
A User-level Library for Fault Tolerance on Shared
Memory Multicore Systems

Hamid Mushtaq, Zaid Al-Ars, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
Delft, the Netherlands

{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract—The ever decreasing transistor size has made it pos-
sible to integrate multiple cores on a single die. On the downside,
this has introduced reliability concerns as smaller transistors are
more prone to both transient and permanent faults. However, the
abundant extra processing resources of a multicore system can be
exploited to provide fault tolerance by using redundant execution.
We have designed a library for multicore processing, that can
make a multithreaded user-level application fault tolerant by
simple modifications to the code. It uses the abundant cores found
in the system to perform redundant execution for error detection.
Besides that, it also allows recovery through checkpoint/rollback.
Our library is portable since it does not depend on any special
hardware. Furthermore, the overhead (up to 46% for 4 threads),
our library adds to the original application, is less than other
existing approaches, such as Respec.

I. INTRODUCTION

Although the shrinking transistor size has made it possible
to implement multiple cores on a single die, it has also made
reliability a concern, as smaller transistors are more prone to
both transient [1] as well as permanent [2] faults. However,
the abundant processing resources of a multicore system can
be exploited to provide fault tolerance through redundant
execution.

One way to use the abundant processing resources to
provide fault tolerance is by using the state machine replication
approach [3]. For multithreaded programs running on shared
memory multicore systems, it is required that threads of the
replicas access shared memory in the same order. In other
words, shared memory accesses should be deterministic. Our
library ensures this. Overall it provides the following features.

• Efficient deterministic execution in presence of lock-
based shared memory accesses.

• Optimized memory comparison of the replicas for error
detection.

• Checkpoint/rollback to perform recovery from transient
errors.

In Section II we discuss the background and related work.
In Section III, we discuss the overview of our library, while in
Section IV, we discuss its implementation. In Section V, we
present and discuss our results. We finally conclude the paper
with Section VI.

II. BACKGROUND AND RELATED WORK

Fault tolerance is achieved by three major steps, error de-
tection, isolation and recovery [4]. With redundant execution,

an error is detected if the replicas diverge. Since any kind
of divergence is used to detect an error, it is important to
remove any source of divergence which is not due to an error.
The only sources of non-determinism in a single threaded
program are non-deterministic functions, such as gettimeofday
and asynchronous signals, while for a multithreaded program,
there is also non-determinism due to shared memory accesses.
Moreover, shared memory accesses are usually much more
frequent as compared to non-deterministic functions and asyn-
chronous signals, which makes implementing efficient state
machine based replication more difficult for a multithreaded
program, running on a shared memory multicore system, than
for a single threaded application.

Two main approaches, record/replay and deterministic mul-
tithreading, exist for this purpose. In record/replay, the order
of shared memory accesses on the original processes are
recorded so that they can be replayed by the other replicas.
On the other hand, with deterministic multithreading, given
the same input, a process always performs the same ordering
of shared memory accesses. It has to be noted though that
for non-deterministic functions, such as gettimeofday and
asynchronous signals, record/replay is the only viable method.
Our library uses the record/replay approach.

For record/replay, both hardware and software-based meth-
ods exist. Karma [5] and DeLorean [6] are examples of
hardware-based approaches. While Karma intercepts the cache
coherence protocols to record inter-processor data dependen-
cies and later use these recorded data dependencies to replay,
DeLorean uses a relaxed memory model, where each processor
executes instructions in chunks concurrently and an arbiter is
used to commit the chunks. Replaying is done by replaying
the chunks in the order in which they were committed.
Respec [7] is a software-based method. It logs the ordering
of acquisition and release of synchronization objects, such as
mutexes, to make replicas acquire the synchronization objects
in the same order. It also performs checkpoint/rollback to
perform recovery.

For deterministic multithreading, also, both hardware and
software-based methods exist. An example of hardware-based
approach is Calvin [8]. It executes a program deterministically
by executing instructions in the form of chunks and com-
mitting them at barriers points deterministically. Kendo [9]
is a software based approach that only deals with programs

Leader process Follower process

ReadsWrites

Checkpoint process

Creates/Starts on error/
Kills when taking next

checkpoint

Watchdog process

Creates/Kills on
error

Creates/Signals

Starts on timeout
error

Kills on timeout error

Kills on error

Kills on timeout
error

ReadsWrites

Shared Memory

Fig. 1. Data flow diagram of our fault tolerance scheme

without data races. For efficient deterministic execution, it
performs load balancing by only allowing a thread to acquire
a synchronization object if that thread has executed less
instructions than the other threads. The number of instructions
are calculated by counting the retired stores.

III. OVERVIEW OF THE LIBRARY

Our library is intended to reduce probability of failures in
the presence of transient faults. The data flow diagram of our
fault tolerance scheme is shown in Figure 1. Initially, the leader
process creates its replica (follower process) and the watchdog.
The execution is divided into time slices (epochs). At the
end of each epoch, the memories of the leader and follower
processes are compared by the leader. If no divergence is
found, a checkpoint is taken and output to files or screen
is committed. The previous checkpoint is also deleted. The
checkpoint is basically a suspended process which is identical
to the leader process at the time the checkpoint is taken. If a
divergence is found at the end of an epoch, the leader process
signals the checkpoint process to start and kills itself and its
follower. When the checkpoint process starts, it becomes the
leader and creates its own follower. It might also happen that
the leader or follower process are unable to reach the end of an
epoch, due to some error which hangs them. In that case, the
watchdog process detects those hangs by using timeouts and
signals the checkpoint process to start. The watchdog process
itself is less vulnerable to transient faults as it remains idle
most of the time.

IV. IMPLEMENTATION

This section discusses the implementation of our library. In
Section IV-A, we discuss how the follower process is created.
In Section IV-B, we discuss our memory allocation technique,
which is followed by Section IV-C, where we explain how
we are able to deterministically access the shared memory
through mutexes. Section IV-D discusses our error detection
mechanism, while Section IV-E discusses recovery. Lastly, in
Section IV-F, we discuss how our library handles I/O and
non-deterministic functions such as gettimeofday. Note that
currently our library does not support deterministic replaying
of asynchronous signals, which is left as future work.

A. Follower creation

Our library assumes that threads in the application are
created once at the start of the application. Therefore, we

create the follower process at point in the code where
the threads are created. For this purpose, we replace the
pthread create function with r pthread create, which inter-
nally calls pthread create function and indirectly calls the
Linux’s fork function.

To make sure that the follower threads have the same
stack contents as the leader, our library itself allocates the
memory used for thread stacks. These allocated stacks are then
passed as attributes to the pthread create function (called from
r pthread create). When the leader calls the fork function,
although all threads, beside the one calling it, die in the forked
process, the stack contents are still present in the memory.
Therefore, to recreate a thread with the same stack in the
follower, we call pthread create with the same stack attribute.
For thread identification, we use a thread local variable, so that
we can relate a thread in the follower process with that in the
leader process.

For making sure that a follower thread also has the same
register values as the corresponding leader thread, the thread’s
start routine passed as an argument to the pthread create
function (called from r pthread create), is not the start routine
itself but wrapper thread start that then calls the start routine,
which is provided as a parameter to it. For the leader process,
this function calls our barrier function r pthread barrier wait
in the beginning. When r pthread barrier wait is called for
the first time, each thread of the leader saves its registers,
including the instruction pointer, by using the C setjmp func-
tion. The follower is itself created by the main thread by
calling fork function, from within the r pthread barrier wait
function. The newly forked process then recreates the threads
and each thread jumps to the same location as the thread in
the leader process by using the C longjmp function. This is
done by having the forked process also pass the thread start
function as start routine to pthread create function. But unlike
the leader process, the follower threads call longjmp at the
beginning of the thread start function.

Note that since the main thread is replicated by the
fork process, we do not need to recreate it. However,
r pthread barrier wait needs to be inserted just after the code
where the threads are created, so that all the threads are at a
barrier point when the follower is forked.

B. Memory allocation

In an operating system with Address Sapce Layout Ran-
domization (ASLR), malloc can be non-deterministic. This is
because malloc internally uses mmap for allocating memory
blocks of large sizes and mmap can be non-deterministic.
Therefore, whenever the memory allocator uses mmap, we
make sure the follower has the same address returned for
mmap by calling mmap with MAP FIXED flag and the
address returned by the leader process.

The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate

mmap by calling mmap with MAP FIXED flag and the
address returned by the leader process.

The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
memory, which is allocated with mmap. This memory is not
compared for error detection.

C. Deterministic shared memory accesses

For redundant deterministic execution, it is necessary that
the leader and follower processes perform shared memory
accesses in the same order. Since we assume that a program
has no data races and all synchronization operations are done
using mutexes, we provide functions r pthread mutex lock
and r pthread mutex unlock for deterministically locking and
unlocking a mutex. A mutex is enclosed in a special data
structure, known as pthread mutex log t, which also contains
a pointer to clocks for that mutex to aid in deterministic
execution. The memory region to hold the mutex clocks is
shared between the leader and follower processes.

Algorithm 2 Pseudocode for deterministic lock and unlock
function R PTHREAD MUTEX LOCK(ref pthread mutex log t m)

if isLeader then
lock(m.mutex)
m.leaderClock = m.leaderClock + 1
while m.threadClock[tid].clock > 0
end while
m.threadClock[tid] = m.leaderClock

else
while not (m.threadClock[tid].clock == (m.followerClock + 1))
end while
m.threadClock[tid] = 0
lock(m.mutex)

end if
end function

function R PTHREAD MUTEX UNLOCK(ref pthread mutex log t m)
if not isLeader then

m.followerClock = m.followerClock + 1
end if
unlock(m.mutex)

end function

Our deterministic locking and unlocking algorithms for mu-
texes are shown as Algorithm ??. The benefit of this scheme
is that it uses less memory as compared to schemes that use
producer/consumer queues, such as Respec [7]. Secondly, by
wrapping the pointer to the mutex clocks in the same data
structure as the mutex, we avoid the overhead of using a hash
table, which is used by Respec. Lastly, our algorithm is written
such that it exploits the strict memory consistency model of
multicore x86 (memory ordering respects transitive visibility
and stores to the same location have a total order) and thus
avoid using atomic variables (which incur significant overhead
due to use of memory fences) on such systems.

D. Error detection

At regular intervals (epochs) of one second, the leader and
follower processes calculate checksums by performing mod-
ular sums of the dirtied (modified) memory pages’ contents,
which are then compared by the leader. If a discrepancy is

Memory segment
with N pages

Memory segment
with N pages

Memory space

4096 × N 4096 × N

Fig. 2. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

found, a fault is detected. Follower keeps its checksum in
shared memory so that the leader can read it from there
for comparison. We perform memory comparison at barriers
which are already found in the program. If insufficient number
of barriers are found in the program, new barriers can be
inserted by the programmer.

To note down dirtied pages, at start of each epoch, we give
only read access to memory pages, so that a page faults can
be trapped to note down dirtied pages. To reduce the number
of such page faults however, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 2. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section V, where we discuss the
performance evaluation.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.

E. Recovery

For fault recovery, we use checkpoint/rollback. Checkpoint-
ing is done by forking a process and suspending it. If the
leader process detects an error or the Watchdog detects a
hang, a signal is sent to the checkpoint process to start
execution. The leader and follower processes are also killed.
The checkpoint process now becomes the new leader and forks
its own follower. The checkpoint process also resets the mutex
clocks (which exist in shared memory), since they could have
been corrupted by an error.

Creation of the checkpoint process is very similar to creation
of the follower (see Section IV-A), with the difference being
that the checkpoint process is suspended in the beginning.
Only when it is signalled to start, it recreates the threads and
starts execution.

F. I/O and Non-deterministic functions

For I/O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during an
epoch. For that purpose, no output is committed during an
epoch. Instead it is buffered. Therefore, our library defines a
structure r FILE, which not only contains the FILE pointer,
but also the buffer. The r fopen function returns a pointer to
this structure. The buffers are then committed at the end of an
epoch after comparing the buffer contents of the leader and
follower by using checksums. For sequential file reading, we
provide functions r fread and r fscanf. The r FILE structure
also contains the file offset value at the last epoch, so that the
file pointer can be rewinded to the previous value in case of
rollback.

Fig. 2. Pseudocode for deterministic lock and unlock

memory, which is allocated with mmap. This memory is not
compared for error detection.

C. Deterministic shared memory accesses

For redundant deterministic execution, it is necessary that
the leader and follower processes perform shared memory
accesses in the same order. Since we assume that a program
has no data races and all synchronization operations are done
using mutexes, we provide functions r pthread mutex lock
and r pthread mutex unlock for deterministically locking and
unlocking a mutex. A mutex is enclosed in a special data
structure, known as pthread mutex log t, which also contains
a pointer to clocks for that mutex to aid in deterministic
execution. The memory region to hold the mutex clocks is
shared between the leader and follower processes.

Algorithm 2 Pseudocode for deterministic lock and unlock
function R PTHREAD MUTEX LOCK(ref pthread mutex log t m)

if isLeader then
lock(m.mutex)
m.leaderClock = m.leaderClock + 1
while m.threadClock[tid] > 0
end while
m.threadClock[tid] = m.leaderClock

else
while not (m.threadClock[tid] == (m.followerClock + 1))
end while
m.threadClock[tid] = 0
lock(m.mutex)

end if
end function

function R PTHREAD MUTEX UNLOCK(ref pthread mutex log t m)
if not isLeader then

m.followerClock = m.followerClock + 1
end if
unlock(m.mutex)

end function

Our deterministic locking and unlocking algorithms for
mutexes are shown as Figure 2. The benefit of this scheme
is that it uses less memory as compared to schemes that use
producer/consumer queues, such as Respec [7]. Secondly, by
wrapping the pointer to the mutex clocks in the same data
structure as the mutex, we avoid the overhead of using a hash
table, which is used by Respec. Lastly, our algorithm is written
such that it exploits the strict memory consistency model of
multicore x86 (memory ordering respects transitive visibility

Memory segment
with N pages

Memory segment
with N pages

Memory space

4096 × N 4096 × N

Fig. 3. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

and stores to the same location have a total order) and thus
avoid using atomic variables (which incur significant overhead
due to use of memory fences) on such systems.

D. Error detection

At regular intervals (epochs) of one second, the leader
and follower processes calculate checksums by performing
modular sums of the contents of the dirtied (modified) memory
pages, which are then compared by the leader. If a discrepancy
is found, a fault is detected. Follower keeps its checksum
in the shared memory so that the leader can read it from
there for comparison. We perform memory comparison at
barriers which are already found in the program. If insufficient
number of barriers are found in the program, the programmer
can insert our library function r potential barrier wait in
the code. This function will create a barrier (by calling
r pthread barrier wait) only if the program has reached the
end of an epoch.

To note down dirtied pages, at start of each epoch, we give
only read access to memory pages, so that a page faults can
be trapped to note down dirtied pages. To reduce the number
of such page faults however, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 3. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section V, where we discuss the
performance evaluation.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.

E. Recovery

For fault recovery, we use checkpoint/rollback. Checkpoint-
ing is done by forking a process and suspending it. If the
leader process detects an error or the Watchdog detects a
hang, a signal is sent to the checkpoint process to start
execution. The leader and follower processes are also killed.
The checkpoint process now becomes the new leader and forks
its own follower. The checkpoint process also resets the mutex
clocks (which exist in shared memory), since they could have
been corrupted by an error.

Creation of the checkpoint process is very similar to creation
of the follower (see Section IV-A), with the difference being
that the checkpoint process is suspended in the beginning.
Only when it is signalled to start, it recreates the threads and
starts execution.

Fig. 2. Pseudocode for deterministic lock and unlock

memory, which is allocated with mmap. This memory is not
compared for error detection.

C. Deterministic shared memory accesses

For redundant deterministic execution, it is necessary that
the leader and follower processes perform shared memory
accesses in the same order. Since we assume that a program
has no data races and all synchronization operations are done
using mutexes, we provide functions r pthread mutex lock
and r pthread mutex unlock for deterministically locking and
unlocking a mutex. A mutex is enclosed in a special data
structure, known as pthread mutex log t, which also contains
a pointer to clocks for that mutex to aid in deterministic
execution. The memory region to hold the mutex clocks is
shared between the leader and follower processes.

Our deterministic locking and unlocking algorithms for
mutexes are shown as Figure 2. The benefit of this scheme
is that it uses less memory as compared to schemes that use
producer/consumer queues, such as Respec [7]. Secondly, by
wrapping the pointer to the mutex clocks in the same data
structure as the mutex, we avoid the overhead of using a hash
table, which is used by Respec. Lastly, our algorithm is written
such that it exploits the strict memory consistency model of
multicore x86 (memory ordering respects transitive visibility
and stores to the same location have a total order) and thus
avoid using atomic variables (which incur significant overhead
due to use of memory fences) on such systems.

D. Error detection

At regular intervals (epochs) of one second, the leader
and follower processes calculate checksums by performing
modular sums of the contents of the dirtied (modified) memory
pages, which are then compared by the leader. If a discrepancy
is found, a fault is detected. Follower keeps its checksum
in the shared memory so that the leader can read it from
there for comparison. We perform memory comparison at
barriers which are already found in the program. If insufficient
number of barriers are found in the program, the programmer
can insert our library function r potential barrier wait in

Memory segment
with N pages

Memory segment
with N pages

Memory space

4096 × N 4096 × N

Fig. 3. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

the code. This function will create a barrier (by calling
r pthread barrier wait) only if the program has reached the
end of an epoch.

To note down dirtied pages, at start of each epoch, we give
only read access to memory pages, so that a page faults can
be trapped to note down dirtied pages. To reduce the number
of such page faults however, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 3. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section V, where we discuss the
performance evaluation.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.

E. Recovery

For fault recovery, we use checkpoint/rollback. Checkpoint-
ing is done by forking a process and suspending it. If the
leader process detects an error or the Watchdog detects a
hang, a signal is sent to the checkpoint process to start
execution. The leader and follower processes are also killed.
The checkpoint process now becomes the new leader and forks
its own follower. The checkpoint process also resets the mutex
clocks (which exist in shared memory), since they could have
been corrupted by an error.

Creation of the checkpoint process is very similar to creation
of the follower (see Section IV-A), with the difference being
that the checkpoint process is suspended in the beginning.
Only when it is signalled to start, it recreates the threads and
starts execution.

F. I/O and non-deterministic functions

For I/O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during an
epoch. For that purpose, no output is committed during an
epoch. Instead it is buffered. Therefore, our library defines a
structure r FILE, which not only contains the FILE pointer,
but also the buffer. The r fopen function returns a pointer to
this structure. The buffers are then committed at the end of an
epoch after comparing the buffer contents of the leader and
follower by using checksums. For sequential file reading, we
provide functions r fread and r fscanf. The r FILE structure
also contains the file offset value at the last epoch, so that the
file pointer can be rewinded to the previous value in case of
rollback.

For non-deterministic functions such as gettimeofday, our li-
brary allows the programmer to create a deterministic wrapper

TABLE I
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED

BENCHMARKS
Benchmarks Threads Epochs Locks Pages

compared
Original
time
(ms)

Deterministic
exec time
(ms) &
Overhead

Overall
time (ms) &
Ovheread

Fluidanimate 2 3 4313983 33890 1988 2298 (16%) 2379 (20%)
4 2 7466285 25380 1205 1696 (41%) 1712 (42%)

Ocean 2 4 5046 104504 2432 2459 (1%) 3091 (27%)
4 3 10092 80618 1890 1895 (0%) 2119 (12%)

Water-nsq 2 3 125047 12624 1837 1859 (1%) 1861 (1%)
4 2 188142 24912 1090 1112 (2%) 1170 (7%)

Radiosity 2 2 6124778 6920 920 1140 (24%) 1153 (25%)
4 1 6170016 12616 589 854 (44%) 865 (46%)

Raytrace 2 1 121958 2344 1116 1216 (9%) 1260 (13%)
4 1 121960 2348 663 700 (6%) 738 (11%)

Fig. 4. Reduction in overhead by grouping memory into segments

by using functions r log data and r read data. r log data is
called by the leader process to log the outputs of that function,
while the follower process reads the outputs by calling the
r read data function.

V. PERFORMANCE EVALUATION

We selected 5 benchmarks, one from the PARSEC [10] and
four from the SPLASH-2 [11] benchmark sets. We ran all our
benchmarks on an 8 core (dual socket with 2 quad cores),
2.67 GHz Intel Xeon processor with 32GB of RAM, running
CentOS Linux version 5, with kernel 2.6.18. We used gcc
4.4.4 and optimization level -O3 to compile our results. The
results are shown in Table I. For each benchmark, we show
the results for 2 and 4 threads (For redundant execution, 4
threads means 8 threads in total). We compare the original
execution time with deterministic execution time (excluding
overhead of error detection, checkpointing and watchdog) and
the overall time which includes all the overheads. We used
memory segments of size 4 (See Section IV-D for discussion
on memory grouping). For fluidanimate, which has high lock
frequency our library only adds an overhead of 42%, while
Respec adds an overhead of 67%. Also for ocean, which has
high memory consumption, Respec adds an overhead of 43%,
while our library adds an overhead of just 12% due to the
optimized memory comparison scheme.

Figure 4 shows the impact of grouping memory pages on
performance. We show the results for memory segment sizes of
1, 2, 4 and 8. Note that the overhead shown is after subtracting
the overhead of deterministic execution. We can see that for an
applications like Ocean which has high memory usage, we get
significant performance gains using page grouping. However,
grouping too many pages can also cause the application to

compare more pages which have not been actually modified
by that application, thus creating unnecessary overhead. This
is evident for Raytrace which has lower memory usage than
other benchmarks. However, for 4 pages, all five benchmark
show performance gain.

VI. CONCLUSION

In this paper, we described the design and implementation
of a user-level library for fault tolerance of multithreaded
user-level applications running on shared memory multicore
systems. Our library requires programmer to make little mod-
ifications to the program for providing fault tolerance. It allows
creation of a multithreaded redundant process for detecting
errors and provides facility of checkpointing and rollback for
recovery. We also applied several optimizations to speedup the
execution, like reducing memory for logging, which is required
for record/replay, and optimizing memory comparison for
error detection. Empirical measurements on tested benchmarks
show that the overhead does not exceeds 46% for four threads.

ACKNOWLEDGMENT

This research is supported by Artemis through the SMECY
project (grant 100230).

REFERENCES

[1] R. Baumann, “Soft errors in advanced semiconductor devices-part i:
the three radiation sources,” Device and Materials Reliability, IEEE
Transactions on, vol. 1, no. 1, pp. 17 –22, mar 2001.

[2] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf,
and K. Sankaralingam, “Sampling + dmr: practical and low-overhead
permanent fault detection,” in Proceeding of the 38th annual interna-
tional symposium on Computer architecture, ser. ISCA ’11, 2011, pp.
201–212.

[3] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, pp. 299–
319, December 1990.

[4] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Survey of fault tolerance
techniques for shared memory multicore/multiprocessor systems,” in
Design and Test Workshop (IDT), 2011 IEEE 6th International, dec.
2011, pp. 12 –17.

[5] A. Basu, J. Bobba, and M. D. Hill, “Karma: scalable deterministic
record-replay,” in Proceedings of the international conference on Su-
percomputing, ser. ICS ’11, 2011, pp. 359–368.

[6] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Recording and
deterministically replaying shared-memory multiprocessor execution ef-
ficiently,” in Proceedings of the 35th Annual International Symposium
on Computer Architecture, ser. ISCA ’08, 2008, pp. 289–300.

[7] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn, “Respec: efficient online multiprocessor replayvia speculation
and external determinism,” in Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming languages and
operating systems, ser. ASPLOS ’10, 2010, pp. 77–90.

[8] D. Hower, P. Dudnik, M. Hill, and D. Wood, “Calvin: Deterministic or
not? free will to choose,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, feb. 2011, pp.
333 –334.

[9] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: efficient determin-
istic multithreading in software,” SIGPLAN Not., vol. 44, pp. 97–108,
March 2009.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, ser. PACT ’08, 2008, pp. 72–81.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: characterization and methodological considerations,”
SIGARCH Comput. Archit. News, vol. 23, pp. 24–36, May 1995.

