
Separable 2D Convolution with Polymorphic

Register Files

Cătălin B. Ciobanu1,2 and Georgi N. Gaydadjiev1,2

1 Computer Engineering Laboratory,
EEMCS, Delft University of Technology,

The Netherlands
{c.b.ciobanu,g.n.gaydadjiev}@tudelft.nl

2 Department of Computer Science and Engineering
Chalmers University of Technology,

Sweden
{catalin,georgig}@chalmers.se

Abstract. This paper studies the performance of separable 2D convo-
lution on multi-lane Polymorphic Register Files (PRFs). We present a
matrix transposition algorithm optimized for PRFs, and a 2D vector-
ized convolution algorithm which avoids strided memory accesses. We
compare the throughput of our PRF to the nVidia Tesla C2050 GPU.
The results show that even in bandwidth constrained systems, multi-lane
PRFs can outperform the GPU for 9× 9 or larger mask sizes.

1 Introduction

Processor designers consider various options to utilize the steadily increasing
number of transistors of each new semiconductor technology generation [1]. Fur-
ther increases of processor clock frequencies are infeasible, as current technology
faces severe thermal and power constraints. In recent years, Chip Multiproces-
sor (CMP) designs became mainstream, along with accelerators targeting spe-
cific workloads (e.g., hardware support for encryption algorithms [2] and various
Single Instruction Multiple Data Extensions (SIMD) [3] to exploit data level par-
allelism). Best performance is typically obtained by balancing single threaded
performance and multi-processor scalability. When determining the characteris-
tics of a new processor, the potential workloads are carefully examined. However,
new, yet unknown workloads will appear in the future, making it close to impossi-
ble to provide a single solution. One possibility is to use reconfigurable hardware
and runtime partial reconfiguration; ASIC solutions, however, are typically used
to obtain the best performance.

When targeting vector architectures such as IBM 370 [4], General Purpose
Processors (GPPs) with SIMD extensions such as Altivec [5] or Heterogeneous
Multicores as the Cell Broadband Engine [6], the programs need to be optimized
according to the width and number of the Vector Registers. In all these systems,
the available register file storage is divided in a fixed number of equally sized
registers. When a new design changes either the number or the width of the

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 317–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

318 C.B. Ciobanu and G.N. Gaydadjiev

registers, software compatibility is broken and costly software adaptation effort
is usually required. As part of the Scalable computer ARChitecture (SARC) [7],
the Polymorphic Register File (PRF) [8] has been proposed to provide a relaxed
way of programming high performance vector applications, compatible with both
FPGA [9] and ASIC [10] technologies. The PRF is designed to be customizable
to the various data structures, enabling the programmer to focus on the code
functionality instead of describing complex, platform specific, data operations
and transfers, while maintaining high performance levels. Contrary to the ap-
proach used in previous vector architectures, the PRF is able to dynamically
divide the available register storage into multidimensional registers of arbitrary
shapes and sizes at runtime. PRFs have been shown to be suitable for compu-
tationally intensive workloads such as the Conjugate Gradient (CG) method,
Floyd, and dense matrix multiplication [8,7]. It was also suggested that PRFs
can potentially save area and power in state of the art many-core systems [11].
The benefits of two-dimensional (2D) PRFs are: i) improved storage efficiency,
as the number of registers, as well as their dimensions and sizes are dynamically
customized to the workload requirements, and ii) performance gain, by greatly
reducing the number of committed instructions.

This paper studies the implementation of separable 2D convolutions using
PRFs. More specifically, the main contributions of this paper are:

– A vectorized matrix transposition algorithm, optimized for PRFs;
– A vectorized separable 2D convolution algorithm utilizing our transposition,
avoiding strided memory accesses while accessing column-wise input data;

– Performance evaluation of the separable 2D convolution kernel, compar-
ing the throughput with the nVidia Tesla C2050 Graphics Processing Unit
(GPU). Starting from mask sizes of 9 × 9 elements, the multi-lane PRFs
outperform the GPU.

The remainder of this paper is organized as follows: the background information
and related work are presented in Section 2. The experimental setup is introduced
in Section 3. The 2D separable convolution kernel is introduced in Section 4.
Our vectorized transposition and 2D convolution algorithms are described in
Section 5, and the experimental results are studied in Section 6. Finally, Section 7
concludes the paper.

2 Background and Related Work

A PRF is a parameterizable register file, logically reorganized under software
control, by the system / application programmer or by the runtime system,
to support multiple register dimensions and sizes simultaneously [8]. Figure 1
provides an example of a 2D PRF of N = 9 by M = 12 elements, containing
14 registers defined by the Special Purpose Registers (SPR) contents. For each
vector register it is necessary to specify the location of the upper left corner
(BASE), the shape of the register (REctangular, Main Diagonal or Secondary
Diagonal), the dimensions (Horizontal and Vertical Lengths) and the data type

Separable 2D Convolution with Polymorphic Register Files 319

HL

R0

0

4

R0

RN

1

0

0

-

3RE

- -
RFORG - RF Organization SPR

R BASE SHAPE VLD

Available
space for

more
registers

7

2

3

0

8

-

3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

R5

R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8

R0 1 0 4RE 2
R1 1 2 4RE 6
R2 1 48 1RE 5
R3 1 60 4RE 4
R4 1 0 4RE 8
R5 1 4 4RE 4
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8

R6 1 2 1RE 6
R7 1 14 1RE 6
R8 1 26 1RE 6
R9 1 38 1RE 6

R10 1 60 4RE 1
R11 1 61 4RE 1
R0 1 0 3RE 8R12 1 62 4RE 1
R0 1 0 3RE 8R13 1 63 4RE 1

4

5

5 98

R4

6 1110
DTYPE

8

-

8
8
8
8
8

FP32
FP32
FP32
FP32
FP32
FP32

8
8
8
8
8
8

FP32
FP32
FP32
FP32
FP32
FP32

8FP32
8FP32

Fig. 1. The Polymorphic Register File (First iteration), N=9, M=12

(DTYPE) - INTeger 8/16/32/64 bit or Floating Point 32/64 bit. The benefits
of the PRF are:

– Potential performance gain, by greatly reducing the number of committed
instructions, and increasing the number of data elements processed with a
single instruction using multi-axis vectorization;

– Improved storage efficiency, as the number of vector registers, their dimen-
sions and sizes are dynamically adjusted during runtime according to the
workload requirements, optimizing the use of the available register storage;

– Reduced static code footprint, as fewer, higher level instructions are used
to describe the data processing. The same binary instructions may be used
regardless of the shapes, dimensions and data types of the vector registers.

Previous works indicate that by employing PRFs, the number of committed
instructions may be reduced by up to three orders of magnitude [8]. Compared to
the Cell processor, PRFs decrease the number of instructions for a customized,
high performance dense matrix multiplication by up to 35 times [7] and improve
performance for Floyd and sparse matrix vector multiplication [8]. A CG case
study [11] evaluated the scalability of up to 256 PRF based accelerators in a
heterogenous multi-core architecture, with two orders of magnitude performance
improvements. Furthermore, potential power and area savings were shown by
employing fewer PRF cores compared to a Cell processors system.

The mathematical foundations for multi-lane PRF hardware implementations,
as well as synthesis results for FPGA and ASIC technologies have been presented
in [9] and [10]. The PRF data is stored using a 2D matrix of memory modules
with p rows and q columns, enabling the efficient use of up to p ·q parallel vector
lanes [12]. As in those papers, here we will use ”×” to refer to a 2D matrix, and
”·” to denote multiplication. Five parallel access schemes have been considered
for the hardware implementation of the PRF: the single-view Rectangle Only
(ReO) scheme, which supports conflict free accesses shaped as p× q rectangles,

320 C.B. Ciobanu and G.N. Gaydadjiev

suggested in [13], and a set of four multi-view schemes, supporting conflict free
access to the most common vector operations for scientific and multimedia ap-
plications [9]: 1) Rectangle Row (ReRo): p × q rectangle, p · q row, p · q main
diagonals if p and q+1 and co-prime, p · q secondary diagonals if p and q− 1 are
co-prime; 2) Rectangle Column (ReCo): p× q rectangle, p · q column, p · q main
diagonals if p + 1 and q are co-prime, p · q secondary diagonals if p − 1 and q
are co-prime; 3) Row Column (RoCo): p · q row, p · q column, aligned (i%p = 0
or j%q = 0) p× q rectangle; 4) Rectangle Transposed Rectangle (ReTr): p× q,
q × p rectangles if p%q = 0 or q%p = 0. Using 90nm ASIC technology, the PRF
clock frequency varies between 500MHz and 970MHz for storage sizes of up to
512KB and up to 64 vector lanes. Estimated power consumption is also within
reasonable limits, up to 8.7W dynamic and 276mW leakage [10].

Related Work: The efficient processing of multidimensional matrices has been
targeted by other architectures as well. One approach is to use a memory to
memory architecture, such as the Burrows Scientific Processor (BSP) [14]. Be-
ing optimized for executing Fortran code, the ISA composed of high level vec-
tor instructions with a large number of parameters. The arithmetic units were
equipped with 10 registers which are not directly accessible by the program-
mer. The Polymorphic register file also creates the premises for a high level ISA,
but can reuse data directly within the register file. The Complex Streamed In-
structions (CSI) [15] approach did not make use of data registers. CSI allows
the processing of 2D data streams of arbitrary length, but requires data caches
to benefit from data locality. Our approach suggests the register file as a cost-
effective alternative of high speed data caches.

The Vector Register Windows (VRW) [16] concept allows grouping of consec-
utive vector registers in a 2D window. However, one of the dimensions is fixed,
contrary to our proposal. The Matrix Oriented Multimedia (MOM) [17] also
uses a 2D register file, but with a fixed number of registers which used sub-
word parallelism in order to store up to 16x8 elements. The PRF also supports
sub-word level parallelism, but doesn’t restrict the number or shapes of the two
dimensional registers. A Modified MMX (MMMX) [18] supports 8 multimedia
registers, each 96 bits wide, with matrix operations limited to only loads and
stores.

The Register Pointer Architecture(RPA) [19] extends scalar processors by
adding two additional register files - Dereferencible Register File (DRF) and
the Register Pointers (RP). The DRF provides the storage space, while the RP
provide indirect access to the DRF. The PRF also uses indirect accessing to a
dedicated register file, but the RPA maps scalar registers, while in our proposal
each indirection register points to a matrix, being more suitable for vectors.

In order to adjust the number of registers and the total size of the physical
register file in a VLIW, FPGA partial reconfiguration is used in [20]. Our ap-
proach assumes fixed physical register file size, but at a higher level logical view,
offers variable fragmentation of the storage space, eliminating many overhead
instructions and costly partial reconfigurations, potentially improving perfor-
mance. While partial reconfiguration is only available in FPGAs, the PRF does

Separable 2D Convolution with Polymorphic Register Files 321

not rely on any specific hardware technology, therefore it can be successfully
implemented in both ASICs and FPGAs.

Accelerators for 2D convolutions have been previously implemented in recon-
figurable technology [21], as well as bit level [22] and defect tolerant [23] systolic
arrays in ASIC.

3 Experimental Setup

We use the simulation infrastructure introduced in [8], which consists of a cycle
accurate simulator written in Unisim [24], an extension of SystemC. The PRF is
implemented as part of the SARC Scientific Vector Accelerator (SVA), a loosely
coupled processor, controlled by a General Purpose Processor (GPP). The exper-
imental results take into consideration the communication between the GPP and
the SVA, which is performed by using a number of exchange registers, similar to
the Molen processor [25]. We also consider the overhead instructions required to
reconfigure the Polymorphic Registers. The separable 2D convolutions are exe-
cuted entirely on the SVA. Parallel execution between the GPP and the SVA is
not considered. The SVA cannot directly accesses the main memory - it can only
process data from its Local Store (LS), similar to the Cell Synergistic Processor
Units (SPU) [6]. We assume that all input data is present in the Local Store
when the SVA starts processing, a situation that can be practically achieved
by using DMA transfers and double buffering. Furthermore, we assume that all
PRF configurations have the same clock frequency, regardless of the number of
vector lanes. Therefore, the experimental results represent an upper bound with
respect to performance. A detailed description of the simulation environment is
available in [8].

The SVA sends the load and store requests to a Local Store Controller (LSC).
While in [8], the LSC was able to handle complex memory requests such as
2D and strided accesses, in this work we assume a more realistic scenario: only
1D contiguous vector loads and stores are supported. Therefore, a simple multi-
banked Local Store which uses low order interleaving can provide sufficient band-
width to the PRF. In our experiments, we set the latency of the LS to 11 cycles,
taking into account the overhead incurred by the 1D vector memory accesses,
and the bandwidth between the SVA and the LS to 16 bytes, equal to the bus
width used in the Cell processor between the SPU and the LS.

4 Separable 2D Convolution

In digital signal processing, each output of the convolution is computed as a
weighted sum of neighbouring data items. The coefficients of the products are
defined by a mask (also known as the convolution kernel), which is used for all
elements of the input array. Intuitively, convolution can be viewed as a blending
operation between the input signal and the mask. Because there are no data
dependencies, all output elements can be computed in parallel.

322 C.B. Ciobanu and G.N. Gaydadjiev

The dimensions of a convolution mask are usually odd, making it possible to
position the output element in the middle of the mask. For example, considering
a 6 element 1D input I = [20 21 22 23 24 25] and a 5 element mask M = [1 2 3 4 5].
The 1D convolution output corresponding to the 3rd input (22) is 1 · 20 + 2 ·
21 + 3 · 22 + 4 · 23 + 5 · 24 = 340. Similarly, the output corresponding to the
4th input (23) is obtained by shifting the mask by one position to the right:
1 · 21 + 2 · 21 + 3 · 23+ 4 · 24 + 5 · 25 = 355.

If the same convolution algorithm is used to for the elements close to the
edges of the input, the mask should be applied to elements outside the input
array (to the left of the first element, and to the right of the last element of
the input). For the rest of this paper we will refer to those elements as ”halo”
elements. In practice, a convention is made for a default value for halo elements.
If we consider the halo elements to be 0, the output corresponding to the 5th
input (24) is 1 · 22 + 2 · 23 + 3 · 24+ 4 · 25 + 4 · 25 + 5 · 0 = 240.

In the case of 2D convolutions, both the input data as well as the mask are 2D
matrices. Assuming the 2D mask has MASK V rows and MASK H columns,
the number of multiplications required to compute one output element using
for 2D convolution is MASK V ·MASK H. Separable 2D convolutions (e.g.,
the Sobel operator) can be computed as two 1D convolutions on the same data,
requiring only MASK V+MASK H multiplications for each output element.

For example [26], the 2D convolution
[−1 0 1
−2 0 2
−1 0 1

]
is equivalent to first applying[

1
2
1

]
and then [−1 0 1]. In this work, we will focus on accelerating separable 2D

convolutions.
Separable 2D convolutions consist of two data dependent steps: a row-wise

1D convolution on the input matrix followed by a column-wise 1D convolution.
The column-wise access involves strided memory accesses, which may degrade
performance due to bank conflicts in multi-bank memory systems. In order to
avoid the strided memory accesses, we propose to transpose outputs of the 1D
transpositions while processing the data. This can be performed conflict free by
using our RoCo memory scheme introduced in Section 2.

5 Vectorizing the 2D Convolution

In this Section, we first introduce the conflict free transposition algorithm. Then,
we propose a 2D vectorized separable convolution algorithm for PRFs.

5.1 Conflict Free Transposition

In Figure 1, the dotted angled arrow is used to highlight the size of overlapping
registers: R1, R4 and R5 overlap with R 6,7,8, 9, and R3 with R 10,11,12, 13.
A block of input data of VSIZE = 4 rows and HSIZE = 6 columns is loaded
from the LS in register R1, and the convolution result is stored in R3.

In order to perform the transposition, the data is loaded in the PRF into row
registers, and stored from column registers. The input data consists of VSIZE

Separable 2D Convolution with Polymorphic Register Files 323

R0

0

4

Available
space for

more
registers

7

2

3

0 3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

R5

4

5

5 98
R4

6

R14 R15

10 11

(a) Main iterations

R0

0

4

Available
space for

more
registers

7

2

3

0 3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

4

5

5 98
R4

6

R14 R15

10 11

R5

R16 R17

(b) Last iteration

Fig. 2. PRF configurations for the Separable 2D Convolution algorithm

rows containingHSIZE elements each - R 6,7,8 and 9, which are loaded from the
LS as 1D accesses. R 10 - 13 single column registers are then stored using regular
1D accesses, effectively transposing the result. The Local Store will only send
and receive data in consecutive addresses, fully utilizing the available bandwidth.
For this example, if the PRF has at least 6 lanes and is implemented using the
RoCo scheme introduced in Section 2, that allows conflict free accesses for both
rows and columns, all the loads and stores used in the transposition can be
performed conflict free. The input data matrix is processed in VSIZE×HSIZE
blocks, and is stored transposed.

An additional requirement for the PRF is a modified auto-sectioning mecha-
nism which stores the transposed output blocks in a top-to-bottom, left-to-right
(column-wise). The regular auto sectioning instruction loads the input matrices
in a left-to-right, top-to-bottom (row-wise) order. This is trivial to implement
by slightly modifying the regular auto sectioning instruction update2d, which
is described in detail [8]. Since two auto sectioning instructions are required,
the one which handles the transposition must not perform a branch to the first
instruction of the sectioning loop.

5.2 Our Implementation

The input matrix contains MAX V × MAX H elements. The two masks
used for row-wise and column-wise convolutions haveMASK H and MASK V
elements respectively. We will refer to both asMASK H, since both convolution
steps are handled identically by the PRF. The PRF algorithm processes the input
in blocks of VSIZE × HSIZE elements, vectorizing the computation both the
horizontal and vertical axes. For clarity, we only present the code required to
execute one convolution step. The code needs to be executed twice, once for the
row-wise convolution and the second time for the column-wise one. However,
only a small number of parameters needs to be updated (e.g., the pointer to the

324 C.B. Ciobanu and G.N. Gaydadjiev

input and out matrixes) in the exchange registers, the binary instructions are
similar for both passes.

The data will be processed in multiple steps (iterations), VSIZE rows at a
time. Because special care needs to be taken at the borders of the input, we
separate the vectorized algorithm in three distinct phases in order to properly
process the first and last iterations. The layout for the PRF used in the first
iteration is illustrated in Figure 1, for the last iteration in Figure 2(b) and for
the rest in Figure 2(a) (to save space, we only show the first iteration SPR
content). The shaded registers (R0 and R5) contain halo elements. Without loss
of generality, we assume that MAX V%VSIZE = 0 and MASK H = 2 ·R+1.

Let A = MAX H%HSIZE and B =

{
HSIZE, if A = 0

A, otherwise

In all figures, VSIZE = 4, HSIZE = 6, R = 2, A = 0, and B = 6.
For both Figure 1 and 2, the vector registers assignment is as follows:

– R0 contains the left hallo cells;
– R1 contains the input data which needs to be processed, and overlaps with
R6-R9 which are used to load the data from the LS;

– R2 contains the mask;
– R3 stores the result of the convolution, and overlaps with R10-R17 which
are used to transpose the result;

– R4 holds the halo elements as well as the loaded data;
– R5 holds the data which will become the halo of the next iteration, or the
right halo cells for the last iteration.

The first iteration of the convolution takes into consideration theR halo elements
to the left of the first input element. The algorithm performs the following steps:

f01. Define R2 as 1x(2*R+1), base=VSIZE

f02. Load R2

f03s.Define R0 as VSIZExR, base=0

f04. Initialize R0 with the default values for halos (e.g., 0)

f05. Resize R0 as VSIZEx2*R, base=0

f06. Define R4 as VSIZEx(HSIZE+R), base=0

f07. Define R1 as VSIZExHSIZE, base=R

f08. Define R6, R7,... R(6+VSIZE-1),as 1xHSIZE,

base=R, R+M, ... R + (VSIZE-1)*M

f09. Define R(6+VSIZE),...R(6+VSIZE+HSIZE-R-1), as VSIZEx1,

base=(VSIZE+1)*M, (VSIZE+1)*M+1, ... (VSIZE+1)*M + HSIZE-R-1

f10. Define R5 as VSIZEx2*R, base=HSIZE-R

f11. Define R3 as VSIZEx(HSIZE-R), base=VSIZE+1

f12. Load R6, R7,... R(6+VSIZE-1)

f13. Row-wise convolution: input=R4, Mask=R2, Output=R3

f14. Store R(6+VSIZE),...R(6+VSIZE+HSIZE-R-1)

f15. Move R5 to R0

f16. Update pointers to the input data and output data

Separable 2D Convolution with Polymorphic Register Files 325

The halo elements complicate the algorithm when processing the input data in
blocks, as each new section of the data will require 2 · R elements from the
previous iteration (R0 in Figure 2(a)). Our solution is to keep the halo elements
in the PRF, and just move them to the left (from R5 to R0) before loading
new data. This way, each input element is only loaded once for the horizontal
pass and once for the vertical pass. The main iterations execute the following
operations:

m01. Define R5 as VSIZEx2*R, base=HSIZE

m02. Define R1 as VSIZExHSIZE, base=2*R

m03. Define R4 as VSIZEx(HSIZE + 2*R), base=0

m04. Define R3 as VSIZExHSIZE, base=VSIZE+1

m05. Define R(6+VSIZE+HSIZE - R),...R(6+VSIZE+HSIZE - 1), as VSIZEx1,

base=(VSIZE+1)*M+HSIZE-R, ... (VSIZE+1)*M + HSIZE-1

m06. Redefine R6, R7,... R(6+VSIZE-1),as 1xHSIZE, new base=2*R

m07s.Load R6, R7,... R(6+VSIZE-1)

m08. Row-wise convolution: input=R4, Mask=R2, Output=R3

m09. Store R(6+VSIZE),...R(6+VSIZE+HSIZE-1)

m10. Move R5 to R0

m11. Update pointers, continue if the last iteration follows

or jump to instr. m07s otherwise

The last iteration needs to add the halo elements to the right of the last input
element(Figure 2(b)). The width of the loads in the last iteration is A, and the
number of stores is A+R. The pseudo-code for the last iteration is:

l01. Define R5 as VSIZExR, base=A+2*R

l02. Initialize R5 with the default values for halos (e.g., 0)

l03. Define R1 as VSIZExA, base=2*R

l04. Define R4 as VSIZEx(A+3*R), base=2*R

l05. Define R3 as VSIZEx(A+R), base=(VSIZE+1)

l06. Redefine R6, R7,... R(6+VSIZE-1),new size 1xA, new base=2*R

l07. Define R(6+VSIZE),...R(6+VSIZE+A+R-1) as VSIZEx1,

base=(VSIZE+1)*M, ... (VSIZE+1)*M+A+R-1

l08. Load R6, R7,... R(6+VSIZE-1)

l09. Row-wise convolution: input=R4, Mask=R2, Output=R3

l10. Store R(6+VSIZE),...R(6+VSIZE+A+R-1),

l11. Update pointers and finish execution if last row

or jump to instr. f03s otherwise

The algorithm also has two special cases, depending on the size of the input
MAX H and HSIZE. If HSIZE < MAX H ≤ 2 · HSIZE, only the first
and last iterations are executed. If MAX H ≤ HSIZE, a single iteration is
executed which processes full rows. Because of lack of space, we didn’t include
the corresponding pseudo-code and PRF configurations in this paper.

6 Experimental Results

The nVidia c2050 GPU [27] is running at 1.15 GHz, a frequency comparable
to our ASIC synthesis results for the PRF presented in Section 2. Therefore,

326 C.B. Ciobanu and G.N. Gaydadjiev

4

8

16

32

64

128

256

512

1024

2048

3 x 3 5 x 5 9 x 9 17 x 17 33 x 33

Pi
xe
ls
/
KC

yc
le
s

Mask Size

2D Convolution, Input Size = 128x128
nVidia c2050 1 Lane 2 Lanes 4 Lanes 8 Lanes
16 Lanes 32 Lanes 64 Lanes 128 Lanes

Fig. 3. 2D Convolution Algorithm Throughput

we measure the throughput for both the PRF and the nVidia c2050 in terms
of pixels / 1000 cycles. Figure 3 compares the throughput of the c2050 card
with multiple PRF configurations, ranging from 1 to 128 vector lanes. The peak
throughput for the c2050 was obtained for an image size of 2048×2048 elements,
which we will use for the comparison below. The input data for the PRF was
set at 128 × 128 elements, as larger inputs did not improve performance. The
mask sizes are varied between 3× 3 and 33× 33 elements, representing realistic
scenarios. For the PRF experiments, we set HSIZE = VSIZE = 32.

The results suggest that for small masks of 3× 3 or 5× 5, the GPU is faster
than the PRF, which is limited by the bandwidth to the Local Store when using
more than 8 lanes.

However, as the masks increase in size, the convolution becomes more ex-
pensive in terms of computations, and the throughput of the GPU decreases.
However, the PRF scales to a higher number of lanes, and starting from a mask
size of 9× 9, outperforms the GPU. For the largest mask size of 33× 33, all but
the slowest PRF configurations gain higher throughput than the GPU.

7 Conclusions and Future Work

We presented a matrix transposition algorithm optimized for PRFs, and a 2D
vectorized separable convolution algorithm avoiding strided memory accesses
when accesing the input data column-wise. We evaluated the performance of the
vectorized algorithm executing on multi-lane PRFs, and compared the through-
put with an nVidia Tesla C2050 GPU. The results show that even in a bandwidth

Separable 2D Convolution with Polymorphic Register Files 327

constrained system, the PRF is able to outperform the GPU for 9× 9 or larger
mask sizes. As future work, we will evaluate the performance of the PRF with
other computationally intensive workloads.

Acknowledgments. We thank Wen-mei W. Hwu and Nasser Salim Anssari for
providing the nVidia Tesla C2050 GPU results.

This work was supported by the European Commission in the context of FP7
FASTER project (#287804).

References

1. ITRS: International Technology Roadmap for Semiconductors. Online, 2011 edn.,
http://www.itrs.net/

2. Akdemir, K., et al.: Breakthrough AES Performance with Intel AES New Instruc-
tions. White paper, 12 pages (June 2010),
http://communities.intel.com/docs/DOC-5003

3. Gwennap, L.: Digital, MIPS Add Multimedia Extensions. Microdesign Re-
sources 10(15), 1–5 (1996)

4. Buchholz, W.: The IBM System/370 vector architecture. IBM Systems Journal,
51–62 (1986)

5. Gwennap, L.: AltiVec Vectorizes PowerPC. Microprocessor Report 12(6), 1–5
(1998)

6. IBM. Cell BE Programming Handbook Including the PowerXCell 8i Processor,
1.11 edn. (May 2008)

7. Ramirez, A., Cabarcas, F., Juurlink, B., Alvarez Mesa, M., Sanchez, F., Azevedo,
A., Meenderinck, C., Ciobanu, C., Isaza, S., Gaydadjiev, G.: The SARC Architec-
ture. IEEE Micro 30(5), 16–29 (2010); ISSN 0272-1732

8. Ciobanu, C., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.: A Polymorphic
Register File for Matrix Operations. In: Proceedings of the 2010 International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS 2010), pp. 241–249 (July 2010)

9. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: On Implementability of Poly-
morphic Register Files. In: Proceedings of the 7th Int. Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC 2012), pp. 1–6 (2012)

10. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: Scalability Study of Polymorphic
Register Files. In: Proceedings of the 15th Euromicro Conference on Digital System
Design (DSD 2012), pp. 803–808 (2012)

11. Ciobanu, C.B., Martorell, X., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.:
Scalability Evaluation of a Polymorphic Register File: A CG Case Study. In:
Berekovic, M., Fornaciari, W., Brinkschulte, U., Silvano, C. (eds.) ARCS 2011.
LNCS, vol. 6566, pp. 13–25. Springer, Heidelberg (2011)

12. Asanović, K.: Vector Microprocessors. PhD thesis, University of California at
Berkeley (1998)

13. Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: Multimedia rectangularly address-
able memory. IEEE Transactions on Multimedia, 315–322 (2006)

14. Kuck, D.J., Stokes, R.A.: The Burroughs Scientific Processor (BSP). IEEE Trans-
actions on Computers C-31(5), 363–376 (1982); ISSN 0018-9340

http://www.itrs.net/
http://communities.intel.com/docs/DOC-5003

328 C.B. Ciobanu and G.N. Gaydadjiev

15. Juurlink, B.H.H., Cheresiz, D., Vassiliadis, S., Wijshoff, H.A.G.: Implementation
and Evaluation of the Complex Streamed Instruction Set. In: Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT), pp. 73–82 (2001)

16. Panda, D.K., Hwang, K.: Reconfigurable Vector Register Windows for Fast Matrix
Computation on the Orthogonal Multiprocessor. In: Proc. of the Int. Conference
on Application Specific Array Processors, September 5-7, pp. 202–213 (1990)

17. Corbal, J., Espasa, R., Valero, M.: MOM: a Matrix SIMD Instruction Set Archi-
tecture for Multimedia Applications. In: Proceedings of the ACM/IEEE SC 1999
Conference, pp. 1–12 (1999)

18. Shahbahrami, A., Juurlink, B.H.H., Vassiliadis, S.: Matrix Register File and Ex-
tended Subwords: Two Techniques for Embedded Media Processors. In: Proc. of
the 2nd ACM Int. Conf. on Computing Frontiers, pp. 171–180 (May 2005)

19. Park, J., Park, S.-B., Balfour, J.D., Black-Schaffer, D., Kozyrakis, C., Dally, W.J.:
Register Pointer Architecture for Efficient Embedded Processors. In: Proceedings
of on Design, Automation and Test in Europe, DATE 2007, San Jose, CA, USA,
pp. 978–973. EDA Consortium (2007) ISBN 978-3-9810801-2-4

20. Wong, S., Anjam, F., Nadeem, M.F.: Dynamically Reconfigurable Register File for
a Softcore VLIW Processor. In: Proceedings of the Design, Automation and Test
in Europe Conference (DATE 2010), pp. 969–972 (March 2010)

21. Wong, S.C., Jasiunas, M., Kearney, D.: Fast 2D Convolution Using Reconfigurable
Computing. In: Proceedings of the Eighth International Symposium on Signal Pro-
cessing and Its Applications, August 28-31, vol. 2, pp. 791–794 (2005)

22. Lee, J.-J., Song, G.-Y.: Super-Systolic Array for 2D Convolution. In: 2006 IEEE
Region 10 Conference on TENCON 2006, pp. 1–4 (November 2006)

23. Hecht, V., Ronner, K.: An Advanced Programmable 2D-Convolution Chip for Real
Time Image Processing. In: IEEE International Sympoisum on Circuits and Sys-
tems, vol. 4, pp. 1897–1900 (June 1991)

24. August, D., Chang, J., et al.: UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative Development. IEEE
Comput. Archit. Lett. 6(2), 45–48 (2007); ISSN 1556-6056

25. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The molen polymorphic processor. IEEE Transactions on Computers 53(11),
1363–1375 (2004); ISSN 0018-9340.

26. Podlozhnyuk, V.: Image Convolution with CUDA. Online (June 2007),
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86 64

website/projects/convolutionSeparable/doc/convolutionSeparable.pdf

27. TESLA C2050 / C2070 GPU Computing Processor. Supercomputing at 1/10th of
the Cost. Online,
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

	Separable 2D Convolution with Polymorphic Register Files
	Introduction
	Background and Related Work
	Experimental Setup
	Separable 2D Convolution
	Vectorizing the 2D Convolution
	Conflict Free Transposition
	Our Implementation

	Experimental Results
	Conclusions and Future Work
	References

