
An Energy-Efficient SIMD Accelerator
for Visual Pattern Matching

Calin Bira, Liviu Gugu

Radu Hobincu, Lucian Petrica

University Politehnica of Bucharest

Valeriu Codreanu

Rijksuniversiteit
Groningen

Sorin Cotofana

Technische Universiteit

Delft

1. Motivation 2. Background

6. Conclusions

5. Results

• Object recognition and classification are currently some of the hot
topics in computer vision with applications in image matching,
robotics and panorama stitching

• When matching large databases against each-other, matching
speed is an important performance metric, but power and energy
plays a major role in the economy of the entire process.

3. Proposed Architecture

Accelerator
System

SSD and SAD matching

Profiling of Execution Time

Energy Consumption per 100 MMatches

• The SIMD accelerator implemented using a Zynq-7000 SOC is
able to achieve 4-6x better SIFT descriptor matching throughput
than a Cortex A9 processor, despite the FPGA implementation
and 100 MHz operating frequency.

• Performance is delivered at about 3x less energy
 consumption and similar power consumption

• The accelerated system is 40% more energy effective
than Intel Core i7 2600K and Nvidia GTX680 when executing SIFT
matching benchmark

4. Case study

Accelerator instance
• 128 Processing Elements
• 16-bit operands
• 32 registers
• 2KB Local Storage

SIMD matching application:
• SSD (Sum of Squared Differences)= L2
• SAD (Sum of Absolute Differences) = L1

Image matching :
• query images
• search images
Purpose: find objects from query images
in search images

Step1: Extract local features (keypoints) with
an algorithm like SIFT (Scale Invariant Feature
Transform)

Step2: Find matching (D1/D2 distance)
keypoints in both the query set and at least
one search image

http://imaging.utk.edu/people/former/whao/whao.htm

SAD computation
for(int j = 0; j < 28; j + +) {
 R30 = R[28] - R[j];
 R31 = R30 < R29;
 WHERE LT (R30 = R[j] - R[28];)
 REDUCE(R31);
 }

SSD computation
for(int j = 0; j < 28; j + +) {
 R31 = R[28] - R[j];
 R31 = R31 * R31;
 REDUCE(R31);
 }

