPR[5..0]: Re-execute Entry Point Register. The

REPR is used by the REP (REPeat) and the POWi

commands, which allow a Block of Commands (BoC)

to be re-executed a number of times. The starting

address of this BoC is stored in the REPR, which

has the same size as the CC (Command Counter).

3) RCNTR[3..0]: Re-execute CouNT Register. The

RCNT specifies the number of times a BoC has to

be re-executed by the REP command.

B. The GME­MBIST commands

The architecture supports commands to control the

operations of the GME-MBIST engine. They have a

variable length which is a multiple of one nibble (4 bits),

such that the Command Memory size can be minimized.

The most frequent commands are encoded in the smallest

number of nibbles. This reflects itself in the number

of bits used for specifying the Opcode; which is also

variable in length. Last, similar to the registers, the set

of commands can be divided into two classes: Basic and

Extension.

Basic commands

The basic command set consists of only two commands;

they are mandatory and allow for a minimal implementa-

tion of the GME-MBIST engine [13].
1) INIT: INITialize. The INIT command clears GMER.

It establishes the DB values, the CM&AD, the DV

and the AO for the application of the GME#0 spec-

ified in the GMER (which is ’m (wD)’). Last, it

establishes the Re-execute Entry Point by clearing

the RCNTR and loading the start address of the to-

be-re-executed Block of Commands in the REPR.

2) SGME: Select GME. This command allows for

the execution of a specified GME. It requires the

specification of the GME#, the DV and the AO.

Extension commands

The extension commands provide extra capabil-

ity/functionality and/or reduce the required Command

Memory size [13].

1) SAODV: Select AO and DV, for current GME. Sev-

eral several algorithms have a sequence of MEs

which only differ in the used AO and DV. For exam-

ple: MATS+, March C- and PMOVI. This command

specifies the AO and DV for a GME for the current

GME (see Example 2 in Subsection 4.3).

2) SAODVE: Select AO, DV, CM&AD and GME#.

From inspecting Table I one can conclude that

the selection of the ’CM&AD’ applies to all MEs

of a test. However, in some rare cases this does

not hold. For example, the Philips 6n algorithm

{r⇑(w0); r⇑(r0, w1); c⇓(r1, w0, r0)} requires the

use of the SAODVE command, because the AD

of the GME ’c⇓(r1, w0, r0)’ differs from the two

preceding GMEs.

3) LBR: Load Bank Register. When more than 16

GMEs are required, the set of GMEs is divided into

banks with a maximum of 16 GMEs. The Bank ’B’

parameter of the LBR command specifies the bank.

4) SREP: Set Re-execute Entry Point. Sometimes MEs

of a set of tests are put together in a single long

Paper 8.1 INTERNATIONAL TEST CONFERENCE 5



test. To save execution time, the state of the memory

after a given test is used as the initial state for the

following test. Then, if a part of the long test has

to be re-executed, the SREP command is required to

establish the Entry Point of that part.

5) REP: REPeat block of commands. Industrial test sets

usually contain tests which are a repeated application

of an algorithm, whereby stress conditions such

as the CM&AD are varied. The REPeat command

supports this in a very efficient way. It allows for

re-executing a Block of Commands (BoC). The BoC

starts at the location specified by the Re-execute

Entry Point Register (REPR) and ends at the REP

command. The BoC may consist of several algo-

rithms and is repeated a number of times, as specified

by the RCNT# field of the REP command (see

Example 4 in Subsection 4.3).

6) POWi: Re-execute with POWer of 2i addressing.

The POWi command is a special case of the REP

command: it re-executes a Block of Commands N−1
times; N is the number of address bits, which is

hardwired in the GME-BIST engine. During the ith

re-execution, i is used to generate the address incre-

ment/decrement value of 2i. The RCNTR register is

used to keep track of the current value of i.

C. Examples

It is clear from the above that GME-MBIST needs only

a few simple, memory-efficient commands. Its efficiency

will be demonstrated with the following four examples

[13].

Example 1: March C- {⇑(w0); ⇑(r0, w1); ⇑(r1, w0);
⇓(r0, w1); ⇓(r1, w0); ⇑(r0)}; applied with bDB and Lr. This
implementation uses only the basic commands.

• ⇑(w0). INIT: AO=⇑, DV=0, CMADR=Lr, DBR=bDB.
Implicit application of GME#0.

• ⇑(r0, w1). SGME: AO=⇑, DV=0, GMER= 2.
• ⇑(r1, w0). SGME: AO=⇑, DV=1, GMER= 2.
• ⇓(r0, w1). SGME: AO=⇓, DV=0, GMER= 2.
• ⇓(r1, w0). SGME: AO=⇓, DV=1, GMER= 2.
• ⇑(r0). SGME: AO=⇑, DV=0, GMER= 1.

A total of six commands are required, one per ME; they require
12 nibbles of Command Memory (ComMem) [13].

Example 2: March C-. March C- will be applied with bDB and
Lr, while using the extended command ’SAODV’:

• ⇑(w0). INIT: AO=⇑, DV=0, CMADR=Lr, DBR=bDB.
Implicit application of GME#0.

• ⇑(r0, w1). SGME: AO=⇑, DV=0, GMER=2.
• ⇑(r1, w0). SAODV: AO=⇑, DV=1.

Note: the GME# of the previous command applies.
• ⇓(r0, w1). SAODV: AO=⇓, DV=0.
• ⇓(r1, w0). SAODV: AO=⇓ , DV=1.
• ⇑(r0). SGME: AO=⇑, DV=0, GMER=1.

The six commands require 9 nibbles of ComMem [13]. The use
of ’SAODV’ command saves 25%, as compared with Example 1.

Example 3: GalPat: {⇑(w0); ⇑v(w1v , ⇑−v(r0, r1v), w0v);
⇑(w1); ⇑v(w0v , ⇑−v(r1, r0v), w1v)}; applied with sDB and
Lr, as follows:

• LBR: B=1. Note: Bank-1 of the set of GMEs has to be
selected.

• ⇑(w0). INIT: AO=⇑, DV=0, CMADR=Lr, DBR=sDB. Ap-
ply implicit GME#0.

• ⇑v(w1v , ⇑−v(r0, r1v), w0v). SGME: AO=⇑, DV=1,
GMER=2.

• ⇑(w1). SGME: AO=⇑, DV=1, GMER=0.
• ⇑v(w0v , ⇑−v(r1, r0v), w1v).

SGME: AO=⇑, DV=0, GMER=2.

Five commands require 10 nibbles of ComMem [13].

Example 4: REPeat(PMOVI & MATS+).
PMOVI: {⇓(w0); ⇑(r0, w1, r1); ⇑(r1, w0, r0);

⇓(r0, w1, r1); ⇓(r1, w0, r0)}.
MATS+: {⇑ (w0); ⇑ (r0, w1); ⇓ (r1, w0)}.
This example demonstrates the use of the REP command applied
to two tests: PMOVI & MATS+. The first time they are executed
using Lr (Linear addressing & Fast-row), together with sDB
(solid DB). Next, they will be re-executed for Lr & bDB, Lr &
rDB, Lr & cDB, and for Lc & sDB, Lc & bDB, Lc & rDB and
Lc & cDB. This means that after the initial execution, they are re-
executed 7 times. The following set of commands will implement
the above:
PMOVI

• ⇓(w0). INIT: AO=⇓, DV=0, CMADR=Lr, DBR=sDB.
Apply implicit GME#0. Note that RCNT will be implicitly
cleared here.

• ⇑(r0, w1, r1). SGME: AO=⇑, DV=0, GMER=3.
• ⇑(r1, w0, r0). SAODV: AO=⇑, DV=1.
• ⇓(r0, w1, r1). SAODV: AO=⇓, DV=0.
• ⇓(r1, w0, r0). SAODV: AO=⇓, DV=1.

MATS+
• ⇑(w0). SGME AO=⇑, DV=0, GMER=0.
• ⇑ (r0, w1). SGME: AO=⇑, DV=0, GMER=2.
• ⇓ (r1, w0) . SAODV: AO=⇓, DV=1.
• REPeat

REP: CNTR=8, Lc-cDB, Lc-rDB, Lc-bDB, Lc-sDB, Lr-
cDB, Lr-rDB, Lr-bDb.

Nine commands require 22 nibbles of command memory for 2
tests executed 8 times [13].

V. Minimization of address generation

This section describes how the Address Generator (Addr-

Gen) area can be minimized. This minimization is mainly

based on the notion that many Counting Methods (CMs)

can be derived from the Linear Up-address sequence.

Figure 3 shows the concept; just by using an Up-counter

and a network of Muxes, most CMs can be generated. By

controlling the Mux network, one can select the appropriate

CM, together with its address direction (Up or Down).

In this section, first the concept will be explored for the

Linear (Li) and Address complement (Ac) AddrGens; the

area and power analysis for these two AddrGens will be

also presented. Then, the the Gray code (Gc), the Worst-

case gate delay (Wc) and the 2i (2i) AddrGens will be

discussed. Thereafter, a novel solution for the Next address

Paper 8.1 INTERNATIONAL TEST CONFERENCE 6



2i

N−1, ... , C0

WcGcAcLi 

Up/Down

Counting 
Mux−network

Up−Counter

N−1 0A , ... , A

Method (CM)

Li: Linear address CM

Ac: Address complement CM

Gc: Gray code CM

Wc: Worst case CM
i

2i: 2 CM

C

Fig. 3. Up­counter based address generator

TABLE IV. Address Counting Methods(CMs)
Step Li Ac Gc 2i = 4 Pr Wc

0 0000 0000 0000 0000 0000 -
1 0001 1111 0001 0100 0001 0001

2 0010 0001 0011 1000 0011 0000
3 0011 1110 0010 1100 0111 0001

4 0100 0010 0110 0001 1111 -
5 0101 1101 0111 0101 1110 0010
6 0110 0011 0101 1001 1101 0000
7 0111 1100 0100 1101 1010 0010

8 1000 0100 1100 0010 0101 -
9 1001 1011 1101 0110 1011 0100

10 1010 0101 1111 1010 0110 0000
11 1011 1010 1110 1110 1100 0100

12 1100 0110 1010 0011 1001 -
13 1101 1001 1011 0111 0010 1000
14 1110 0111 1001 1011 0100 0000
15 1111 1000 1000 1111 1000 1000

Note: Li= Linear; Ac= Address Complement; Gc= Gray code;
Pr= Pseudo random; Wc= Worst Case Gate Delay

(Ne) AddrGen will be presented. Finally, all the results will

be summarized.

A. Li and Ac AddrGens

Column ’Li’ of Table IV shows the Linear address

sequence for a 4-bit address (N = 4), while column ’Ac’

shows the Address complement address sequence.

LiUd: Linear AddrGen based on Up-down counter

Figure 4(a) shows the LiUd AddrGen using J-K flip-flops.

The ’U/D’ (Up/Down) control input determines whether

the ’⇑’ or the ’⇓’ address sequence is generated, by

selecting the Q or the Q output of bitx to control the J-K

inputs of bitx+1. Note that the control of each J-K input

requires two gates which are in the critical signal path.

LiUo: Linear AddrGen based on Up-only counter

Figure 4(b) depicts the LiUo AddrGen using an Up-only

counter. The U/D control input determines whether the Q

(for ⇑) or the Q (for ⇓) outputs are selected. Note that

a single mux, which is not in the critical signal path, is

used to switch between ⇑ or ⇓ counting.

Ac: Address complement AddrGen

Column ’Ac’ of Table IV shows a 4-bit address sequence

for the Ac CM. The even steps (see column ’Step’)

0

Q

Q

J

K

1

U/D

(b) Up‐only Linear (LiUo)

Q Q

0 1 U/D0 1

Q Q

0 1

Q Q

0123

Q Q

1

Q

Q

J

K

2

Q

Q

J

K

3

Q

Q

J

K

(d) Up‐only Linear Address Complement (LiAc)

Q QQ Q Q Q

0123

Q Q

0 1 2 3

Q0 Q0

CTRL1

0 1 2 3 0 1 2 3

CTRL2

0 1 2 3

CTRL1

(0) AcU

(1) AcD

(2) LiU

(3) LiD

CTRL2

(0) AcQ0

(1) AcQ0

(2) LiU

(3) LiD

(c) Up‐only Address Complement (Ac)

Q Q

0 1

U/D

0 1

Q Q

0 1

Q Q

0123

Q Q

(a) UpDown Linear (LiUd)

A3           A2           A1           A0 A3      A2               A1                A0 

A3                        A2                        A1                        A0 

Fig. 4. Linear & Address Compl. AGs

of this sequence form a linear ⇑ address sequence; the

addresses for the odd steps, in bold font, are formed

by taking the one’s complement of the preceding even

step. Figure 4(c) shows Ac AddrGen implementation

using an Up-only counter. The ’U/D’ control signal

controls the most-significant address bit O3, which is the

least-significant counter bit ’0’, because O3 of the Ac

CM changes with each clock period; see Table IV. The

Q output of bit0 controls the muxes of all bitsx, with x > 0.

LiAc: Combined LiUo & Ac AddrGen, see Figure 4(d)

Figure 4d) shows the implementation of the combined

Li&Ac AddrGen. The signals CTLR1 and CTRL2 control

the MUXs and are explained in the left part of the figure;

e.g., CTRL1=0 means AcUp, etc.

B. Area and power analysis of Li and Ac AddrGens

The AddrGens are synthesized with the Synopsys Design

Compiler [15], using the Faraday UMC 90 nm Standard

Process library [14]. Table V shows the area, in terms

of standard 2-input NAND gates, for the the LiUd, the

LiUo, the Ac, and the combined LiAc AddrGens. The col.

’Freq’ lists the three operating frequencies in MHz; the

columns thereafter list the area requirements for AddrGens

consisting of address bit size N=8, 12, 16, 20 and 24 bits.

The area increase with increasing N is apparent. The

rows ’△Area Freq in %’ list the area increase - in % -

when increasing the frequency from 555 to 1111 MHz.

Increasing the frequency does not increase the number

of gates; however, in order to meet the required clock

frequency, certain gates are made larger to get more drive

strength; hence, more area overhead. The table clearly

shows that the LiUd AddrGen has the largest area increase,

which is between 30.7 and 45.3%. Moreover, the table

reveals that that LiUd AddrGen requires the largest area;

Paper 8.1 INTERNATIONAL TEST CONFERENCE 7



TABLE V. Area metrics of Li & Ac AGs
Cntr Freq N

in MHz 8 12 16 20 24

LiUd 555 123 186 262 344 426
LiUd 833 135 219 305 401 500
LiUd 1111 179 265 360 455 556

△Area Freq in % 45.3 41.9 37.2 32.3 30.7

LiUo 555 107 170 230 286 352
LiUo 833 110 172 234 297 365
LiUo 1111 116 191 274 355 435

△Area Freq in % 8.4 12.6 19.4 24.0 23.6

△Area LiUd-Uo in % 35.2 27.9 23.8 22.0 21.8

Ac 555 108 168 227 289 351
Ac 833 112 171 230 299 362
Ac 1111 114 192 273 353 435

△Area Freq in % 5.3 13.8 20.2 22.3 24.1

LiAc 555 122 182 252 325 388
LiAc 833 134 202 269 341 414
LiAc 1111 139 227 313 396 486

△Area Freq in % 14.1 24.8 24.3 22.0 25.1

150

200

250

300

350

400

450

500

555 833 1111

Power (uWatt)

LiUd

LiUo

Fig. 5. Power in uW for LiUd & LiUo

e.g., depending on the frequency, LiUd consumes 21.8 to

35.2% more than LiUo AddrGen; this is given in row

’△Area LiUd-Uo in %’.

Figure 5 shows the power requirements for the LiUd

and the LiUo AddrGens; the LiUd is worse, especially

for higher frequencies, by 13 to 23%. The power in-

creases non-linearly with the frequency, because a higher

frequency also demands a larger circuit area; see Table V.

Considering the advantages the LiUo counter has over the

LiUd counter, the latter will not be considered any more

from this point on.

C. Minimizing the Gc, Wc and 2i AddrGens

This subsection shows how the Up-only counter is used

to generate optimized AddrGens for Gray code (Gc), the

Worst-case Gate delay (Wc) and the 2i (2i) CMs.

Gc: Gray code AddrGen

The column ’Gc’ of Table IV shows a 4-bit address

sequence for the Gc CM. This sequence can be derived

from the Linear sequence, as follows: bit0 of the Gc

address can be derived from bit0 of the Linear address

by inverting it when bit1 of the linear address is ’1’. This

is shown in Figure 6(a): the mux of bit0 is controlled by

the signal ’Q1’. Similar reasoning applies to bit1 and bit2.

The mux of bit3 is controlled by the Up/Down signal,

(a) Gray Code (Gc)

Q Q

0 1Up /

Down

0 1

Q Q

0 1

Q Q

0123

Q Q

Q3 Q2 Q1

Register

+1 incrementer logic

Normal

Sequence

Next/Normal

(U/D)

Q Q

O O

Next Sequence

0 10 1

Q Q

0 1

Q Q

0123

Q Q

2^j

(0)

2^j

(1)

2^j

(2)

2^j

(3)
0 1

(b) Worst Case Gate Delay (Wc)

(d) Next address (Ne)

Q QQ Q Q Q

0123

Q Q

U/D

I Value

3 2 1 0F T

000000 3322

U/D

I Value = 1

U/D

I Value = 2

U/D

I Value = 3

F TF T

11

A3 A2 A1 A0

A3 A2 A1 A0

A3 A2 A1 A0

0 1 2 3

(c) Up­Only 2^i Counter (2i)

Fig. 6. Gc, Wc, 2i and Ne AddrGens

which means that in case of the ⇑ address sequence, the

’0’ input of the mux will select Q3 to generate O3; see

Table IV. Based on the above, the implementation of Gc

AddrGen is done in an simple and easy way by using

linear Up-only counter.

Wc: Worst Case Gate Delay AddrGen

The Worst-Case Gate Delay (WCGD) algorithm [11] has

been designed as a more efficient replacement of the

MOVI algorithm [24]. It has the property that for each

of the 2N victim addresses (vaddres), the following N

address-triplets are generated: vaddr⊕2j , vaddr, vaddr⊕2j ;

for 0 ≤ j ≤ N−1. The column ’Wc’ of Table IV sketches

part of a 4-bit Wc address sequence; i.e., for vaddr = 0000.

For every vaddr of the register (Q3, Q2, Q1, and Q0),

any one of the 4 address bits has to be inverted. This

is accomplished in Figure 6(b) by selecting the Qj or

the Qj output, under control of the corresponding mux

with control input ’2ˆ j’. For example, for bit2 the mux

control input is labeled ’2ˆ j’ and (2). Note that of the 4

mux control inputs only one is active, such that only one

address bit is inverted.

2i: The 2i AddrGen

The column ’2i=4’ of Table IV shows the 2i address

sequence, only for address increments/decrements of 4; i.e.,

i=2. The 2i CM is important for the MOVI algorithm [8],

[10], which is used throughout the industry. A straight-

forward implementation requires a barrel shifter with N

muxes, each with N inputs, to transform the Li address

sequences into the 2i sequences. However, this requires a

total of N∗N=N2 mux-inputs. An economical solution

is shown in Figure 6(c); it has one mux for bit0 with N

inputs, and muxes with 2 inputs for all other bits. For all

values of i, except for i = 0, the muxes interchange coli
with col0. Therefore, the mux for bit0 requires N inputs,

while the other muxes only require 2 inputs.

Paper 8.1 INTERNATIONAL TEST CONFERENCE 8



Fig. 7. Area for different AddrGens

D. Next­address (Ne) AddrGen

Figure 6(d) shows the Next(Ne) AddrGen. The implemen-

tation is based on the idea that the increment function of

the Up-only counter can be separated from the Register

function. This results in two separate units: the ’Register’

and the ’+1 increment logic’ as shown in Figure 6(b).

E. Address generator summary

Figure 7 depicts the area required for each of the CMs

covered in this paper; for the completness, the Pseudo-

Random (Pr) CM (see column ’Pr’ in Table IV) is also

included. In addition, the AddrGen capable of generating

ALL considered CMs in this paper (including Pr) is also

included for comparison and referred to in the figures as

ALL, The figure shows that the area required by the ’ALL’

AddrGen is 2.42 to 2.95 times the area of the Li AddrGen,

depending on the size of N (the larger N , the smaller the

size of the ALL AddrGen). On the other hand, the ALL

AddrGen requires only 40% of the area required by a brute-

force implementation; e.g., for N = 24, the ALL AddrGen

requires 1054 gates, as compared with 3070 gates for the

brute-force implementation [13].

VI. Experimental results and comparison

The GME MBIST hardware was synthesized with the

Synopsys Design Compiler with the Faraday UMC 90

nm Standard Process library. The size of the Memory-

under-Test is 16K x 16-bit, with 7-bit of row and column

addresses each. The Command Memory size is 64 4-bit

nibbles. It is worth noting that GME MBIST also has some

additional logic to support diagnosis [13].

Figure 8 shows the required area of GME MBIST for

different memory sizes with a word size of 16 bits; e.g.,

16K x 16 bits [13]. The area is normalized in terms of

the standard 2-input NAND gate (4µm2 in 90 nm). The

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

16 K 64 K 256 K 1 M 4 M 16 M

A
re

a
 (

G
a

te
s)

Memory Configuration

Area vs memory size

Fig. 8. Area overhead versus memory size

results are for a full implementation; i.e., support of basic

and extension commands and all GMEs of Table II. The

numbers on the top of each bar give the area overhead - in

% - for the specified memory size. E.g., for a memory size

of 1M x 16 bits, the area overhead is 0.17%. The figure

shows that the MBIST size increases with the memory

size, while its relative area overhaed becomes negligeable

for larger memories. Because the proposed MBIST has

a modular and flexible architecture, it enables choosing

subsets of combinations of algorithms and stresses. Hence,

reducing the required command memory and the overall

MBIST area. E.g., if only March tests are implemented,

the MBIST will consume 32% less area than the full

implementation [13].

Furthermore, the simulation results show that the

achievable frequency varies between 500 and 714 MHz,

depending on the flexibility and memory size. A higher

flexibility and a larger memory size result in a lower

frequency. E.g., if only March tests are implemented, then

the frequency will be 714 MHz, while this will be 500

MHz (i.e., 30% slower) for a full implementation.

Table VI gives a comparison of the major aspects between

the GME MBIST and some of previous published work. As

can be seen, GME MBIST outperforms the other MBISTs

in terms of area (at least 40% less area), speed (at least

1.6X faster) and flexibility. Our modular and orthogonal

design supports any algorithm – stresse combination; it

provides a higher frequency for at-speed testing, and has

a higher coding efficiency resulting in an overall low area.

In addition, GME MBIST is unique in supporting some

stresses such as Ac and 2i counting methods.

VII. Conclusions

This paper describes a novel Memory BIST engine, based

on the concept of the Generic March Element (GME)

[18]. A GME specifies the sequence of operations of a

March Element (ME), and is generic, because the attributes

Paper 8.1 INTERNATIONAL TEST CONFERENCE 9



TABLE VI. Comparison with other MBISTs
Appello 03 Du 05-06 Park 09 GME
[25] [3], [6] [16] MBIST

March � � � �

Galloping/ x � � �

Walking x � � �

Butterfly x � � �

Hammer x x x �

Sliding Diag. x � � x
AD Open x � x �

AD Delay x x x �

Byte WR Enb. x � x x
Moving Inv. x x x �

Retention � x x �

Multi-level x �(4) �(2) �(2)
nested loop

Data s,cb s,cb,r/c NA s,cb,r/c
Background DB Reg Addr. Unq.

Counting U/D fixed Lr, Lc, Ld NA Lr, Lc, Ld

Method AC, 2i

Command 43x4-b 64x4-b,
Memory 8x8-b 8x9-b 16x4-b

Total bits for 160 216 126 36
March C+

Technology 0.18 µm 0.13 µm 0.13 µm 90 nm
90 nm [3]

Freq (MHz) 40 NA, 333 [3] 300 500

AREA for 7.9 K gates 5.6 Kgates
16Kx16-b mem.

AREA for 13.6 Kgates [6] 6.4 Kgates 3.4 Kgates
8Kx32-b mem. No diagnosis

(e.g., Address Order, Addressing Direction, etc.) still can

be specified independent of the GME. The GME concept

provides a flexible MBIST and results in an extremely

small command memory. This makes this MBIST engine

very attractive for embedded applications whereby the tests

have to be stored within the MBIST engine. Moreover, all

information required to support an at-speed implementation

is contained in the specified GME. Hence, the required de-

tailed information to control the memory, such as whether

a read or write has to be performed, can be decoded

from the GME prior to its application. Furthermore, The

implementation of the address generator is optimized and

only used an Up-counter with a set of multiplexors.

The simulation results and the comparison with the

state-of-the art show the superiority of the proposed

MBIST in terms of area overhead, flexibility and at-speed

testing. The proposed MBIST consumes an area overhead

which is 40% less than the existing MBISTs, runs at least

1.6X times faster and provides unique flexiblity such as

supporting address complement and 2i counting methods.

References

[1] R.C. Aitken, ’A Modular Wrapper Enabling High Speed BIST and
Repair for Small Wide Memories’, In Proc. of the IEEE Int. Test Conf.,
paper 35.2, pp. 997- 1005, 2004.

[2] T.J. Powell, et al., ’BIST for Deep Submicron ASIC Memories with
High Performance Application’, In Proc. of the IEEE Int. Test Conf.,
pp. 386-392, 2003.

[3] X. Du, N. Mukherjee and T.M.Cheng, ’Full-Speed Field-
Programmable Memory BIST Architecture’, In Proc. of the IEEE Int.

Test Conf., paper 45.3, 2005.
[4] Z. Conroy, et.al, ’A practical perspective on reducing ASIC NTFs’,

Proc. of Int. Test Conference, pp. 349, 2005.

[5] L. Dilillo, et.al, ’Dynamic read destructive fault in embedded-
SRAMs: analysis and march test solution’, Proceedings. Ninth IEEE

European Test Symposium, pp. 140-145, 2004.
[6] X. Du, N. Mukherjee, W-T Cheng, S. M. Reddy ’A Field-

ProgrammableMemory BIST Architecture Supporting Algorithms and
Multiple Nested Loops’, Proc. of the Asian Test Symposium, paper
45.3, 2006.

[7] J.B. Khare, A.B. Shah, A. Raman and G. Rayas, ’Embedded Memory
Field Returns - Trials and Tribulations’, Proc. of Int. Test Conference,
pp. 1-6, 2006.

[8] M. Klaus and A. J. van de Goor, ’Tests for Resistive and Capacitive
Defects in Address Decoders’, Proc. of the 10th Asian Test Symposium,
pp. 31-36, 2001.

[9] T. Powell, et.al, ’Chasing subtle embedded RAM defects for nanome-
ter technologies’, Proc. of Int. Test Conference, pp. 860, 2005.

[10] A.J. van de Goor, Testing Semiconductor Memories: The-
ory and Practice, ComTex Publishing, The Netherlands, 1998,
Ad.vd.Goor@kpnplanet.nl.

[11] A.J. van de Goor, S. Hamdioui and G. N. Gaydadjiev, ’New
Algorithms for Address Decoder Delay Faults and Bit Line Imbalance
faults’, Proc. of the 18th Asian Test Symposium, pp. 31-36, 2009.

[12] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, M. Rodgers, ’Dy-
namic Faults in Random-Access-Memories: Concept, Fault Models
and Tests’, Journal of Electronic Testing: Theory and Applications,
pp. 195-205, April 2003.

[13] H. Kukner, ’Generic and Orthogonal March Element based Memory
BIST Engine’ Master Thesis, CE-MS-2010-01, Delft University of
Technology, September 2010.

[14] Faraday Corp., Faraday Technology Corp., FSD0A A SH 90 nm
Synchronous High Density Single-port SRAM Compiler, Oct. 2006.

[15] Synopsys Corp., Synopsys Inc., Design Compiler 2010, v. D-
2010.03, February, 2010.

[16] Y. Park, J. Park, T. Han, and S. Kang, An Effective Programmable
Memory BIST for Embedded Memory, IEICE Transactions on Infor-
mation and Systems E92-D (2009), no. 12, 2508-2511.

[17] S. Hamdioui, A.J. van de Goor, J.D. Reyes, and M.Rodgers,
’Memory test experiment: industrial results and data’, IEE Proc. of

Computers and Digital Techniques, Vol. 153 , Issue: 1, pp. 1-8, 2006.
[18] A.J. van de Goor, S. Hamdioui, G. Gaydadjiev and Z. Alars ’Generic

March Element Based Memory Built-In Self Test’, Dutch Patent
Application; Filing Number NL 2004407, Filed date: Jan 2010.

[19] R. Nair, ’An Optimal Algorithm for Testing Stuck-at Faults Random
Access Memories’, IEEE transactions on Computers, Vol. C-28, No.
3, pp. 258-261, 1979.

[20] A. J. van de Goor, S. Hamdioui and R. Wadsworth, ’Detecting Faults
in the Peripheral Circuits and an Evaluation of SRAM Tests’, In Proc.

of the IEEE Int. Test Conf, pp. 114-123, 2004.
[21] A.J. van de Goor and A. Paalvast, ’Industrial Evaluation of DRAM

SIMM Tests’, In Proc. IEEE Int. Test Conf., pp. 426-435, 2000.
[22] S. Hamdioui, Z. Al-Ars and A.J. van de Goor, ’Opens and Delay

Faults in CMOS RAM Address Decoder’, IEEE Trans. on Computers,
pp. 1630-1639, December 2006.

[23] L. Dilillo, et.al, ’ADOFs and Resistive-ADOFs in SRAM Address
Decoders: Test Conditions and March Solutions’, Jour of Electronic

Testing: Theory and Applications, Vol. 22(3), pp. 287-296, June 2006.
[24] J.H. De Jonge and A.J. Smeulders, ”Moving Inversions Test Pattern

is Thorough, Yet Speedy”, In Comp. Design, pp. 169-173, 1976.
[25] D. Appello, et al., ’Exploiting Programmable BIST For The Diag-

nosis of Embedded Memory Cores’, Int. Test Conference, pp. 379,
2003.

Paper 8.1 INTERNATIONAL TEST CONFERENCE 10


