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•  Object recognition and classification are currently some of the hot 
topics in computer vision with applications in image matching, 
robotics and panorama stitching 
 
• When matching large databases against each-other, matching 
speed is an important performance metric, but power and energy 
plays a major role in the economy of the entire process. 

3. Proposed Architecture 
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• The SIMD accelerator implemented using a Zynq-7000 SOC is 
able to achieve 4-6x better SIFT descriptor matching throughput 
than a Cortex A9 processor, despite the FPGA implementation 
and 100 MHz operating frequency. 
 
 
•  Performance is delivered at about 3x less energy  
 consumption and similar power consumption 
 
 
• The accelerated system is 40% more energy effective  
than Intel Core i7 2600K and Nvidia GTX680 when executing SIFT 
matching benchmark 

4. Case study 

Accelerator instance 
• 128 Processing Elements 
• 16-bit operands 
• 32 registers 
• 2KB Local Storage 

SIMD matching application: 
• SSD (Sum of Squared Differences)= L2  
• SAD (Sum of Absolute Differences) = L1  

Image matching : 
• query images 
• search images 
Purpose: find objects from query images 
in search images 
 
Step1: Extract local features (keypoints) with 
an algorithm like SIFT (Scale Invariant Feature 
Transform) 
 
Step2: Find matching  (D1/D2 distance) 
keypoints in both the query set and at least 
one search image 

http://imaging.utk.edu/people/former/whao/whao.htm 

SAD computation 
for(int j = 0; j < 28; j + +) { 
      R30 = R[28]  - R[j ]; 
      R31 = R30 < R29; 
      WHERE LT (R30 = R[j ] - R[28]; ) 
      REDUCE(R31); 
    } 

SSD computation 
for(int j = 0; j < 28; j + +) { 
           R31 = R[28] - R[j ]; 
           R31 = R31 * R31; 
           REDUCE(R31); 
 } 


