An Energy-Efficient SIMD Accelerator for Visual Pattern Matching

Calin Bira, Liviu Gugu
Radu Hobincu, Lucian Petrica University Politehnica of Bucharest

Valeriu Codreanu
Rijksuniversiteit Groningen

Sorin Cotofana
Technische Universiteit Delft

1. Motivation

- Object recognition and classification are currently some of the hot topics in computer vision with applications in image matching, robotics and panorama stitching
- When matching large databases against each-other, matching speed is an important performance metric, but power and energy plays a major role in the economy of the entire process.

3. Proposed Architecture

Accelerator

System

2. Background

 Image matching :- query images
- search images

Purpose: find objects from query images in search images

Step1: Extract local features (keypoints) with an algorithm like SIFT (Scale Invariant Feature Transform)

Step2: Find matching (D1/D2 distance)
keypoints in both the query set and at least one search image

4. Case study

Accelerator instance

- 128 Processing Elements
- 16-bit operands
- 32 registers
- 2KB Local Storage

SAD computation

for(int j = 0; j < 28; j + +) \{ R30 $=$ R[28] - R[j];
R31 = R30 < R29;
WHERE LT (R30 = R[j] - R[28];)
REDUCE(R31);

SIMD matching application:

- SSD (Sum of Squared Differences) $=$ L2
- SAD (Sum of Absolute Differences) $=$ L1

$$
L_{p}=\left(\sum_{i=1}^{D}\left|X_{i}-Y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

SSD computation

for(int j = 0; j < 28; j + +) \{
R31 $=\mathrm{R}[28]-\mathrm{R}[\mathrm{j}] ;$
R31 = R31 * R31;
REDUCE(R31);
$\}^{\text {RED }}$

6. Conclusions

5. Results

Profiling of Execution Time

Energy Consumption per 100 MMatches

Platform	TDP[W]	SAD energy [J]	SSD energy [J]]
Core i7 2600K	95	83.77	76.98
NVidia GTX680	195	24.23	24.37
NVidia 8800 Ultra	175	-	286.88
ARM Cortex A9	1.25	53.41	59.24
SIMD accelerator	1.2	13.01	8.95

SSD and SAD matching

Platform	ARM Cortex A9	SIMD Accelerator
Frequency [MHz]	667	100
SSD Rate [MM/s]	2.11	13.40
SSD Speedup	1	6.35
SAD Rate [MM/s]	2.34	9.22
SAD Speedup	1	3.94

- The SIMD accelerator implemented using a Zynq-7000 SOC is able to achieve 4-6x better SIFT descriptor matching throughput than a Cortex A9 processor, despite the FPGA implementation and 100 MHz operating frequency.
- Performance is delivered at about $3 x$ less energy consumption and similar power consumption
- The accelerated system is 40% more energy effective than Intel Core i7 2600K and Nvidia GTX680 when executing SIFT matching benchmark

D.C.A.E.

