# An Energy-Efficient SIMD Accelerator for Visual Pattern Matching

Calin Bira, Liviu Gugu Radu Hobincu, Lucian Petrica University Politehnica of Bucharest Valeriu Codreanu Rijksuniversiteit Groningen

Sorin Cotofana Technische Universiteit Delft

### 1. Motivation

· Object recognition and classification are currently some of the hot topics in computer vision with applications in image matching, robotics and panorama stitching

· When matching large databases against each-other, matching speed is an important performance metric, but power and energy plays a major role in the economy of the entire process.

## 3. Proposed Architecture

Enable Logic

Instruction

FIFO



IO Read IO Write FIFO FIFO IO Data Plane and Control Local Storage Registe File PE 0 PE 1 РЕ 2 ALU

Loop equence

Ν

Reduction

FIFO

Reduction and Distribution Trees

Accelerator

# 5. Results

Profiling of Execution Time

D.C.A.E.

25000

#### Energy Consumption per 100 MMatches

| Platform          | TDP[W] | SAD energy [J] | SSD energy |
|-------------------|--------|----------------|------------|
| Core i7 2600K     | 95     | 83.77          | 76.98      |
| NVidia GTX680     | 195    | 24.23          | 24.37      |
| NVidia 8800 Ultra | 175    | -              | 286.88     |
| ARM Cortex A9     | 1.25   | 53.41          | 59.24      |
| SIMD accelerator  | 1.2    | 13.01          | 8.95       |

#### SSD and SAD matching

| Platform        | ARM Cortex A9 | SIMD Accelerator |
|-----------------|---------------|------------------|
| Frequency [MHz] | 667           | 100              |
| SSD Rate [MM/s] | 2.11          | 13.40            |
| SSD Speedup     | 1             | 6.35             |
| SAD Rate [MM/s] | 2.34          | 9.22             |
| SAD Speedup     | 1             | 3.94             |

2. Background

Image matching :

- query images
- search images

Purpose: find objects from query images in search images

Step1: Extract local features (keypoints) with an algorithm like SIFT (Scale Invariant Feature Transform)

Step2: Find matching (D1/D2 distance) keypoints in both the query set and at least one search image

# 4. Case study

### Accelerator instance

- 128 Processing Elements
- 16-bit operands
- 32 registers
- 2KB Local Storage

### SAD computation

for(int j = 0; j < 28; j + +) { R30 = R[28] - R[j];R31 = R30 < R29; WHERE LT (R30 = R[j] - R[28]; ) REDUCE(R31):

### SIMD matching application:

- SSD (Sum of Squared Differences)= L2
- SAD (Sum of Absolute Differences) = L1

$$L_p = \left(\sum_{i=1}^{D} |X_i - Y_i|^p\right)^{\frac{1}{p}}$$

### SSD computation

for(int j = 0; j < 28; j + +) { R31 = R[28] - R[j ]; R31 = R31 \* R31; REDUCE(R31); }

### 6. Conclusions

 The SIMD accelerator implemented using a Zynq-7000 SOC is able to achieve 4-6x better SIFT descriptor matching throughput than a Cortex A9 processor, despite the FPGA implementation and 100 MHz operating frequency.

- Performance is delivered at about 3x less energy consumption and similar power consumption
- The accelerated system is 40% more energy effective than Intel Core i7 2600K and Nvidia GTX680 when executing SIFT matching benchmark



Dispozitive, circuite și aparate electronice