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There has been a steady increase in the utilization of heterogeneous architectures to tackle the growing
need for computing performance and low-power systems. The execution of computation-intensive functions
on specialized hardware enables to achieve substantial speedups and power savings. However, with a large
legacy code base and software engineering experts, it is not at all obvious how to easily utilize these new
architectures. As a result, there is a need for comprehensive tool support to bridge the knowledge gap of
many engineers as well as to retarget legacy code. In this article, we present the Quipu modeling approach,
which consists of a set of tools and a modeling methodology that can generate hardware estimation models,
which provide valuable information for developers. This information helps to focus their efforts, to parti-
tion their application, and to select the right heterogeneous components. We present Quipu’s capability to
generate domain-specific models, that are up to several times more accurate within their particular domain
(error: 4.6%) as compared to domain-agnostic models (error: 23%). Finally, we show how Quipu can generate
models for a new toolchain and platform within a few days.
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1. INTRODUCTION

With the ever growing need for more computing performance and lower power
consumption, manufacturers have traditionally relied on technology scaling. However,
with the end of Moore’s law in sight [Rupp and Selberherr 2011], there has been
a steady increase in the utilization of parallel and heterogeneous architectures.
There are already many examples of architectures, which incorporate GPUs, ASICs,
FPGAs, and DSPs to accelerate applications [Bertels et al. 2010; Chen et al. 2007;
nVidia Corp. 2011]. By executing computation-intensive functions on such specialized
architectures, it is possible to achieve substantial and power-efficient performance
improvements without the need of technology scaling. In this respect, reconfigurable
architectures are gaining in popularity, as they allow for substantial application
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3:2 R. Meeuws et al.

speedups at low power costs. At the same time, they retain the necessary flexibility to
adapt to changing application requirements. This flexibility becomes even more visible
when the reconfigurable fabric is integrated in a microprocessor architecture to easily
incorporate and execute specialized accelerators. Recent architectures such as the
Xilinx Zynq [Xilinx 2011] and the Altera Cyclone V [Altera 2011] already offer this
kind of facility.

Developing applications for these platforms requires both traditional software en-
gineering expertise and specific knowledge of programming reconfigurable fabrics.
This forces companies to move from pure software or hardware development to a
combined hardware/software codesign approach. However, with a limited expertise in
hardware/software codesign, companies struggle to harness the potential of these new
architectures. Some companies utilize SystemC to tackle this problem, but many oth-
ers rely on large bases of legacy code in High Level Languages (HLLs), such as C, which
prevent them from taking this step. As a result, there is a clear demand for compre-
hensive tool support to bridge the knowledge gap of engineers and to retarget existing
code to such platforms. Part of that demand is being addressed by C-to-HDL compilers,
such as Catapult C [Morris 2004], ROCCC [Villarreal et al. 2010], or DWARV [Yankova
et al. 2007]. Notwithstanding, developers have to address many other issues in a short
time frame in order to meet time-to-market pressure. These include, for example, the
identification of resource-intensive parts of the application, the evaluation of different
architectures and mapping options, and the estimation of project costs. It is in these
aspects that many toolchains are lacking the necessary tool support.

In order to handle these issues, developers need information on different factors,
such as the power consumption, the speedup, the communication requirements, or the
hardware resource consumption of the intensive parts of an application on different
processing elements. The designer may determine the necessary information by cre-
ating, for each kernel,1 all possible implementations. However, the design space can
be huge and evaluating all design alternatives can be exceedingly time-consuming.
Especially in the presence of reconfigurable hardware, where many different kernels
need to be synthesized, searching this design space may take up to several months.
Even more, during the development process, the application may still change many
times and this process would have to be repeated accordingly.

In order to solve this problem, we require tools that can quickly characterize
these important features when only a software implementation is available. This
way, the time needed to evaluate different heterogeneous processing elements can
be reduced by several orders of magnitude. The Q2 profiling framework [Bertels
et al. 2011; Ostadzadeh et al. 2012] is one such set of tools. The main goal of this
framework is to enable efficient application mapping by quantifying these important
hardware features. Q2 provides the necessary information to maximize the poten-
tial performance increase, while taking into account communication bottlenecks and
resource constraints. In order to provide resource estimates for various toolchains and
platforms, Q2 provides a generic approach for building prediction models, called the
Quipu Modeling Approach [Meeuws et al. 2006, 2007, 2008, 2011, 2012]. Quipu is a
quantitative prediction modeling approach for early Design Space Exploration (DSE).
Quipu models are able to predict the important hardware aspects of kernels to be
mapped to reconfigurable components. They take a HLL description (C code) as input
and estimate area, interconnect, static power, clock period, and other FPGA-related
measures for a particular combination of a platform and a toolchain. The Quipu mod-
eling approach is not restricted to any platform or toolchain and appropriate Quipu

1In this article, we define a kernel as a single function in a HLL description.
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models can be generated in different contexts. By using linear prediction models based
on Software Complexity Metrics (SCMs), the time required by Quipu prediction models
to determine estimates becomes several orders of magnitude smaller than the time-
consuming process of hardware synthesis required to obtain the final results. In par-
ticular, we achieve a speed of 87.4 predictions per second, as opposed to the much more
costly process of hardware synthesis. Consequently, developers can quickly identify the
resource-intensive parts of their application, evaluate the effect of changes on the cost
of the final design, or select the right processing elements for their application. This re-
sults in a time saving of hours or even days per design iteration. Furthermore, resource
estimates have a crucial role in optimizations such as loop-unrolling, automatic par-
allelization, or recursive variable expansion, because of the limited resources that are
available.

In this article, we present a high level quantitative prediction modeling scheme that
generates prediction models for different toolchains, different platforms, and different
application domains. Quipu generates models that accurately capture the relation be-
tween hardware and software metrics, based on linear regression, neural networks,
and other statistical techniques. The main contributions presented in this article are
the following:

— a robust statistical modeling methodology based on a large set of 324 kernels from
66 real applications from different application domains;

— a modeling methodology, which allows the generation of prediction models targeting
different application domains; these domain-specific models exhibit an increased
accuracy compared to domain-agnostic models;

— fully operational instances of Quipu prediction models targeting four different com-
binations of toolchains and platforms, including ASICs, with prediction errors rang-
ing from 20% upto 39%;

— a comprehensive description of the generation of Quipu prediction models for a spe-
cific combination of a platform and a toolchain in a few days;

— a benchmark for the C-to-HDL generation capabilities for different C-to-HDL com-
pilers using the Quipu kernel library.

The remainder of this article is structured as follows. In Section 2, we review the
existing work related to our approach and we establish the added value of the Quipu
modeling approach. In Section 3, we give an overview of the theory and the components
of our approach. We evaluate the Quipu modeling approach in Section 4. Specifically,
we evaluate the error behavior of our models for four different toolchains and three
separate application domains. Furthermore, we show how Quipu models can be retar-
geted and utilized for a particular combination of a toolchain and a platform. Finally,
Section 5 concludes the article and proposes directions for future work.

2. RELATED WORK

Many approaches for hardware performance estimation have been proposed over the
last years. Some schemes aim to drive the final phases of hardware synthesis, such
as mapping, and place and route. More recently, the focus has moved to making pre-
dictions from HLL descriptions, such as ANSI-C or MATLAB. All these approaches,
however, have their particular shortcomings and restrictions. Some approaches are
tightly coupled to specific platforms and toolchains or only support Hardware Descrip-
tion Languages (HDLs), whereas others focus on specific parts of the design or only
generate models for a particular design. In this section, we summarize the main ap-
proaches in the field of hardware estimation. We investigate what part of a design
they estimate, if they are dependent on a particular tool or platform, what hardware
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3:4 R. Meeuws et al.

Table I. Overview of the Main (Hardware) Resource Estimation Approaches

Reference Object Target Predictions Input

O
th

er

[Enzler et al. 2000] Entire design Generic Area, Frequency DFG (RTL)
[Lakshmi et al. 2011] Entire design Xilinx Power FPGA netlist
[Schumacher et al. 2008] Entire design Xilinx Area, Delay, Power (V)HDL
[Nayak et al. 2002] Entire design MATCH Area (V)HDL
[Brandolese et al. 2004] Entire design SystemC Area SystemC
[Bilavarn et al. 2006] Entire design Design-Trotter Area HCDFG
[Deng et al. 2008] IP core specific TANOR Area, Power HLL (MATLAB)
[Chuong et al. 2009] Controller Trimaran Area, Delay HLL (C)

L
R

/H
L

L
(C

) [So et al. 2003] Loop nests DEFACTO Area HLL (C)
[Holzer and Rupp 2005] Entire design SPARK Delay HLL (C)
[Degryse et al. 2008] Loop controller CLoogVHDL Area, Frequency HLL (C)
[Kulkarni et al. 2006] Entire design SA-C Area HLL (C)
[Cilardo et al. 2010] Entire design Generica Area HLL (C)
Quipu Entire design Generic Area, Latency HLL (C)

aOnly Impulse-C demonstrated.

criteria they predict, and what input specification they require. A summary of the main
characteristics of each approach is presented in Table I.

For example, Chuong et al. [2009] presented an area-time estimation scheme for the
control of a design only, disregarding the datapath. The reported error was 3.8% for
flip-flops and 10.3% for slices. The prediction errors were validated using a set of only
10 kernels. In addition, this work did not provide predictions for the whole design and
strictly targeted the Trimaran compiler.

Industry has also come forward with efforts to provide hardware estimates in the
early stages of the design process. As an example, Schumacher et al. [2008, 2011] pre-
sented a resource estimation algorithm from a HDL description. This method mimics
the actual synthesis toolchain. The reported errors for flip-flops and slices were 14.2%
and 21.9%, respectively. The authors validated their model using a set of 90 VHDL
descriptions.

Enzler et al. [2000] presented an estimation scheme targeting tasks that lack exten-
sive control structures. It is based on a set of custom formulas for area and latency.
The authors attempted to validate their approach using only 6 kernels. Errors of ap-
proximately 12% for area and 29% for frequency were reported.

Deng et al. [2008] presented a methodology for area and power prediction. Similarly
to our work, they based their approach on Linear Regression (LR). The methodology
generates estimation models that are tailored to characterize different parameters in
specific IP cores. In that sense, these models can not be used for different designs or
kernels. The authors validated their models with a dataset of just 12 configurations
from only 2 IP cores. They reported an error of 8.2% for the number of slices and 7.0%
for power.

Similarly, Lakshmi et al. [2011] presented a statistical power modeling approach
that provides a generic model to be used as IP-Core macro-model. The prediction mod-
els are based on detailed resource usage information and on port activity numbers. The
authors used a set of 13 IP cores to build their model. At least 6 of those cores were
used as training set and at least one was used as validation set. They reported an er-
ror of 4%. Within the domain of SystemC, Brandolese et al. [2004] presented another
estimation approach using statistical methods. This approach is based on the design
parameters of the SystemC and VHDL descriptions. It was generated from a dataset
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Quipu: A Statistical Model for Predicting Hardware Resources 3:5

of 20 designs using classic LR. Nevertheless, the results were validated with only 5
designs. The reported error for the number of LUTs was 36.8%.

Similarly, Nayak et al. [2002] presented an area estimator to enable automatic DSE
within the MATCH compiler [Banerjee et al. 2000], which is based on a classic LR
taking into account the number of operations of each type, their bit-widths, and the
number of registers as determined from VHDL generated from MATLAB. The authors
failed to mention how their estimation formula was determined. In contrast to our
approach, they validated their estimator with only 7 kernels, reporting an estimation
error of 16%.

In Bilavarn et al. [2006], an estimation methodology targeting HLLs in the context of
the Design-Trotter project was presented. The estimation scheme is based on a specific
architectural template, where each component is estimated separately. A library of
functional components was utilized to characterize different nodes in the Hierarchical
Control and Data Flow Graph (HCDFG). The authors reported an error of 20% for area
estimates using only 22 kernels from the DSP domain.

Up to this point, all discussed related approaches contained custom expressions
or algorithms to derive hardware estimates. In addition, these approaches were all
performed in the context of specific platforms or toolchains. In our work, instead, we
focus on using statistical analysis to obtain the necessary hardware prediction models
for different combinations of tools and platforms. Furthermore, although Nayak
et al. [2002], Brandolese et al. [2004], Bilavarn et al. [2006], Deng et al. [2008], and
Chuong et al. [2009] targeted HLLs, they did not support ANSI-C. Therefore, in the
following, we narrow our focus on several approaches that deal with both statistics and
ANSI-C.

Holzer and Rupp [2005] presented a custom model for execution time estimation
based on the SPARK C-to-VHDL compiler [Gupta et al. 2003]. They briefly mentioned
SCMs, measures that characterize software descriptions, although they only use a
critical path estimation scheme based on Control Flow Graphs (CFGs). They did not
present a statistical analysis of their results. Based on only 9 kernels from 2 applica-
tions, they reported an error between 39.3% and 44.4%. Although this work targeted
HLL descriptions, it was dependent on SPARK and presented only a very limited vali-
dation set, contrary to our work.

Kulkarni et al. [2006] presented an approach for FPGA area estimation based on
building prediction models for each type of DFG node. These prediction models were
generated by performing LR on a set of DFG nodes with changing characteristics,
resulting in a set of model coefficients for that node. The authors reported an error
of 5.3% for area based on only 4 kernels from the image processing domain. The
estimation approach proposed by Kulkarni et al. is tailored to the SA-C intrinsics
and, as such, can not be easily recalibrated for a different combination of tools and
platforms.

An example approach that focuses on a specific kind of design was presented in
Degryse et al. [2008]. Based on the Polyhedral model, the authors presented a pre-
diction scheme that targets loop controllers. The authors determined the effect of the
quantity of statements and the loop nesting depth on the utilized hardware generation
methodology. They reported an error of 7.14% using a validation set of only 12 kernels
for their LR model.

So et al. [2003] presented an estimation strategy for their DEFACTO C-to-VHDL
compiler, which helps to determine the unroll factor. By using a LR model based on
High Level Synthesis (HLS) to predict the post-place and route area, they circum-
vented the expensive low-level synthesis passes. The approach aims to reduce the time
to evaluate different design alternatives. The model was evaluated using a set of 209
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3:6 R. Meeuws et al.

alternatives generated from only 5 multimedia kernels, but no prediction error was
reported.

As listed in Table VI, each of these works has claims on the quality of their models in
terms of error based on small validation sets containing 3 to 12 observations. However,
if the goal is to report errors that are not biased to a small dataset, a larger set of valida-
tion data, such as the one used in Quipu, becomes vital. Let us suppose, for example,
we validate a model using a set of only 12 observations. It is very unlikely that these
observations can represent the entire spectrum of kernels. For one, with such a limited
set of kernels, the possibility of cherry-picking the validation set increases. Secondly,
an anomalous kernel that is not well modeled by a certain model can adversely affect
the validation error, when a small set of kernels is used. This is especially the case for
kernels from different domains. For approaches that utilize larger datasets for valida-
tion, we refer the reader to, for example, the ones in Monostori et al. [2005] or Palermo
et al. [2009], targeting FIR filters and multiprocessor systems, respectively. However,
as these two works are not in the context of hardware estimation for reconfigurable
components, we do not further discuss them here.

Finally, in Cilardo et al. [2010], we find a strategy that is seemingly very close to
our approach. In correspondence with our earlier work [Meeuws 2007; Meeuws et al.
2007, 2008], they used a kernel library, a HLL-to-HDL compiler, and a metrication tool,
with the addition of some specific counts of operators for each bit-width. Additionally,
they also used LR to obtain prediction models, as in our approach. They validated
their results with a set of 3 kernels and reported an error of 31% for area. The main
differences with the Quipu modeling approach presented in this article, apart from the
lower accuracy, are the following.

— Cilardo et al. [2010] utilized a kernel library of approximately 200 synthetic kernels
to generate their prediction models, while we employ a library of 324 real kernels
from 66 applications, of which up to 266 were generated into HDL. This, in turn,
dramatically increases the applicability of our models for real applications.

— We validate our model using 10-fold cross-validation on 266 HDL descriptions that
were generated from our kernel library in order to obtain a higher accuracy for the
reported error, in contrast to the very small validation set utilized by Cilardo et al.
[2010].

— the Quipu modeling approach is able to generate domain-specific models by using
real kernels from different domains.

A careful analysis of all these works shows that our approach uniquely addresses the
problem of early generic quantitative hardware prediction using statistical methods
targeting ANSI-C. Additionally, the validation of our approach uses a substantial real-
life dataset to provide acceptable accuracy. To the best of our knowledge, no other
approach exists in this particular niche.

In this article, we present the Quipu modeling approach for the prediction of hard-
ware resource consumption targeting reconfigurable components. This method targets
HLLs such as C, in order to drive early DSE and to provide models for different re-
configurable platforms and toolchains. Contrary to existing approaches, we validate
our approach with up to 266 real kernels from our library using models produced
by our modeling approach. We validate the general applicability of our approach by
providing models for three other combinations of tools and platforms and we show
how Quipu can be retargeted to one of these toolchains within a few days. Further-
more, we provide domain-specific models that exhibit a higher accuracy compared to
domain-agnostic models, because kernels in the same domain tend to be similar to each
other. Such similarity has been observed before with regard to dynamic behavior in, for
instance, Eeckhout et al. [2002] and Cammarota et al. [2011], but we will show this
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also holds true with regard to static elements, such as hardware generated by HLS, in
Section 4.5.

3. THE QUIPU MODELING APPROACH

The work presented in this article is in the context of Quipu [Meeuws 2007; Meeuws
et al. 2007, 2008, 2011], a quantitative prediction modeling approach for early DSE.
This statistical modeling approach generates prediction models that are able to
predict the important hardware aspects of kernels to be mapped to reconfigurable
components. This is especially useful in the context of early DSE, where a huge design
space needs to be reduced as fast as possible. The models take an ANSI-C description
as input and estimate various FPGA-related measures, such as area, frequency, or
latency. Despite the fact that Quipu estimates are less accurate compared to the actual
synthesis results or low level estimates, these estimates provide all the necessary
insight into hardware costs at an early stage without the need for time-consuming
synthesis or compilation. As a result, Quipu estimates can be used effectively within
iterative algorithms for partitioning and mapping, where estimates need to be made
for many design alternatives in a short period of time. These estimates are also
valuable in determining sensible optimization parameters, such as the loop-unroll
factor, where area constraints play an important role.

Apart from the clear advantages of fast and early estimations, our approach is able
to generate models for different tools and platforms, which provides a high level of
retargetability. This is important for companies that want to retain a high level of flex-
ibility in choosing design alternatives, while retaining a comparable level of prediction
quality. To clearly show this advantage, this article presents Quipu prediction models
for four different combinations of platforms and toolchains. Furthermore, we present
an extensive case study on how to retarget our Quipu modeling approach to a new
toolchain and platform in just a few days.

In the following, we describe the different parts of the Quipu modeling approach.
More precisely, in Section 3.1, we introduce the Q2 profiling framework, which makes
heavy use of our approach and is utilized for validating our work. In Section 3.2, we
present the use cases of our approach and describe the methodology for calibrating
models for a new toolchain and/or platform. Afterwards, we describe the components
of the modeling methodology in detail. In Section 3.3, we describe SCMs as the main
criteria in our approach. Subsequently, in Section 3.4, we present the necessary mod-
eling theory employed by Quipu. In Section 3.5, we discuss different ways to evaluate
our prediction models. Finally, in Section 3.6, we describe the Kernel Library and tools
that implement our approach.

3.1. Q2 Profiling Framework

The Quipu modeling approach is an essential part of the Q2 profiling framework
[Bertels et al. 2011; Ostadzadeh et al. 2012], which is depicted in Figure 1(a). The
main focus of this framework is to provide essential profiling information in order to
drive efficient mapping of applications onto heterogeneous reconfigurable systems.
Q2 is part of the Delft Workbench (DWB) [Bertels et al. 2006], a semi-automatic tool
platform for integrated HW/SW codesign, targeting heterogeneous and reconfigurable
computing systems. The two main concerns of the profiling framework are to reveal
the data communication that occurs inside the application and to estimate reconfig-
urable resource consumption for each part of the application. Ultimately, the profiling
information helps to efficiently partition the application into hardware and software.
Quipu mainly addresses the second concern by providing the necessary hardware
resource estimates early in the design process.
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3:8 R. Meeuws et al.

Fig. 1. (a) An overview of the Q2 profiling framework and (b) an overview of the Quipu modeling approach.

3.2. Modeling Methodology

In Figure 1(b), an overview of the Quipu modeling approach is depicted. The figure is
divided into two parts that correspond to the two main use cases of the Quipu modeling
approach. These two use cases have different objectives, although they are related to
each other.

(1) Model Generation. This use case is mainly utilized when Quipu models need to be
generated for a certain toolchain and/or platform; for example, when a new version
of the synthesis toolchain is released. This process can be time-consuming, but it is
executed only once for a particular combination of a tool and a platform. A complete
walkthrough of the generation of a fully operational Quipu model is presented in
Section 4.2.

(2) Hardware Estimation. This use case is employed to provide fast and early esti-
mates during partitioning or even during algorithm development. As such, it is
utilized far more often than Model Generation. In Section 4.6, we show how Quipu
prediction models can be used in a real setting.

In Model Generation, a Quipu model can be calibrated using the output data from each
specific combination of a toolchain and a platform. As many toolchains have a variety
of optimization and effort level options, it may be necessary to generate different sets
of calibration data for some of the main options. The modeling methodology for the
creation of new Quipu models consists of the following steps.

Step 1. Kernel library customization. For a new toolchain, the HDL generation
scripts in the kernel library need to be adjusted accordingly. Furthermore, it may
be necessary to provide the kernels in lists, or to mark them in a different way,
depending on the targeted toolchain.

Step 2. HDL generation. After the scripts are in place, the HDL should be gen-
erated for each kernel. It may happen that some kernels are incompatible with
the targeted tool. In that case, the developer may choose to make the necessary
changes or to ignore the incompatible kernels.

Step 3. HDL synthesis. Using the generated HDL files, the synthesis toolchain
should generate the hardware for each kernel. For this purpose, the synthesis
scripts need to be adjusted for the targeted toolchain. Some HDL files may not
be synthesizable and, as such, may be discarded. Instead, the developer might go
back to Step 2 to resolve this issue.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 3, Publication date: May 2013.
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Table II. Overview of the SCMs Currently Employed by the Quipu Modeling Approach

Category Some metrics Number
Basic Blocks Number of basic blocks, max. and avg. number of operators, statements, loads, and

loads from the heap.
9

Execution estimates Loop iterations are accounted for, where possible, in a separate number of operators,
and number of statements.

2

Memory Number of loads and stores, number of loads and stores to the heap. The total amount
of bits is counted separately.

8

Bitwise Number of bitlevel operations (XOR, AND, etc.). The total amount of bits is counted
separately.

6

Floating Point Number of additions/subtractions, divisions, multiplications, modulo’s, square roots,
trigonometric operations, etc. The total amount of bits is counted separately.

18

Integer Number of additions/subtractions, divisions, multiplications, modulo’s, etc. The total
amount of bits is counted separately.

20

Variables etc. Number of parameters, constants, variables, globals, pointers. The total amount of bits
is counted separately.

9

Nesting Nesting level, cumulative and average nesting level [Meeuws et al. 2007], and the
number of loops.

4

Other Number of statements, function calls, logical operators, type conversions, bits in type
conversions, and the presence of a return value.

6

Halstead Number of (unique) operators and operands [Halstead 1977]. 4
From literature AICC [Harrison 1992], scope number and scope ratio [Harrison and Magel 1981],

McCabe’s Cyclomatic Number [McCabe 1976], Oviedo’s Def-Use pairs [Oviedo 1980],
Elshoff ’s Data Flow [Elshoff 1984].

6

Total 92

Step 4. Data extraction. With a sufficiently large set of synthesized kernels, the
Quipu Metrication and Hardware Measurement tools should now gather the
necessary SCMs and hardware performance data. It may be necessary to adjust
the Hardware Measurement tool for the new toolchain.

Step 5. Statistical modeling. After the data becomes available, the semi-automatic
modeling scripts can be employed to generate the final prediction models. Although
the scripts are able to automatically generate appropriate models in most cases,
manual intervention can further improve the quality of these models.

3.3. Software Complexity Metrics

As our approach is based on statistical analysis, it is essential to obtain an indepen-
dent dataset of measurements in order to generate realistic and accurate prediction
models. As our starting point is ANSI-C, it is essential to quantify the characteristic
aspects of the software description at hand. Previously, in Meeuws [2007] and Meeuws
et al. [2007], we have introduced SCMs as suitable measures characterizing software
descriptions. SCMs are indicators of different aspects of the source code under consid-
eration. Currently, we use a set of 92 different SCMs, as listed in Table II. Most of the
SCMs in our model are simple counts of different operations available in ANSI-C. In
addition, we also implemented several SCMs related to Software Measurement, such
as the Cyclomatic complexity, Elshoff ’s data complexity, and others. A drawback of
using SCMs for statistical modeling is the inherent multicollinearity, which degrades
the modeling process, because it can seem that important variables are not significant
[Munson 2002]. We describe some solutions to this problem in Section 3.4.3. For more
details on the SCMs used in our approach, we refer the interested reader to the work
we presented in Meeuws [2012, Chap. 3].

3.4. Regression Analysis

The statistical techniques that are employed by Quipu are an essential part of our mod-
eling approach. In the following, we introduce some of the key aspects of our analysis,
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3:10 R. Meeuws et al.

starting with some basic modeling terminology and going on to the different regression
techniques that are employed.

3.4.1. Model Definition. Given the SCMs mentioned in Section 3.3, let us define the pre-
diction model that we need to determine. As a first step, we consider the following
relation between hardware and software:

yHW = g(�xSCM) + ε. (1)

This is the theoretical optimal model relating some hardware metric yHW to the SCMs
�xSCM

2 with the ideal relation g(·) and some error ε inherent to the problem at hand.
In practice, an optimal model can not be found. Instead, any modeling scheme is an
approximation to some extent. Therefore, we model the relation g(·) with an approx-
imated relation ĝ(·)3. This results in the introduction of some error ε̂ inherent to our
approximation scheme. The approximation ĝ(·) can be, for example, an ad-hoc model,
a LR model, or an Artificial Neural Network (ANN). In case of LR techniques, ĝ(·) is a
linear equation. We can express this approximation as follows:

ŷHW = ĝ(�xSCM) + ε̂ = �̂a�xSCM + b̂ + ε̂, (2)

where �̂a is a vector of coefficients âi corresponding to the element xi of the set of SCMs
�xSCM obtained for a certain kernel, which correspond to the hardware metric ŷHW , and
b̂ is the offset of the linear model. Note that these variables are stochastic variables.
This means that reporting a simple percentage error is not enough. To be more precise,
the characterization of the error distribution must be addressed as well.

In this respect, LR can be seen as a technique used to solve a set of linear equations.
Traditionally, this linear system has been represented as follows:

�y = X �β + �ε, (3)

where, �y is the observation vector, X is the design matrix, �β is the parameter vector,
and �ε is the residual error vector. The observation vector corresponds to the hardware
measures, which are called dependent variables. The design matrix holds the so-called
independent variables, which consist of the SCMs described earlier. The regression
analysis comprises the determination of the model parameters in the parameter vector
�β. This will also yield the residual error. An exact solution for the model parameters
will most probably not be found. As such, we determine the residual error vector �ε,
by estimating the model parameter vector �β and calculating the difference between �y
and X �β. There are various techniques to estimate these model parameters. Some of the
techniques used in our approach are discussed in the following sections.

3.4.2. Generalized Linear Model (GLM). The assumption that a certain dataset is normally
distributed does not hold in many cases. As such, there is a need to support differ-
ent data distributions. A well-known approach to support more general datasets is the
GLM. This is an approach that has two main features that help in regressing nonnor-
mal data: support for the exponential family of distributions, and the notion of a link
function. There are many distributions supported, such as the normal distribution, the
Poisson distribution, and many more. In addition to relaxing the requirement of nor-
mally distributed errors, the GLM also introduces a link function, which describes how
the response variable and the independent variables are related. To a certain extent,
this is comparable to the transformation of the response variable.

2�x is the standard notation for a vector.
3ĝ(·) represents an approximation of the relation g(·).
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As an example, consider Logistic Regression (LogR), where a binary output variable
is modeled. This is accomplished by actually regressing the odds for a true or false
value, instead of regressing their integer values 1 and 0, respectively. Such a variable
is characterized by the binomial distribution. Let us assume that yi is binomially dis-
tributed as B(ni, pi), that is, there exists a bound set of values ni. Then, LogR models
the logistic transformation (logit(·)) of the probability pi for yi to be one as follows:

logit(pi) = log
(

pi

1 − pi

)
= ĝ(�xSCM) + ε̂. (4)

This logistic function of the probability of encountering a value of true for yi is as-
sumed to be linearly dependent on the SCM. By using the inverse logit, we can predict
the probability of each possible value. In this example, GLM can be employed using
the binomial distribution with the logit link function.

3.4.3. Collinearity. The collinearity between the different SCMs in our model poses a
problem. Due to the collinearity, some SCMs measure more or less the same aspect
of the code. This is problematic for regression analysis as certain aspects are now
overrepresented. As a result, other potentially important variables can be marked as
nonsignificant, degrading the accuracy of the model. We have utilized several well-
known techniques to address this problem so far. These include Principal Component
Analysis (PCA) [Meeuws et al. 2007], Partial Least Squares Regression (PLSR)
[Meeuws et al. 2008], and Stepwise Model Selection (SMS) [Meeuws et al. 2011].
Apart from these automatic approaches, it is also possible to provide a manually
selected subset of the SCMs.

In PCA, an orthogonal set of principal components minimize the covariance among
the different dependent variables. In this way, the collinearity problem is reduced.
PLSR is an adaptation of this technique, where the components are selected in such a
way that they explain as much variance in the response variable as possible. Another
common approach to reduce the number of predictors (SCMs) is SMS. In this work,
we utilize the Bidirectional elimination approach employed in [Venables and Ripley
2002]. Starting from a preliminary model, this method successively adds and removes
SCMs step-by-step. At each step, the significance of each SCM, given the current model
instance, is calculated and the most significant variable is added to the model. After
that, any variable that can be removed without increasing the error is removed. This
procedure continues as long as there are possible steps that can improve some quality
criterion.

3.4.4. Nonlinearity. During our analysis, we found out that in addition to the collinear-
ity problem, many SCMs do not have a clear linear relation with the predicted hard-
ware characteristics. Consequently, it is useful to transform the SCMs, where possible,
to better relate them to the hardware characteristics, or to use nonlinear regression
techniques. The Box-Cox power transformation [Box and Cox 1964] is a widely used
data transformation. This transformation preprocesses the data in order to reduce the
variance of the dataset, as well as to make the sample distribution more similar to the
normal distribution. The transformation is defined as follows:

x(λ)

i =
{

xλ
i −1
λ

for λ �= 0
log(xi) for λ = 0

, (5)

where xi are the observations of the independent variables, λ is the estimator used
to determine the transformation, and x(λ)

i are the transformed observations. By using
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a Box-Cox estimator in the R statistical computing environment [Faraway 2006],
we determined that λ is close to zero for many predictors. Therefore, we considered
log-transformations for all problematic SCMs in our model selection procedure. The
transformed SCMs are considered in all different modeling techniques employed in
this article.

Apart from data transformations, there are several techniques that tackle nonlin-
earity. The most notable technique employed by the Quipu modeling approach is the
use of Artificial Neural Networks (ANNs) [Callan 1998]. An ANN is composed of a set
of nodes that are arranged in layers. Each layer uses the outputs from the previous
layers as inputs. Each node is a weighted linear combination of inputs. The value of
this combination is transformed using an activation function passed on to the next
layer:

netj = f (
n−1∑
i=0

xiwij), (6)

where netj is the output of node j, f (·) is the activation function, xi (i ∈ 0, . . . , n − 1) are
the outputs of n nodes in the previous layers, and wij is the weight for the input from
node i to node j. We use the ANN training package nnet from the R statistical comput-
ing environment. This package trains networks with a single hidden layer using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithm [Nocedal and Wright
2000]. During the development of our approach, other modeling techniques, such as
random forests, ridge regression, and multivariate adaptive regression splines, have
also been considered. However, these techniques did not consistently outperform neu-
ral networks when using our kernel library, but did require a substantial amount of
additional computation time. To this purpose, we limit ourselves, in this article, to the
use of GLM, PCR, PLSR, SMS, Box-Cox, and ANNs.

3.4.5. Sparse Data and Other Issues. The dataset of SCM and hardware characteristics
may contain many zero observations. For example, the number of floating point op-
erations is zero for all integer-only kernels. When we consider sparse data in the in-
dependent variables, linear regression may be adversely affected by the disbalance
in the data, in extreme cases. Because the few nonzero observations in such extreme
cases do not provide sufficient information to have a meaningful effect in regression,
an easy solution is to omit those independent variables from the model. We utilize
a zero-threshold that lets Quipu omit those regressors that have less than a certain
amount of nonzero entries.

In the case of sparsity in the dependent variable, the problem is different as we
cannot simply remove this variable. As an example, consider the number of DSP
blocks in a Xilinx FPGA, which will not be present in many designs. [Welsh et al.
1996] proposed a multilevel approach to tackle this problem. Similarly, in Quipu, first,
a binomial model is generated that predicts the chance of a nonzero response. Then a
second model provides the expected response value. We discussed this in more detail
in Meeuws et al. [2011] and Meeuws [2012].

Apart from sparse data, it is important to determine the presence of any outliers.
Outliers are data points that are significantly different from the other data points.
It is not a good practice to remove outliers from datasets to produce better results,
unless there is a clear general explanation why these outliers exist. In this article, we
have omitted specific outliers in the case of Catapult-C, where global variables were
not detected, which resulted in unwanted and incorrect optimizations in the obtained
results.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 3, Publication date: May 2013.



�

�

�

�

�

�

�

�

Quipu: A Statistical Model for Predicting Hardware Resources 3:13

3.5. Model Evaluation

Cross-Validation (CV) is essential for validating the predictive quality of statistical
models. In this process, a part of the data is used for model calibration and another
part is used for validation. The simplest form of CV is Holdout Cross-Validation
[Kohavi 1995], where the dataset is divided into two subsets: one for training and one
for validation. In case only a small set of data points is available, this method has the
disadvantage that the training set may not be representative for the calibration set.
This leads to a huge variance in the reported error depending on the data points that
are selected for each set.

Another CV method is K-fold Cross-Validation [Kohavi 1995]. In this method, the
data is split in K subsets. Each subset is used as a validation set once, while the
remaining K − 1 subsets are used collectively as training set. In our work, we use the
10-Fold CV method, as suggested in Kohavi [1995] and Sheiner and Beal [1981].

In order to express the error of a prediction model, most approaches calculate the
Mean Absolute Percentage Error (MAPE) as follows:

MAPE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ . (7)

As we will see in Section 4, for example in Figure 3, individual percentage errors tend
to be larger when closer to zero. This observation is also known in other fields of re-
search [Guang et al. 1995]. In order to explain this, let us assume a constant variance
of the errors, as is the case for normally distributed data. In this case, if we consider ŷ
to have a constant error component εc, we see that the percentage errors tend to follow
an inverse relation: ∣∣∣∣yi − ŷi

yi

∣∣∣∣ =
∣∣∣∣yi − (yi + εc)

yi

∣∣∣∣ =
∣∣∣∣εc

yi

∣∣∣∣ . (8)

As a result, the MAPE will be adversely influenced by datasets with more relatively
small kernels. A more robust summary statistic is the Rooted Mean Squared Error,
which is not affected by large relative errors for small kernels. Indeed, the most com-
mon error summary statistic used in this type of CV is the tenfold CV Relative Rooted
Mean Squared Error of prediction (RMSEp%):

RMSEp% =
√

1
n

∑n
i=1(yi − ŷi)

2

1
n

∑n
i=1 yi

, (9)

where yi are the observed values and ŷi are the predicted values. This summary statis-
tic captures the overall predictive performance of our model. Nevertheless, in order
to provide a clear picture of the error behavior of our models, we also provide visual
characterizations of the error using histograms and plots of the relative error.

3.6. The Kernel Library and Tools

As shown in Figure 1(b), Quipu consists of a set of tools and a kernel library, which we
describe in the following.

Kernel Library. In order to generate sufficient data points for the modeling process,
Quipu gathers SCMs and hardware performance indicators from its extensive kernel
library. This is a database of 324 kernels from a wide variety of application domains,
contrary to many existing techniques, which use sets of tens of kernels at most. This
library is the main reason why Quipu can produce generally applicable models. As
we will see in Section 4.5, this high number of kernels allows for the generation of
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Table III.

Overview of the kernel library, the number of kernels and the performance in the generation of synthe-
sizable HDL for four C-to-HDL compilers. For a more elaborate description of the library, please refer
to Section 5.2 and Appendix A in [Meeuws 2012].

Domain Kernels Floating- DWARV Catapult-C LegUp C-to-Verilog
Point HDLa synth.b HDL synth. HDL synth. HDL synth.

Bio-informatics 8 - 6 6 6 6 7 7 1 1
Compression 16 - 13 13 9 9 14 14 8 8
Cryptography 80 - 78 77 71 65 67 65 31 31
Data Processing 14 - 12 12 13 12 14 14 7 7
DSP 24 10 24 18 23 22 15 14 10 10
ECC 16 - 16 16 15 12 14 14 5 5
Mathematics 70 32 69 54 57 57 33 33 26 26
Multimedia 65 23 65 59 61 60 40 40 31 31
Physics 21 14 14 6 10 7 7 7 2 2
Unclassified 10 2 9 5 6 6 6 5 4 4
Total 324 81 308 266 271 256 226 213 125 125

aThe number of kernels for which HDL was produced.
bThe number of HDL files that were synthesizable.

domain-specific models as well. For example, the 80 cryptography kernels or the 70
mathematical kernels can be the basis of domain-specific models.

The Quipu modeling approach contains several scripts that traverse the library.
These scripts contain the necessary hooks, where target tools can be inserted. Further-
more, similar scripts are provided for the synthesis of the generated HDL descriptions.
As described in step 1 to 3 of Section 3.2, these scripts need to be adjusted for a par-
ticular combination of a toolchain and a platform, so that hardware can be generated
for each kernel. An overview of the kernels in this library is provided in Table III.
This table lists both the number of kernels for each application domain and the HDL
generation capabilities of the target C-to-HDL tools that were employed in this work.
These capabilities are measured in the number of kernels that were successfully trans-
lated to HDL and synthesized. As a result, our kernel library can also be utilized for
benchmarking purposes.

Metrication Tool. The determination of all the SCMs described in Section 3.3 has
been implemented in the Quipu Metrication tool, which produces an XML file contain-
ing SCM measurements for each kernel. This tool is written as an engine in the CoSy
compiler system [ACE b.v. 2003], a comprehensive compiler that contains a large set
of optimizations and is easily extensible by writing engines that can be plugged into
the framework. Because our metrication engine operates on the IR of this compiler,
it is possible to use existing CoSy optimization engines to match the optimizations
that exist in the target tools. This adds additional flexibility to the Quipu modeling
approach. Although this tool is essential to the our approach, the SCMs may also
be useful within a Software Measurement framework that helps drive management
of software development processes. In contrast to approaches such as Oliveira et al.
[2010], where project, system, and process metrics are used, Quipu SCMs would relate
the project effort estimation to the characteristics of the source code itself. As such,
Quipu could be beneficial for example in estimating the effort of implementing an ex-
isting or partially implemented source code description to a target platform.

Hardware Measurement Tool. In order to gather the necessary hardware perfor-
mance indicators, we have developed the Quipu Hardware Measurement tool. This
tool consists of scripts that parse the output of different synthesis toolchains to gather

ACM Transactions on Reconfigurable Technology and Systems, Vol. 6, No. 1, Article 3, Publication date: May 2013.



�

�

�

�

�

�

�

�

Quipu: A Statistical Model for Predicting Hardware Resources 3:15

the necessary data. For some toolchains, this is as simple as finding the right data in
the report files, but, for others, this is not trivial. For example, in order to count the
number of wires in Xilinx designs, we created an XDL parsing tool that extracts this
and other relevant data from the XDL file.

Modeling Scripts and Prediction Tool. The gathered SCMs and hardware measure-
ments are utilized by a set of modeling scripts that automatically evaluates the differ-
ent modeling techniques described in Section 3.4. The output model XML file can be
used in the Hardware Estimation, where, based on SCM inputs, the Quipu Prediction
tool provides estimates of any required hardware aspects. All intermediate files in the
Hardware Estimation are saved in XML format for easy integration. Additionally, the
results of execution and memory profiling tools, for example, might be integrated as
depicted in Figure 1(b).

4. QUIPU PREDICTION: EXPERIMENTAL EVALUATION

In this section, we first present a case study in retargeting the Quipu modeling
approach to the combination of a new toolchain and a new platform. After that,
we present the evaluation of prediction models for four different combinations of
toolchains and platforms, and for different domains.

4.1. Experimental Setup

In the context of our experiments, we used the following four combinations of C-to-
HDL compilers, synthesis toolchains, and platforms.

— DWARV/Xilinx. This combination consists of the DWARV C-to-VHDL compiler
[Yankova et al. 2007] from the DWB, the Xilinx ISE 13.3 synthesis tools, and the
Virtex 5 FX-200T FPGA. This FPGA consists of 30,720 slices. The HDL genera-
tion took about 2 minutes. We have synthesized the designs for speedup using the
following optimization settings: -opt_mode Speed -opt_level 2. The designs
were fully mapped and routed.

— Catapult-C/Synopsys. This combination uses the Catapult-C High Level Synthe-
sis Compiler University Edition [Morris 2004] together with the Synopsys Design
Compiler version F-2011 targeting 45nm ASICs using the NanGate FreePDK45
Generic Open Cell Library [Nangate Inc.]. Catapult-C was run with standard op-
timization levels targeting a 200MHz clock speed without any kernel-specific set-
tings. HDL Generation took around 8 hours.

— LegUp/Synopsys. This combination consists of the LegUp C-to-Verilog compiler [Ca-
nis et al. 2011] from the University of Toronto and the same Synopsys setup as the
Catapult-C/Synopsys combination.. The LegUp compiler was executed using the
process described in the documentation with the notable change of the clang opti-
mization flag to -O2. HDL generation took around 8 hours. We used medium effort
levels for any synthesis optimizations and employed full placement and routing.

— C-to-Verilog/Altera. This combination consists of the C-to-Verilog compiler from the
Haifa University [Ben-Asher and Rotem 2008, 2010], the Altera Quartus 10.0 syn-
thesis tools, and the Stratix IV EP4SE820 FPGA. This FPGA consists of 325,220
Adaptive Logic Modules (ALMs). The HDL generation took around 45 minutes.
The designs were synthesized using default effort levels and were fully mapped
and routed.

All designs were synthesized on an 8-core 2.67GHz Intel Xeon X5550 machine with
32GB of ram running a 64-bit version of CentOS 5.7 Linux using around 6 parallel
syntheses. More parallel sessions would lead to memory problems. The individual tools
were executed with multithreading, where available.
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The SCMs were determined using our Quipu Metrication tool. If not otherwise spec-
ified, the SCMs were determined utilizing the -O1 optimization flag of the cosy com-
piler. This process takes 6.5s to complete for the 324 kernels in the library using no
optimizations, 15.1s using optimization level 1, and 34.1s using optimization level 2.
It should be noted that SCMs for an additional set of 244 functions not marked as ker-
nels were also determined as a side-effect, yielding an average prediction speed of 87.4
kernels per second. This number increases when predictions for multiple platforms are
required, as the source code does not have to be processed again.

For modeling, we used the Quipu modeling scripts without any manual tweaking,
unless otherwise specified. The modeling process was executed on the same 8-core
machine mentioned before. Upto 6 parallel LR models were generated in parallel. ANN
training used 14 parallel threads to utilize the hyper-threading capability of the cores.

4.2. Retargeting Quipu to LegUp/Synopsys: A Walkthrough.

To show the generality of the Quipu modeling approach, we describe here the process
of retargeting the Quipu models to the combination of a new toolchain and a new
platform. For this purpose, we consider the LegUp C-to-Verilog compiler together with
the Synopsys Design Compiler targeting the NanGate Open Cell Library. In order to
generate models for this new combination of tools, we followed the procedure described
in the next paragraphs. For different combinations of toolchains and platforms, an
equivalent approach can be followed, possibly skipping some steps.

Preparation: Understanding the new toolchain. In order to retarget Quipu, it is es-
sential to first understand the new tools and platform. In the case of LegUp/Synopsys,
it was relatively straightforward to install and start generating Verilog and synthe-
sizing designs. We believe an experienced user can perform this task in one or two
days.

Step 1: Kernel library customization. As we need hardware results for all kernels in
the kernel library, we changed the scripts to generate Verilog automatically, starting
from the manual steps learned during the preparation stage. The main difficulty was to
properly isolate the functions in the library, as the LegUp compiler compiles complete
files to a single Verilog file. Using the llvm − extract command in the LLVM compiler,
we were able to achieve the required behavior. This step was performed in one day.

Step 2: HDL generation. After the appropriate scripts were in place, the generation
of Verilog was performed in less than an hour. The LegUp compiler compiled 226 ker-
nels.

Step 3: HDL synthesis. We determined the name of the top-level designs in the Ver-
ilog files and used our experience from the preparation stage to write a TCL script for
the Synopsys design compiler. We were able to start the synthesis of the kernel library
in less than an hour. Afterwards, the synthesis of the generated Verilog took 2 hours.

Step 4: Data extraction. With all kernels synthesized, we extracted the SCMs from
the ANSI-C sources and hardware data from the synthesis results. Extracting the
SCMs from the ANSI-C source code is especially important if code changes have been
made or in case the Quipu Metrication tool should take into account specific optimiza-
tions. It is important to perform a sanity check on the hardware data, as it can be the
case that faulty HDL code resulted in zero-sized designs or in other problematic data.
This process took 17s to complete for the 324 kernels in the library using the -O1 flag.

Step 5: Statistical modeling. Based on the extracted data, we performed the semi-
automatic statistical modeling procedure in the Quipu modeling approach. First, a
quick modeling is performed, where ANNs are omitted. This takes a few minutes. We
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repeated this procedure using several SCMs sets for different optimization levels. Fur-
thermore, we evaluated several values for the zero-threshold parameter, which omits
SCMs that have a certain percentage of zeroes in the dataset. Using the best obtained
threshold value, we performed the full modeling process, which took around 2 hours
for the estimation model for the total area reported by Synopsys. Although, the results
were sufficient, the set of SCMs can be further refined by manually investigating the
data to find the SCMs that demonstrate a clear correlation with the total area. For
this purpose, we may visually inspect scatterplots for each SCM against the total area.
However, we did not manually refine the model in this way in this article. Finally,
we executed the modeling procedure using this refined set to obtain the final Quipu
prediction model. The whole modeling process took one day.

The process just described shows how the Quipu modeling approach can be retar-
geted to a new platform and toolchain within a few days. In case of poor compilers, or
extensive compiler optimizations that are not accounted for by the Quipu Metrication
tool, this process can take a few additional days, in order to adjust the kernel library
code or to implement the necessary optimizations in the Quipu Metrication tool.

4.3. C-to-HDL Compiler Benchmarking

As listed in Table III, the evaluated C-to-HDL compilers are able to translate different
numbers of ANSI-C inputs to HDL descriptions. Furthermore, some of these descrip-
tions are not synthesizable. More precisely, we observe that DWARV is able to generate
synthesizable VHDL for 82.1% of the kernels, Catapult-C for 79.0%, LegUp for 65.7%,4
and, finally, C-to-Verilog performs the worst and can generate synthesizable VHDL
only for 38.6% of the kernels. In this respect, we consider our kernel library to also be
a useful benchmark in the evaluation of different C-to-HDL compilers. Especially, it
allows to compare the capabilites of these compilers in accepting ANSI-C constructs,
while still generating syntactically correct HDL code.

4.4. Domain-Agnostic Modeling

In Figures 2 and 3, we plotted the prediction quality and the error distribution
for each Quipu model generated for one of the four target toolchains, respectively.
Figures 2(a)–(d) depict the prediction quality of the domain-agnostic models by
relating the predicted area metric to the actual area metric. The line y = x denotes
the case where the model has perfect predictions. Each dot indicates the result for
one kernel in the library. The models in these figures are domain-agnostic, which
means that all the available domains were taken into account to generate the model.
In Figures 3(a)–(d), we see the error distributions for these models according to the
observed values and according to the probability density. An error value of 1 denotes
an error of 100%. It can be seen that the three domain-agnostic models exhibit very
similar behaviour in these plots. This is more evident from Table IV, where we see
that the errors for the domain-agnostic models range from 20.3% to 39.5%.5 This table
further includes the evaluation criteria from Section 3.5 and the details on what type
of models have been selected by our modeling scripts as described in Section 3.4. We
have also included in this table the error results from Cilardo et al. [2010], which
targeted Xilinx FPGAs. This model performs worse compared to the Quipu model

4LegUp does not support floating point operations and, as such, the performance is degraded. Integer only
performance was 87.7%.
5We note that the error for the C-to-Verilog/Altera case is higher than reported in Meeuws et al. [2011]. This
is partly because of the extra number of kernels used in generating the model, that is, 125 instead of 118.
Additionally, the website used to generate the Verilog code seems to have changed the code generation.
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Fig. 2. The prediction performance of different Quipu models generated for different tools and platforms.

Table IV.

Overview of the model performance of several Quipu prediction models for different toolchains, platforms, and domains.

D
om

ai
n

-
ag

n
os

ti
c

Model Measure RMSEp% MAPE Kernels Model type

[Cilardo et al. 2010] slices - 31% 3 OLSR
Dwarv/Xilinx (XST)a slices 29.9% 42.1% 266 ANN (3-11-1b)
Dwarv/Xilinx (SCM) slices 23.8% 52.6% 266 GLM (normal)
Altera/C-to-Verilog ALMs 23.9% 36.2% 125 ANN (25-1-1)
Legup/Synopsys total area 20.3% 61.8% 213 ANN (26-7-1)
Catapult-C/Synopsys total area 39.5% 56.6% 256 ANN (39-9-1)

D
om

ai
n

-
sp

ec
ifi

c

Model Measure RMSEp% (agnostic)c RMSEp% (specific)d MAPE Kernels Model type

Cryptography slices 6.7% 2.4% 5.5% 74 GLM (poisson)
Multimedia slices 36.1% 29.2% 8.6% 59 GLM (poisson)
No Control Flow latency - 9.8% 11.1% 57 GLM (gamma)

a Statistical model based on XST high level estimates.
b Number of nodes in the input–, hidden–, and output layer.

c Same model as Dwarv/Xilinx (SCM).
d RMSEp% for the domain-specific model.

targeting the Xilinx platform. Furthermore, although Cilardo et al. use a set of 200
synthetic kernels in their approach, the validation is based on only 3 real kernels.

As an additional comparison, we generated a linear model based on the high level
estimates provided by the Xilinx XST 13.3 high level synthesis tool. This model
exhibits errors that are above the error reported for our DWARV/Xilinx model. It
is interesting that our high-level estimates even outperform models that use the
Xilinx XST estimates as parameters when we consider the RMSEp%. A possible
explanation is that XST is independent of specific devices,6 and does not take into
account mapping, placement, and routing. Instead, Quipu models are generated using

6Although XST is independent of specific devices, it is not independent of device families.
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Fig. 3. The error distribution of different Quipu models generated for different tools and platforms.

the results after placement and routing has been performed, making it possible to
capture the effect of these design steps.

Notice that the errors increase as the size of the kernel gets closer to zero. This
holds true for all four cases. The reason for this behavior is that there seems to be a
fixed component in the variance, which becomes more significant when the component
is smaller. When we consider that the used regression techniques aim to minimize
the absolute error, this error will be normally distributed when the number of data
points becomes large. Therefore, it makes sense for the percentage errors to have an
inverse relation with the measured values. We plotted the standard deviation σ as a
percentage of the measured values in the plot for comparison, indicated by the dashed
red line. The main outliers visible in the graph also exist in the set of smaller kernels,
several of these outliers also contain mostly bitwise operators and constant shifts. We
point out that our models are not accurate for very small kernels, especially if they
mostly consist of bitwise operators and constant shifts.

Another important observation is that the histograms and probability density
trends, in Figure 3, show that the errors are not normally distributed. In fact, the
distributions are skewed towards zero. This means that traditional error statistics do
not capture wholly the error behavior of the model. Instead, these histograms better
characterize the error behavior of our models. Another effect of these nonnormal error
distributions is that statistical significance tests should not be used as they assume
the normal distribution.

In contrast with the other cases, the Catapult-C model exhibits a somewhat larger
error. The main reason for this behavior is the level of optimizations that is performed
by this compiler. More specifically, Catapult-C tries to allocate memory buffers for
any input pointers. Starting from a buffer size of 1024 elements for each pointer, it
subsequently tries to reduce this size. However, many kernels in the database have
unbounded loops, so pointer sizes are not always known. These kernels are then
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Fig. 4. The prediction performance of the number of cycles by Quipu models generated for the
DWARV/Xilinx/Virtex 5 case, specifically for kernels without Control Flow.

fixed at the arbitrary number of 1024 elements. Because the source code does not
have a relation with this externally provided threshold, the prediction performance is
degraded. Indeed, when we generated a model for the 113 kernels that were not fixed
to 1024 elements, we obtained an RMSEp% of 23.9%. An interesting feature of the
error histogram in Figure 3 for Catapult-C is the high number of kernels with an error
around 1.0 (or 100%). This relates to a relatively high number of negative predictions
by the underlying model, which are truncated to 0 during prediction. A prediction of
0 always relates to an error of 100%.

4.5. Domain-Specific Modeling

In order to show the domain-specific modeling of our approach, we have generated
three domain-specific models: one for Cryptography, one for Multimedia, and one with-
out control constructs, as depicted in Figures 2(e)–(f), 3(e)–(f), and 4(a)–(b). As can be
seen in Table IV, the errors of the first two models are well below the error for the
domain-agnostic model, if we compare to the error of the domain-agnostic model for
the domain subset. In the case of Cryptography, the error is reduced from 6.7% to only
2.4% and, in the case of Multimedia, it is reduced from 36.1% to 29.2%. Observe that
the error for the Multimedia domain using the domain-agnostic model is even larger
than the error for the whole dataset.

The small errors for these domains can be explained by the specific characteristics of
these two domains. The Cryptography domain consists of highly regular code that con-
tains repeated patterns of additions, shifts, bitwise operators, and array accesses. In
addition, this domain contains no floating point operations. Furthermore, as the ker-
nels in this domain are very large, the small constant effect that adversely influences
the error for small kernels does not become a problem. The Multimedia domain, in
contrast, contains many image, video, and sound algorithms. These algorithms often
process data in blocks, which implies a certain level of regularity among the kernels in
this domain.

Apart from generating domain-specific models based on the application domain of
each kernel, the SCMs in the Quipu modeling approach allow other subset models
to be generated as well. For example, we have generated a model for kernels without
branches, as depicted in Figure 4. This particular model predicts the latency in number
of cycles for each kernel with an error of only 9.8%.
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Table V. Results of the Q2 Profiling Framework and the Corresponding Partitioning for the Virtex-5 FX-200T

Application Number of kernels Area (slices) Comm. Red.a Speedup
Total Mapped Prediction Actual Error(%)

MELP 59 4 6534 6043 8.1% 57.1% 1.30x
CED 12 4 5381 7307 26.4% 22.7% 2.92x
N-Body 10 4 11730 8209 30.0% 42.9% n/a

aEstimation Communication Reduction as reported by QUAD.

4.6. Model Utilization

In order to show how Quipu prediction models can be utilized in a real scenario, we
present some results of the Q2 profiling framework in Table V. This table provides
a summary of the results for three well-known applications. The first application is
the Mixed Excitation Linear Prediction (MELP) vocoder [Supplee 1997], used mainly
for secure voice in radio devices. MELP uses extensive look-up tables and models of
the human voice to extract and regenerate speech and, as such, it is a computation-
intensive application. Canny Edge Detection (CED) [Canny 1986] is a well-known edge
detection algorithm, which outperforms many other edge detection methods. N-Body
[Hut et al. 1995] is a widely used technique to investigate the evolution of particles in
various fields of science, such as physics or astronomy. All three of these applications
are computation-intensive and can benefit from mapping parts of the application into
reconfigurable fabrics.

The goal of the Q2profiling framework is to provide the necessary profiling informa-
tion in order to efficiently partition the application into hardware and software. Based
on hot-spots in the program, a preliminary partitioning can be proposed by moving
the top number of hot-spots to the hardware. However, with limited resources avail-
able, it is important to predict the area consumption, so that we can evaluate different
partitionings. The Virtex 5 model utilized for the predictions in Table V indicates, for
example, that all proposed mappings would fit on a Virtex 5 FX-200T, but the pro-
posed mapping for N-Body would not fit on a Virtex 5 FX-30T, which contains only
5120 slices. We see that Q2 was able to propose a partitioning that yields in commu-
nication reductions and speedups. This partitioning was determined, partly, using the
Quipu prediction models. The accuracy of the predictions for each of the applications
is also somewhat different. The small error of the MELP application, seems due to the
many relatively small kernels that were mapped, while the large error of N-Body is
most probably related to the heavy use of floating point kernels, which are underrep-
resented in our Kernel Library.

4.7. Comparison with Other Approaches

As mentioned in Section 2, one of the main issues of existing prediction approaches
is the confidence that can be attributed to the reported error. In Table VI, we have
listed the error rates and the sizes of the validation sets for the approaches described
in Section 2. From this table, it is evident that apart from Schumacher et al. [2008]
and Quipu, none of the other approaches use a sizeable validation set to substanti-
ate their claims. Even though, approaches such as [Cilardo et al. 2010] feature a set
of up to 200 kernels, these are not used for validation purposes, but for model gen-
eration. In contrast, we utilize a library of 324 kernels to generate our models and,
subsequently, utilize up to 266 of those kernels for validation purposes by using ten-
fold cross-validation. These 266 kernels were the maximum number of kernels that
could be translated to synthesizable HDL using the C-to-HDL compilers at our dis-
posal. Tenfold cross-validation splits the data in 10 sets which are used separately
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Table VI. Overview of the Performance and Validation Quality of the Existing Estimation
Approaches Including Quipu

No regression or no HLL (C) Regression and HLL (C)
Reference Errora Sizeb Reference Errora Sizeb

[Enzler et al. 2000] 12% 6 [So et al. 2003] - 5
[Lakshmi et al. 2011] 4% < 13 [Holzer and Rupp 2005] 39.3% 9
[Schumacher et al. 2008] 21.9% 90 [Degryse et al. 2008] 7.14% 12
[Nayak et al. 2002] 16% 7 [Kulkarni et al. 2006] 5.3% 4
[Brandolese et al. 2004] 36.8% 5 [Cilardo et al. 2010] 31.3% 3
[Bilavarn et al. 2006] 22% 20 Quipu 23.8% 266
[Deng et al. 2008] 8.2% 12
[Chuong et al. 2009] 10.3% 10

aError in the number of slices or comparable area metric.
bThe number of kernels in the validation set.

as validation sets, while the corresponding remaining sets are used to generate the
prediction model used in validation.

Interestingly, the only other approach that features a substantial validation set,
Schumacher et al. [2008] also present an error rate of around 21.9%. However, that
approach targets VHDL and not ANSI-C and it is limited to the Xilinx toolchains and
platforms. An important question is how the other approaches perform with larger val-
idation sets. In addition, most related works did not specify the exact method that was
used to determine the error. We assume that in most cases MAPE is used for reporting
the error.

5. CONCLUSIONS

In this article, we have presented the extensive Quipu quantitative hardware predic-
tion modeling approach that targets the early stages of HW/SW codesign. This ap-
proach consists of a set of tools, a library of kernels, and a modeling methodology,
which together provide valuable information for identifying resource-intensive parts
of an application. This way, it helps with the evaluation of different mapping options,
or for guiding developers in merging and splitting, among other things. We have shown
how this approach is able to generate adequate prediction models for several hardware
measures targeting a number of different platforms in the reconfigurable and ASIC
domains. Furthermore, we have shown how our approach can semi-automatically gen-
erate models for a new toolchain and/or platform within a few days. This is essential
when new architectures and tools become available and need to be quickly integrated
in the design process in order to keep the time-to-market as low as possible.

In contrast to most of the existing approaches, we provide a substantial validation
set of 324 kernels from well-known applications from many different application do-
mains. This provides the much needed confidence about the reported error of our gener-
ated models. Furthermore, Quipu enables us to generate prediction models for specific
application domains, which show an increased accuracy. With errors between 4.6%
and 39.5%, measured using the RMSEp%, our models are useful in the early stages
of HW/SW codesign. In these phases, it is essential to quickly obtain sufficient insight
into the hardware characteristics in order to, for example, prune the design space, fo-
cus the effort within manual hardware design, or generate preliminary partitionings
and cost estimates.

Although our approach provides many essential hardware estimates, there is still
a clear need for estimates of more dynamic characteristics, such as speedup and
dynamic power, especially in the early stages of the design, when it is not feasible
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to generate and simulate hardware for multiple platforms. To this purpose, we are
currently working on incorporating dynamic SCMs and run-time prediction, which
enable these kinds of estimations.
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