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Abstract 

A compiler for embedded platforms has many optimization flags providing code size and 

speed improvement. Traditional profiling methods take lot of time to identify the best 

combination of the compiler flags to suit the requirement, especially if the software stack is 

very huge. AUTOSAR is one such growing software market in which there is a need for rapid 

performance assessment. In this thesis a means to estimate the performance of a program 

using the process algebraic language (PEPA) is investigated. The assembly program from 

trace is converted in to the PEPA model and the performance measures obtained by solving 

the model is verified against the actual execution time of the program. The experimental 

results provide valuable insights on the methodology.   
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1. Introduction: 

 

1.1 Motivation 

The state-of-art automotive vehicle (Passenger Car / Commercial Vechicle ) houses many 

embedded systems like Enginer Management System (EMS) , Exhaust Gas Treatment , 

Adaptive Cruise Control (ACC)  , Advanced Driver Assistance System (ADAS) etc  offering 

safety and comfort features. The basic embedded system unit of a vehicle is the Electronics 

Control Unit (ECU). A typical car houses about 80-100 ECUs and about 30% cost of the 

vehicle is attributed to the ECU. A ECU basically is a application specific hardware and 

software co-design. The complexity of the automotive software is increasing year by year , 

with contribution of the number of patents for the software techniques being highest 

combined with rapid innovation in the vehicle safety and comfort features.  

The volume of the in-vehicle software  is expected to increase by 30-40% in the coming years 

[23]. Automotive applications correspond to about 17% of the embedded market . From 

2012 to 2013 the automotive applications have increased by 2%[23].According to the survey 

about 44% of the applications are started from scratch in 2013, and remaing 56% are the 

upgrades or improvement on the earlier project. One of the main catalyst to the the rapid 

changes in the automotive embedded market is AUTOSAR[1].  

With increasing complexity of electronics in modern vehicle systems, the AUTOSAR 

(AUTmotive Open System Architecture) community was born. The goal was to reduce this 

complexity by means of standardized software modules and a layered architecture. The side-

effect of the standardization was that modules have to be developed in a generic way and 

cannot be optimized for each single project as it was the case in the past. Although the 

modules are highly configurable, the footprint and CPU load of AUTOSAR ECUs are strongly 

increasing. 

  
In AUTOSAR, the software modules are rapidly developed/reused/configured and delivered. 

The entire automotive industry is migrating to the AUTOSAR. The software development 

ƳƻŘŜƭ ŘƻŜǎƴΩǘ ƛƴŎƭǳŘŜ ŀ ǇǊƻŎŜǎǎ ƻŦ ƻǇǘƛƳƛȊƛƴƎ ǘƘŜ ǎƻŦǘǿŀǊŜ ƳƻŘǳƭŜǎ ƻǊ ŀƴȅ ŀŘ-hoc research 

in between. Although numerous guidelines (MISRA [2] )are available to the developer, they 

only address compliance to safety. Guidelines for optimization are not the same among 

different hardware platforms. Hence the need of the hour is to develop a tool or 

methodologies in which the developer can rapidly asses the performance of the software 

modules validate the software reviews based on statistical measures. This project attempts 

to provide the prototype of such a tool.  

http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://www.autosar.org/
http://automotive.roger.free.fr/articles/miscprev.pdf
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Continental Engineering Services GmBH ς AUTOSAR Center is one of the members of the 

AUTOSAR consortium. The R&D team of the company extensively reserches on the  compiler 

optimization flags and coding guidelines for the best performance result .The team also 

specializes in developing, configuring the AUTOSAR modules , tailored to the needs of the 

Original Equipment ManufacǘǳǊŜǊǎ όh9aΩ{ ƭƛƪŜ .a²Σ ±h[±hΣ ŜǘŎύ ŀƴŘ ŘŜƭƛǾŜǊƛƴƎ ŦƻǊ ǘƘŜ 

series production. 

 

1.2  Overview  

Vowing to the rapid prototyping and validation of the software modules in AUTOSAR, and 

the large time consumed by the traditional profiling methods, the need is to investigate the 

possibility of assessing the performance measure with the help of modeling techniques. 

IŜƴŎŜ ǘƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ƛǎ άdevelopment of a methodology for rapid code profiling 

using process algebraic modeling languageέΦ   

In this project we statically evaluate embedded system software for different optimization 

strategies/coding styles to meet the best performance without actually running on the 

platform; Essentially a Static Code Analysis [3] .The source code is first fed through the 

compiler with a particular optimization set or with a certain coding style. The compiler does 

a transformation on the code and the assembly/trace file is generated. This intrinsically 

provides information on how fast the hardware is going to run the code. A model (explained 

in the subsequent sections) can be generated from the assembly code using the PEPA [4] 

terminology. 

PEPA stands for Performance Evaluation Process Algebra, is a tool supporting performance 

ƳƻŘŜƭƛƴƎ ǘŜŎƘƴƛǉǳŜǎΦ LǘΩǎ ǎƛƳǇƭȅ ŀƴ ŀƭƎŜōǊŀƛŎ ƭŀƴƎǳŀƎŜ ǿƘƛŎƘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ōǳƛƭŘ ŀ ƳƻŘŜƭ ƻŦ 

the system and ascertain its performance matrix. We chose PEPA because it is a high-level 

model specification language for low-level stochastic models, which allows the model of the 

system to be developed as a number of interacting components undertaking certain 

activities. A PEPA model has a finite set of components that correspond to indefinable parts 

or roles of the system. PEPA allows us to model different actors of a system (for example in a 

processor , instruction fetch unit, decode unit, execution unit, cache fetching etc.) and 

analyze the effect of each of these different actors in unison or independently. 

The hardware properties basically refer to the basic properties like single fetch or 

superscalar processor, type and amount of cycles consumed by each instructions. Once we 

obtain the performance ratings, the source code and the compiler can be tuned for the best 

optimization results. In this case the performance can be obtained in the view of optimal 

speed. For validating the model we can later run the actual code on the platform and 

compare the results and as a feedback fine tune the model or the code. 

 

http://en.wikipedia.org/wiki/Static_program_analysis
http://www.dcs.ed.ac.uk/pepa/


TU Delft & Continental Engineering Services 
Master Thesis 

7 

 

 

 

                                                              Figure 1: Overview  

 

A program can be visualized as a set of basic blocks with each consuming different time for 

execution. The rate of execution of the basic blocks depends on 

1) Distribution of the type of instructions in the blocks: In the sense the amount 

of cycles that each of the instructions in the block consumes. 

2) Memory segment in which the block is available: In the sense the availability 

of the block in the main memory ( cache miss ) or in cache ( cache hit). 

3) The property of the hardware in which the program is run: In the sense the 

type of pipeline structure used (single fetch pipeline or dual fetch pipeline) 

and also the amount of cycles consumed by each memory or cache access. 

Correspondingly, based on these three classification, we can define three type of execution 

rates.         

 1)  LƴǎǘǊǳŎǘƛƻƴ 9ȄŜŎǳǘƛƻƴ wŀǘŜ Υ LǘΩǎ ǘƘŜ ǊŀǘŜ όмκǘƛƳŜύ ŀǘ ǿƘƛŎƘ ǘƘŜ ōƭƻŎƪ ƻŦ ƛƴǎǘǊǳŎǘƛƻƴ 

is executed by the processor. 

2)       !ŎŎŜǎǎ wŀǘŜ Υ LǘΩǎ ǘƘŜ ǊŀǘŜ ŀǘ ǿƘƛŎƘ ǘƘŜ ōƭƻŎƪ ƛǎ ŀŎŎŜǎǎŜŘ ŜƛǘƘŜǊ ŦǊƻƳ ƳŜƳƻǊȅ ƻǊ   

           from  Cache 

              оύ   9ŦŦŜŎǘƛǾŜ ǊŀǘŜΥ LǘΩǎ ǘƘŜ ŎƻƳōƛƴŜŘ ǊŀǘŜ ƻŦ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ƛƴǎǘǊǳŎǘƛƻƴ ōƭƻŎƪΦ 

 

The figure 2 shows the basic representation of the program in terms of blocks of instructions 

Σ ǿƘŜǊŜ ǊмΣǊнΣǊоΧǊb ŀǊŜ ǘƘŜ LƴǎǘǊǳŎǘƛƻƴ ŜȄŜŎǳǘƛƻƴ ǊŀǘŜ Σ !wмΣ!wнΣ!wоΣΧ!wb ŀǊŜ ǘƘŜ !ŎŎŜǎǎ 

ǊŀǘŜǎ ŀƴŘ 9wмΣ9wнΣ9wоΧ9wb ŀǊŜ ǘƘŜ 9ŦŦŜŎǘƛǾŜ ǊŀǘŜ ōŜŦƻǊŜ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴΦ {ƛƳƛƭŀǊƭȅ 

ǊΩмΣǊΩнΣǊΩоΧǊΩb ŀǊŜ ǘƘŜ LƴǎǘǊǳŎǘƛƻƴ ŜȄŜŎǳǘƛƻƴ ǊŀǘŜ Σ !wΩмΣ!wΩнΣ!wΩоΣΧ!wΩb ŀǊŜ ǘƘŜ !ŎŎŜǎǎ ǊŀǘŜǎ 

ŀƴŘ 9wΩмΣ9wΩнΣ9wΩоΧ9wΩb ŀǊŜ ǘƘŜ 9ŦŦŜŎǘƛǾŜ ǊŀǘŜ ŀŦǘŜǊ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴΦ 
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                 Figure 2: Program representation in terms or basic blocks 

Block access rate can be the memory access (MA) or cache access (CA). In order to identify 

the change in rates of the basic blocks, CTMC (Continues Time Markov Chain) terminologies 

are used with the help of the modeling language PEPA. The above representation of the 

system can in turn be represented like a CTMC as shown in the following figure (with a 

possible memory / cache access scenario). 

 

          Figure 3: CTMC representation of basic blocks 

Each block is represented as a state in the CTMC with, exit rates being the rate at which the 

block is executed and at the end of execution the state changes to the next block. The entry 

rate to a state depends on the rate of accesses (CA/MA) and the exit rate from the preceding 

state. From a CTMC, number of mathematical measure can be derived like the transient / 
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steady state probability matrices, Average response time, Cumulative distribution function 

etc. which in turn gives the performance of the system. A compiler flag or combination of 

compiler flags may alter the execution rate of the basic block of a program by  

1) changing  the type of instructions used  , 

 or  

2) by shifting the memory in which the instruction is stored(in case of a Instruction 

Cache) 

and such changes can be easily identified in the performance measure of the CTMC. In order 

to evaluate the performance measures we need to convert the assembly program in to a 

process algebraic language model which can evaluate the performance measures. The 

number of instructions in a basic block and rate of cache and memory access is directly 

dependent on the issue fetching capability of the hardware platform. In the following 

chapters we will discuss important performance measures, methodology and tools used for 

performance estimation and the obtained results. 

1.3          Challenges 

The optimization criteria are the Speed of execution and the Memory consumption. Since 

memory consumption estimation is already available in the current project setup we will 

only consider estimating the speed of execution.  A tool which can develop the PEPA script 

from the assembly / trace file needs to be developed which would make methodology 

scalable and less time consuming. Initial work can be dedicated to manual scripting and then 

can be extended to automated scripting. If it becomes necessary to analyze the Boolean 

predicate code then we also need to develop a script for the conversion to PEPA model. 

LŦ ǿŜ ǳǎŜ ƻƴƭȅ ŀǎǎŜƳōƭȅ ŦƛƭŜ ŦƻǊ ǘƘŜ ŀƴŀƭȅǎƛǎ ǘƘŜƴ ƛǘΩǎ ǘŜŘƛƻǳǎ ǘƻ ǘǊŀŎŜ ōŀŎƪ the original source 

in C and if we used Boolean predicate code [9] although it becomes easy to trace the source 

in C, we miss the compiler optimization effects which can only be seen in the assembly file. 

The best use-case is expected to be obtained during the experimentation. We start modeling 

for a simple CPU like (single core, single pipeline, and single thread [10]) and in the near 

future scale it to higher level systems. 

1.4           Outcomes & Expectations 

This method in a way produces the performance model [11] of the source code and the 

compiler or the developers. They can estimate the effect of different coding styles, and 

compiler optimizations (individually or in unison) statically & rapidly. The user can run the 

tool interactively and can include CSL (Continuous Stochastic Logic) formula [12] checks to 

evaluate satisfiability of stochastic criteria or estimate a stochastic measure.  

This kind of static performance estimation is of high importance as they are less costly and 

less time consuming. The entire setup will be rapid because of the fast solvers available in 

the PEPA supported compilers and plug-in and easily scalable if we can develop tool for 

http://research.microsoft.com/pubs/69821/tr-2000-115.pdf
http://www.cpubenchmark.net/singleThread.html
http://researcher.watson.ibm.com/researcher/view_pic.php?id=150
http://eprints.eemcs.utwente.nl/11189/01/formats.pdf
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conversion to the PEPA model from the respective sources. As an extension of the thesis, we 

can test the project on some dedicated platforms to evaluate it further. 

 

             1.5            Background 

 

a) AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development partnership 

of car manufacturers, suppliers and other companies from the electronics, semiconductor 

and software industry. 

¶ Paves the way for innovative electronic systems that further improve performance, 

safety and environmental friendliness 

¶ Is a strong global partnership that creates one common standard: "Cooperate on 

standards, compete on implementation" 

¶ Is a key enabling technology to manage the growing electrics/electronics complexity. 

It aims to be prepared for the upcoming technologies and to improve cost-efficiency 

without making any compromise with respect to quality 

¶ Facilitates the exchange and update of software and hardware over the service life of 

the vehicle 

!¦¢h{!w ǇǊƻǾƛŘŜǎ ŀ ŎƻƳƳƻƴ ǇƭŀǘŦƻǊƳ ƛƴ ǿƘƛŎƘ h9aΩǎ Σ ǎǳǇǇƭƛŜǊǎ  Σ ǘƻƻƭ ǇǊƻǾƛŘŜǊǎ ŜǘŎ Ŏŀƴ 

collaborate with benefit that complexity of integration is reduced while improving the 

ŦƭŜȄƛōƛƭƛǘȅ Σ ǉǳŀƭƛǘȅ ŀƴŘ ǊŜƭƛŀōƛƭƛǘȅΦ ¢ƘŜ h9aΩ{ ōŜƴŜŦƛǘ ōȅ ŜƴƘŀƴŎŜŘ ŘŜǎƛƎƴ ŦƭŜȄƛōƛƭƛǘȅ Σ ǊŜǳǎŜ ƻŦ 

software modules across variants,simplified integration and reduced development costs. The 

suppliers benefit from reduction  of version proliferation and the ease of function 

development. The tool developers can produce seamless and optimized landscapes for 

tools.Thus AUTOSAR allows for smoother portability between different platforms. The car 

production of AUTOSAR OEM members covers ~81% of the total  cars produced worldwide.A 

ǊŀǇƛŘ ƎǊƻǿǘƘ ƻŦ !¦¢h{!wΩǎ ƳŀǊƪŜǘ ǇŜƴŜǘǊŀǘƛƻƴ ōŜǘǿŜŜƴ нлмн ǘƻ нлмс ƛǎ ǇǊŜŘƛŎǘŜŘ ǎǳŎƘ ǘƘŀǘ  

least 25% of the total number of ECUs produced in 2016 will have AUTOSAR  inside[1] 

 

http://www.autosar.org/
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    Figure  4: From 4th AUTOSAR open conference[1] 

 

b) Code analysis & Profiling 

 

There are basically two types of analyisis that can be performed on a code. 

1) Static analyisis. : is a technique of analyzing the source code statically without 

actually running the program on the hardware.These techniques extract the 

information about the oppertunity for the optimization in the source code by 

analysis. Such technique are usually faster than the dynamic analysis but they are less 

precise. 

2) Dynamic analysis : is a technique of analyzing the source code by running it on a real 

or virtual processor and profiling it. Profiling the program consists of collecting the 

oppertunities during the execution of the program in order to guide effective 

optimization.The optimizations can be performed either on the source code, 

assembly code or by re-compilation guided by the collected information.There are 

two types of dynamic analysis 

a. By Instrumentation : In this technique several instructions are inserted in 

source level or assembly level or in the binary level. Instrumentation adds 

code to increment counters at the entry or exit function which will simulate 

the harware performance counters or even simulate hardware to get 

synthetic event counts. The instrumentation technique may dramatically 

increase the execution time such that the time measurement become 

redundant. It also becomes time inefficient in case of a huge  software stack 

making profiling itself time consuming. Example MAQAO[31]. 

b. By Sampling : In this method measurement points are inserted during short 

time intervals.The validity of the result depends on the choice of the 

measurement.Example Prof and Gprof. 

 

http://www.autosar.org/
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf
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c) Process algebra 

Process algebra is a method for formally modeling concurrent systems. Process algebra 

provides a tool for the high-level description of interactions, communications, and 

synchronizations between a collection of independent agents or processes. They also 

provide algebraic laws that allow process descriptions to be manipulated and analyzed, 

and permit formal reasoning about equivalences between processes. Examples of 

process calculi include CSP, CCS, ACP, LOTOS ,-̄calculus, the ambient calculus, PEPA, the 

fusion calculus and the join-calculus [37]. 

d) Model checking 

Given a model of a system, Model checking refers to exhaustively and automatically 

checking whether the model meets a given specification.In general Model checking delas 

with verifying the correctness of a finite state systems.In order to achieve this , the 

model of the system and the specifications are fomulated in terms of precise 

mathematical language.  

 

     1.6       Related Work 

 

Emphirical/Process algebraic model based performance prediction system for compiler 

ƻǇǘƛƳƛȊŀǘƛƻƴ ŜǾŀƭǳŀǘƛƻƴ ƛǎ ŀƴ ŜȄŎƭǳǎƛǾŜ ŀǊŜŀ ƻŦ ǊŜŀǎŜŀŎƘ ŀƴŘ ƛǘΩǎ ǘƘŜ ǘƻǇƛŎ ŦƻǊ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ 

survey. 

Qualitative analysis tools using model checking are available. Model checking and static 

analysis are automated techniques promising to ensure that the correctness of the software 

and to find certain class of bugs automatically. One of the drawbacks of the model checker is 

that they typically operate on a low level semantic abstraction making them suitable for 

small software stack, but less so for larger stack and when the soundness is paramount as in 

the case of industrial C/C++ code containing pointer arithmetic , unions templates and alike. 

Goanna is built on an automata based static analysis framework as described in [25].The tool 

maps the C/C++ program to its Control Flow Graph (CFG) and labels the CFG with 

occurrences of syntactic constructs of interests automatically. The CFG together with the 

labels can be seen as a transition system with atomic propositions, which can be easily 

mapped to the input of a model checker (NuSMV) or translated in to a Kripke structure. The 

basic checks which can be performed by Goanna are   access violations,   memory leaks array 

and string overruns, division by zero, unspecified, non-portable, and/or dangerous 

constructs  and security vulnerabilities. Model checking has also been used to check the 

malicious code patterns by [26] 

http://www.win.tue.nl/fm/0402history.pdf
http://www.ssrg.nicta.com.au/publications/papers/Fehnker_HJLR_06.pdf
http://www7.in.tum.de/um/bibdb/kinder/mcodedimva05.pdf
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One of the quantitative measures of a program execution is its Worst Case Execution Time 

WCET. METAMOC [27] (Modular Execution Time Analysis using Model Checking)  is a 

modular method based on model checking and static analysis , that determines the safe and 

tight WCET for programs running on platforms featuring caching and pipelining. The method 

works by constructing the UPPAAL [28] model of the program being analyzed and annotating 

the model with information from the interprocedural value analysis. The program model is 

then combined with a model of the hardware platform and the model checked for the 

WCET. The tool is retargetable for platforms ARM7,ARM9 and ATMEL AVR 8-bit. The pipeline 

and cache behavior are modeled in UPPAAL. In [29] it is debated that model checking is not 

suitable for WCET analysis but in [30] its shown that model checking can actually improve 

the WCET estimates for hardware with caching. In the master thesis [38] modeling the 

Analytical Software Design blocks as queueing systems is investigated in order to reduce the 

implementation errors in the integration phase of the software project.  

Qualitative performance measure of a code produced by the compiler is essential to get high 

performance. Previously the quantitative measure was assesed by the number of 

instructions. With recent generation of micro processors the matrices are no longer 

valid.The number of branches , use of specific instructions , Caches which have been 

introduced to improve the temporal locality and other architectural feature like instruction 

prefecting are responsible for the performance. Modular Assembler Quality Analyzer and 

Optimizer (MAQAO) [31] is a tool performing the static analyis on the assembly code. The 

tool takes assembly as input, constructs the CFG , call flow graph, loop structure . Furthur 

analysis can be scripted using the SQL scripting symantics. Some of the analysis that can be 

performed by MAQAO are gathering statistics like number of NOPs,number of bundles with 

three way branching or number of loops, generating the histogram of basic blocks size in a 

function or histogram of the IPC (instruction per count) , code pattern such as defecient 

sequence,missing prefetches detection , detection of the optimization performed by the 

compiler etc. 

The lack of statically available information may prevent user to apply different compiler 

optimization or program transformation aggressively or applying them together. 

Performance aware compilation systems address this problem by a combination of run-time 

testing and static information. Dynamic compilation systems such as [32] enable the code 

generation at the runtime allowing the compiler to exploit the knowledge about the input 

values and hence generate more efficient code. In another case [33] at run-time the best 

combination of the optimizations is chosen by evaluating the performance of each of the 

versions.  In case of performance prediction systems, empherical model of the code is used 

as static estimators to guide the application of the program transformations with goal to 

select the highest possible performance as done in [34]. In several other cases the 

performance of the application is modeled based on analytical expressions as done in [35]. 

 

http://metamoc.dk/
http://www.uppaal.com/
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_25#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_26#page-1
http://www.utwente.nl/ewi/dacs/assignments/completed/master/reports/2010_hettinga.pdf
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf
http://people.cs.pitt.edu/~mock/papers/fdo99.pdf
http://web.eecs.utk.edu/~gmarin/papers/hpcview-tjs02.pdf
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.cs.rochester.edu%2Fu%2Fumit%2Fpapers%2Fjsp99.ps&ei=YtjnUcvNBom1O8mCgcgH&usg=AFQjCNG319YLLbJXuMeOSkzhxHCFpUVnPQ&sig2=O6FBJdkYYkenj3rLs-kjBw
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.6227&rep=rep1&type=pdf
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Performance oriented modeling techniques [36] offer an alternative way of enabling the 

compiler to derive and select a set of program transformations . This modeling approach is 

valuable in scenarios in which the application takes extremely long time to execute making 

profiling impractical or even predict the performance on future architectures. Using the 

target architecture description in terms of the number of functional units , pipelines and 

their depth the compiler can derive a set of performance analytical expression for a set of 

scenarios and determine for each of these scenarios what the expected performance is in 

terms of consumed clock cycles and peak performance and execution of the code section 

would take. For example if one of the various memory references in the basic block casues a 

TLB miss that leads to pipeline stall (due to data dependencies) this leads to a substantial 

decrease in overall performance.For different scenario emperical model can be obtained or 

by target architecture cycle level accurate simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.isi.edu/~pedro/PUBLICATIONS/Diniz.PMA03.pdf
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2. Instruction Pipeline  

 

2.1 Pipelines: 

A assembly program is a contiguous set of instructions derived from the original C program. 

Each instruction in an assembly program takes certain cycles for execution. An instruction 

pipeline is a technique used in the design of computers architecture to increase their 

instruction throughput (the number of instructions that can be executed in a unit of time). 

Pipelining does not reduce the time to complete an instruction, but increases the number of 

instructions that can be processed at once. 

Each instruction is split into a sequence of dependent steps. The first step is always to fetch 

the instruction from memory; the final step is usually writing the results of the instruction to 

processor registers or to memory. Pipelining seeks to let the processor work on as many 

instructions as there are dependent steps, rather than waiting until the current instruction is 

executed before admitting the next one. Pipelining lets the computer's cycle time be the 

time of the slowest step, and ideally lets one instruction complete in every cycle. 

 

A pipeline typically includes the following 5 steps  

1. Instruction fetch (IF) 

2. Instruction decode and register fetch (ID) 

3. Execute (EX) 

4. Memory access (MEM) 

5. Register write back (WB) 

The following diagram shows the typical 5-stage instruction pipeline and the way the 

instruction is processed in each stage. 

 



TU Delft & Continental Engineering Services 
Master Thesis 

16 

 

    Figure 5 : Single Fetch Instruction Pipeline 

 

2.2  Superscalar CPU  

A superscalar CPU incorporates instruction level parallelism within a single processor and 

hence achieving faster throughput than a single fetch processor. A superscalar processor 

executes more than one instruction during clock cycle by simultaneously dispatching 

multiple instructions   

The following diagram shows the typical dual fetch 5-stage instruction pipeline. 

 

 

                       Figure 6 : Dual Fetch Instruction Pipeline  

 

Similar to the single fetch CPU even in a dual fetch CPU, the instructions are fetched 

sequentially . The CPU checks dynamically the data dependencies between instructions at 

the run time  
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3.  Cache  

 

 A cache is a small amount of memory which operates more quickly than main memory. Data 

is moved from the main memory to the cache, so that it can be accessed faster. The cache 

memory performance is the most significant factor in achieving high processor performance.  

Cache works by storing a small subset of the external memory contents, typically out of its 

original order. Data and instructions that are being used frequently, such as a data array or a 

small instruction loop, are stored in the cache and can be read quickly without having to 

access the main memory. Cache runs at the same speed as the rest of the processor, which is 

typically much faster than the external RAM operates at. This means that if data is in the 

cache, accessing it is faster than accessing memory. 

When the processor needs to read from or write to a location in main memory, it first checks 

whether a copy of that data is in the cache. If so, the processor immediately reads from or 

writes to the cache, which is much faster than reading from or writing to main memory. A hit 

in a cache is when the processor finds data in the cache that it is looking for. A miss is when 

the processor looks for data in the cache, but the data is not available. In the event of a miss, 

the cache controller unit must gather the data from the main memory, which can cost more 

time for the processor. Most modern CPUs have at least three independent caches: an 

instruction cache to speed up executable instruction fetch, a data cache to speed up data 

fetch and store, and a translation look aside buffer (TLB) used to speed up virtual-to-physical 

address translation for both executable instructions and data. The data cache is usually 

organized as a hierarchy of more cache levels  

          

 

      3.1  Cache Entry  

Data is transferred between memory and cache in blocks of fixed size, called cache lines. 

When a cache line is copied from memory into the cache, a cache entry is created. The cache 

entry will include the copied data as well as the requested memory location which is called 

as a tag. 

When the processor needs to read or write a location in main memory, it first checks for a 

corresponding entry in the cache. The cache checks for the contents of the requested 

memory location in any cache lines that might contain that address. If the processor finds 

that the memory location is in the cache, a cache hit has occurred (otherwise, a cache 

misses).  
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In the case of 

¶ a cache hit, the processor immediately reads or writes the data in the cache line. 

¶ a cache miss, the cache allocates a new entry, and copies in data from main memory. 

Then, the request is fulfilled from the contents of the cache 

Cache row entries usually have the following structure: 

      

The data block (cache line) contains the actual data fetched from the main memory. The tag 

contains a part of the address of the actual data fetched from the main memory. Flag bits 

indicate whether a cache block has been loaded with a valid data(valid bit).A instruction 

cache has only one flag bit(valid bit) per cache row where as a data cache has two flag bits 

(valid bit and dirty bit) per cache row. 

The size of the cache is the amount of main memory data it can hold. This size can be 

calculated as the number of bytes stored in each data block times the number of blocks 

stored in the cache. (The number of tag and flag bits is irrelevant to this calculation, although 

it does affect the physical area of a cache). 

An effective memory address is split (MSB to LSB) into the tag, the index and the block 

offset.  

      

The index describes which cache row (which cache line) that the data has been put in. The 

index length is log2(cache rows) bits. The block offset specifies the desired data within the 

stored data block within the cache row. Typically the effective address is in bytes, so the 

block offset length is log2(byte per data block) bits.  The tag contains the most significant bits 

of the address, which are checked against the current row (the row has been retrieved by 

index) to see if it is the one we need or another, irrelevant memory location that happened 

to have the same index bits as the one we want. The tag length in bits is  (address_length ς 

index_length ς block_offset_length). 
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               3.2 Cache Replacement Policy 

In order to make room for the new entry on a cache miss, the cache may have to evict one of 

the existing entries. The heuristic that it uses to choose the entry to evict is called the 

replacement policy. The fundamental problem with any replacement policy is that it must 

predict which existing cache entry is least likely to be used in the future. Predicting the 

future is difficult, so there is no perfect way to choose among the variety of replacement 

policies available. The following replacement policies exist. 

¶ Least Recently Used (LRU) 

¶ Round Robin (or FIFO) 

¶ Most Recently Used (MRU) 

¶ Random Replacement 

 

3.3  Cache Associativity 

The replacement policy decides where in the cache a copy of a particular entry of main 

memory will go. If the replacement policy is free to choose any entry in the cache to hold the 

copy, the cache is called fully associative. Accordingly there are 2-way,4-way associative 

cache. If each entry in main memory can go in just one place in the cache, the cache is called 

to be directly mapped.            

 3.4 Cache Performance: 

A processor with a cache first looks in the cache for data (or instructions). On a miss, the 

processor then fetches the data (or instructions) from main memory. On a miss, this process 

takes longer time  than an equivalent processor without a cache. 

There are three ways a cache gives better net performance than a processor without a 

cache: 

¶ A hit (read from the cache) is faster than the time it takes a processor without a 

cache to fetch from main memory. The trick is to design the cache so we get hits 

often enough that their increase in performance more than makes up for the loss in 

performance on the occasional miss. (This requires a cache that is faster than main 

memory). 

¶ Multiprocessor computers with a shared main memory often have a bottleneck 

accessing main memory. When a local cache succeeds in satisfying memory 

operations without going all the way to main memory, main memory bandwidth is 

freed up for the other processors, and the local processor doesn't need to wait for 

the other processors to finish their memory operations.  

¶ Many systems are designed so the processor often read multiple items from cache 

simultaneously -- either 3 separate caches for instruction, data, and TLB; or a multi 
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ported cache; or both -- which takes less time than reading the same items from 

main memory one at a time. 

 

A processor without a cache has a constant memory reference time, Ὕ  =  Ὕ  + E 

A processor with a cache has an average memory access time, Ὕ  = m * Ὕ+ Ὕ + E 

where 

¶ m is the miss ratio 

¶ Ὕ is the time to make a main memory reference 

¶ Ὕ is the time to make a cache reference on a hit 

¶ E accounts for various secondary factors (memory refresh time, multiprocessor 

contention, etc.) 

Cache hit/miss is evident in any assembly program and both the programmer and the 

compiler are the reason for the cache miss in a program. Depending on the cache 

configuration, the cache hit miss scenario can be modeled from the assembly program and 

the overall delay can be evaluated statically the best configuration can be selected. 
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4. Probability Theory & Stochastic Processes 

 

4.1 Probability  

If n is the number of possible outcomes of an system, each of them equally likely, nA is the 

number of events in favor of event A , the Pr[A] = nA / A. Set of all possible outcomes is called 

the sample space S.  The following axioms hold good. 

¶ Pr [S] =1 

¶ Given A  . Ґ  ˒, events A & B are mutually exclusive  then Pr [A U B] = Pr[A] + Pr[B] 

& Pr [A U B] = Pr[A] + Pr[B] - Pr [A  .] 

¶ If two events A and B are independent Pr [A  .] = Pr [A] Pr [B] .  

¶ Conditional probability Pr [A | B] = Pr [A  .] / Pr [B]  

¶ Law of total probability Pr [A ] = 0Ò ! ȿ "Ë 0Ò "Ë , Bk  .Ƨ Ґ  ˒

 

4.2 Random Variables 

A variable whose possible values are the numerical outcome of a random phenomenon is 

called as a random variable. More formally a random variable is a measurable function from 

a probability space (s,Ṿ,P) into a measurable space όǎΩΣ ṾΩύ known as the state space. Also a 

random variable  X is a real function whose domain is the probability space  s and such that:  

1. The set ϑ· Җ Ȅϒ is an event for any real number x.  

2. The probability of the events { X = +қϒ and {X = -қ ϒ equals zero.  

There are two types of random variables, 

Discrete time random variable takes values in discrete steps denoted as X[k] where k= 

лΣмΣнΣоΧ қ Φ 

/ƻƴǘƛƴǳƻǳǎ ǘƛƳŜ ǊŀƴŘƻƳ ǾŀǊƛŀōƭŜ ǘŀƪŜǎ ƛƴ Ŏƻƴǘƛƴǳƻǳǎ ǎǘŜǇǎ ŘŜƴƻǘŜŘ ŀǎ ·όǘύ ǿƘŜǊŜ лҖǘғқ 

4.2.1 Cumulative Distribution Function 

A cumulative distribution function describes the probability that a real valued random 

variable X with a given probability distribution will be found at a value less than or equal to x 

CόȄύ Ґ tǊό·ҖȄύ 
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4.2.2 Probability Density Function 

A probability density function describes the relative likelihood for the random variable to 

take a given value. 

f(x) = 
▀

▀●
 (Fx)  

 

4.3 Probability Distribution Functions 

1) Exponential Distribution  

A random variable X is said to be exponentially distributed if it satisfies the probability 

ŘŜƴǎƛǘȅ ŦǳƴŎǘƛƻƴ  ŦόȄύ Ґ ʰ Ŝ-ʰȄ  h ΣȄ җ л ǿƘŜǊŜ ʰ ƛǎ ǘƘŜ ǊŀǘŜ ŀǘ ǿƘƛŎƘ ǘƘŜ ŜǾŜƴǘ ƻŎŎǳǊǎ Φ  

The cumulative  distribution function is   F(x) = 1 - h  Ŝ-ʰȄ 

The mean , or average of the distribution ,˃ Ґ мκʰ .  Variance  ±ŀǊώ·ϐ Ґ мκʰ2. 

Exponential distribution satisfies memoryless property , tǊώ·җǘ Ҍ¢ μ · Ҕ ǘϐ Ґ tǊώ· Ҕ ¢ ϐ  

2) Poisson Distribution 

A random variable X is said to be Poisson distributed if its satisfies the probability density 

function ,  

ŦόȄΣƪύ Ґ ˂k e-˂ / k!.   

The cumulative distribution function F(x,k) = e-˂   ἱȾἱȦ
ȿ▓ȿ

░
  

 ˃= Var[X]  = ˂  

 

4.4 Discrete Time Markov Chain 

A stochastic process formally denoted as { X(t) , t Ԝ T} is a sequence of random variables X(t) 

, where the parameter t ς time runs over an index set T. The state space of the stochastic 

process is the set of all possible values of the random variables X(t) and each of these 

possible values is called the state of the process. If the index set T is a countable set , X [k] is 

a discrete stochastic process. If T is continuous X(t) is a continuous stochastic process.  

A stochastic process { X(t) , t Ԝ T} is a Markov process if the future state of the process only 

depends on the current state of the process and not on its past history. Formally, a 

stochastic process { X(t) , t Ԝ T} is a continuous time Markov process if for all  t0 < t1 < t2 < 

ΧΧǘƴҌм of the index set T and for any set ϑȄлΣȄмΣȄнΣΧΦȄƴҌмϒ of the state space it holds that  
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         Pr[X(tn+1)= ●▪ |X(t0)= ●ΣΧΦΣ·όǘƴύҐ ●]=Pr[X(tn+1)= ●▪ |X(tn)=●▪] 

The Markov property states that at any times s > t > 0, the conditional probability 

distribution of the process at time s given the whole history of the process up to and 

including time t, depends only on the state of the process at time t. In effect, the state of the 

process at time s is conditionally independent of the history of the process before time t, 

given the state of the process at time t.  

A discrete time Markov chain { X [k], k Ԝ T} is a stochastic process  whose state space is 

finite or countably  infinite set with index set T = ϑлΣ мΣ нΧΦϒ obeying  

                         Pr[╧▓ =●▓ |╧=●ΣΧΦΣ ╧▓=●▓]=Pr[╧▓ =●▓ |╧▓=●▓] 

A Markov process is called a Markov chain if its state space is discrete. The conditional 

probabilities Pr [╧▓  = j|╧▓ = i] are called the transition probabilities of the Markov chain. 

In general, these transition probabilities can depend on the (discrete) time k. A Markov chain 

is entirely defined by the transition probabilities  and the initial distribution of the Markov 

chain Pr [╧  = ●] .  

By using the definition of the conditional probability it can be shown that the complete 

information of the Markov chain is obtained if, apart from the initial distribution, all time 

depending transition probabilities are known as per the formula. 

Pr[╧=●ΣΧΦΣ ╧▓=●▓] =  Б ╟►╧▒ ●▒ȿ╧▒ ●▒  ╟►╧ ●▓
▒               

If the transition probabilities are independent of time k i.e if  ὖ  = Pr [╧▓  = j|╧▓ = i]  the 

Markov chain is called stationary.  In a state space S with N states (where N = dim(S) can be 

infinite) Since Xk can take N possible values, we denote the corresponding state vector at 

discrete-time k by s[k] = [s1[k]  s2[k] · · · sN [k]] with s(i)[k] = Pr[Xi = k].Hence, s[k] is a 1 × N 

vector. Since the state Xk at discrete-time k must be in one of the N possible states and 

hence , 

 ╟► ╧▓  ░  
╝

░
  or,  

              in vector notation,    s[k].u =  В Ȣ  ▼░ ἳ  
╝
░   where   uT = [1 1 · · · · · · · 1].  

In a stationary Markov chain the states Xk+1 and Xk are connected by the equation of total 

probability     Pr[Xk+1 = j] = ὖ ἜἺ ὢ ἱ
╝

░
    for all j or in vector notation s[k+1] = s[k]. 

P where P is the transition probability matrix and it must hold that  ὖ  
╝

▒
  , means 

that at discrete-time k, there certainly occurs a transition in the Markov chain, possibly to 

the same state as at time k-1. A matrix P satisfying this relation is called stochastic matrix. If 

Pij is independent of k then its called time homogeneous Markov chain. 

Given an initial state vector s[0], the general solution of  s[k] = s[0] .Pk   and s[k+n] = s[0].Pk+n  
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The elements of matrix Pn are called n-step transition probabilities, 

                                                              ╟░▒
▪ = Pr[╧▓ ▪= j | ╧▓ =i] 

The transition probability matrix P is of the form 

 

                       Figure 7 : Transition probability matrix 

Since it must hold for any initial state ǾŜŎǘƻǊ ǎώлϐΣ ōȅ ŎƘƻƻǎƛƴƎ ǎώлϐ Ґ ώл ΧΦΦл м лΧΧΦлϐ  όŀƭƭ 

column zero except for ith column ) which expresses that Markov chain starts from one of 

the possible states , say state i , then s[1] = [Pi1 Pi2 Pi3 ΧΧΧtiN] 

 

4.4.1 The hitting time and Sojourn time  

If A is a subset of  states , A Ṓ S , the hitting time TA is the first  positive time the Markov 

chain is in a state of set A , thus for k җ 0 , TA = min(k : ὢ  Ԝ A ).  The sojourn time of state i 

in a Markov chain is the amount of time the system spends in state i before leaving to state 

jґi. 

4.4.2 Transient ,Recurrent and Absorbing  states  

The probability that a Markov chain , starting at state i will come to state j is given as  

╟░▒ = Pr[╣▒  < қμ ·л Ґ Ƨ] . 

If i = j then , ὖ is the probability of returning to state in i. If Pii =1 then the state is a 

recurrent and if ὖ< 1 , then the state is transient. If ὖ = 1 and ὖ  = 0 for iґƧ ǘƘŜƴ ƛǘΩǎ ŎŀƭƭŜŘ 

an absorbing state. 

4.4.3 The steady state vector 

The state of the system with kҦқ ƛǎ called the steady state and the vector “ = lim kҦқ ǎώƪϐ 

is called the steady state vector and  it must hold that  “  “ Ȣὖ or for each component  

Ⱬ▒ = ╟▓▒  Ⱬ▓
╝

▓
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                    for  1ҖƧҖb  ■░□▓O ╟▓▒ =Ⱬ▒   such that Ⱬ▒
╝

▒
  

 

 

The solution of “ is obtained from the following equation 

 

   

 

4.5 Continuous Time Markov Chain 

For the continuous-ǘƛƳŜ aŀǊƪƻǾ ŎƘŀƛƴ ϑ·όǘύΣǘҗ лϒ ǿƛǘƘ b ǎǘŀǘŜǎΣ ǘƘŜ aŀǊƪƻǾ ǇǊƻǇŜǊǘȅ  Ŏŀƴ ōŜ 

written as 

                   tǊώ·όǘ Ҍ ˍύҐƧμ·όˍύҐƛΣ ·όǳύҐȄόǳύΣ лҖǳғ ˍύ ϐ Ґ tǊώ·όǘ Ҍ ˍύҐ Ƨμ·όˍύҐ ƛ ϐ 

and reflects the fact that the future state at time ǘҌ ˍ only depends on the current state at 

time  ̱ . Similarly as for the discrete-time Markov chain, we assume that the transition 

probabilities for the continuous-ǘƛƳŜ aŀǊƪƻǾ  ŎƘŀƛƴ ϑ·όǘύΣǘҗ лϒ ŀǊŜ ǎǘŀǘƛƻƴŀǊȅΣ ƛΦŜΦ 

independent of a point ̱ in time, 

                Pij(t) = Pr[X(t + ̱) = j|X(̱ ) = i] = Pr[X(t) = j|X(0) = i]  

Similar to discrete time Markov chain, the state vector s(t) in continuous time components 

sk(t) = Pr[Xk = k ] , with P(t) being the transition probability matrix ,satisfies 

s(t+ ̱ ) = s(̱) P(t)  & P(t+ u) = P(t) . P(u)= P(u).P(t) 

Since Markov chain should be in one of the N states  

                 ╟░▒◄  
╝

░
 , with  P(0) =  ÌÉÍO0Ô. 

Given the infinitesimal generator Q Ґ tΩόлύ Ґ ■░□▐O
╟▐ ╘

▐
  the transition probability matrix 

is differentiable for all tҗ0 and hence  ,  

tΩόǘύ Ґ tόǘύ v Ґ v tόǘύ 
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It can be proved that ▲░▒  ▲░░ π
    

 where ▲░▒ = ■░□▐O
╟░▒▐

▐
 җ 0 and ▲░░Җ 0 , 

which implies that sum of rows of Q is zero . ▲░▒ of Q are the derivatives  of the probabilities 

and they reflect the change in the probability from state i towards state j and are called 

rates. 

4.5.1 Properties of ▲░▒ 

If ▲░ = - ▲░░ җ 0  then, ȿ▲░▒ȿ  ▲░
╝

▒    
  . This demonstrates that Q is bounded if and only 

if the rates ▲░ are bounded. For finite state Markov processes, ▲▒ are finite (since qij are 

finite), but, if ▲▒ Ґ қΣ ǘƘŜ ǎǘŀǘŜ ƛǎ ŎŀƭƭŜŘ ƛƴǎǘŀƴǘŀƴŜƻǳǎ ǎƛƴŎŜ ǿƘŜƴ ǘƘŜ ǇǊƻŎŜǎǎ ŜƴǘŜǊǎ ǘƘƛǎ 

state, it immediately leaves the state. Continuous-time Markov chains with all states non-

instantaneous are called conservative. 

4.5.2 Properties of Q 

Q has the property that  P(t) = eQt  = ■░□▪O
╠◄

▪

▪

 and can be explicitly given as follows 

 

    Figure  8: Infinitesimal generator matrix 

4.5.3 Steady state  

If the finite state Markov chain is irreducible, the steady state “ exists. Since steady state 

vector “ ŘƻŜǎƴΩǘ ŎƘŀƴƎŜ ƻǾŜǊ ǘƛƳŜ ÌÉÍ
ᴼ

 tΩόǘύ Ґл ƛƳǇƭƛŜǎ ǘƘŀǘ vόtl) = (Pl)Q = 0 , where Pl=ÌÉÍ
ᴼ

 

P(t). Similar to the argument with discrete time markov chain , the  steady state (row) vector 

“ is solution of “ Q = 0. Since ÌÉÍ
ᴼ

sk(t) = “Ὧ and ÌÉÍ
ᴼ
ǎΩk(t) = 0. 

Alternatively Ⱬ = s(0) (Pl) = ■░□
◄O
 ▼(0) eQt 

The main difference between discrete and continuous-time Markov chains lies, apart from 

the concept of time, in the determination of the number of transitions. In case of a 

continuous time Markov chain, the sojourn time in a discrete chain is deterministic and all 
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times are equal to 1. The sojourn times ˍƧ of a continuous-time Markov process in a state j 

are independent, exponential random variables with mean 1/▲▒ 

 

 

 

4.6 Embedded Markov chain : 

A method of finding ̄ of an ergodic continuous-time Markov chain, Q, is by first finding its 

embedded Markov chain (EMC). EMC is a regular discrete-time Markov chain, also called as a 

jump process. Each element of the one-step transition probability matrix of the EMC, S, is 

denoted by sij, and represents the conditional probability of transitioning from state i into 

state j.The relation between the steady state vector of the continuous time Markov chain “ 

and its corresponding embedded discrete time markov chain v are, 

○░ =Ⱬ░ ▲░ /  Ⱬ▒
╝

▒
▲░  and  Ⱬ░ = (○░Ⱦ▲░) /  

○▒

▲▒

╝

▒
   

The classification in the discrete-time case into transient and recurrent can be transferred 

via the embedded Markov chain to continuous Markov processes. 

 

4.7 Uniformization: 

Uniformization is a method to compute the transient solution of a finite state CTMC. The 

method involves construction of analogous DTMC , where transition occur to an exponential 

distribution with the same parameter in every state and hence the name uniformization. 

For a continuous time Markov chain with infinitesimal generator matrix Q , the uniformized 

transition matrix P(ὖ ) is given as follows 

╟░▒

▲░▒

▲
ȟ                     ░█ ░ ▒

 В▒░ 
▲░▒

▲
 ȟ░█ ░ ▒

 

Where q is a rate value which is chosen to be greater than the magnitude of all the rates 

within the generator matrix  ,  i.e  q җ άὥὼ ȿ ὗὭȟὭ ȿ . In matrix notiation it can be written as 

, 

            P =  
╠

▲
 ╘  , where I is the Identity matrix 

For a starting distribution  “π , the distribution at time t, with system having completed n 

hops can be derived as  
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Ⱬ◄  Ⱬ  

▪  

╟▪
▲◄▪

▪Ȧ
▄▲◄ 

 

¢Ƙƛǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ǎƘƻǿǎΣ ǘƘŀǘ άŀ Ŏƻƴǘƛƴǳƻǳǎ ǘƛƳŜ aŀǊƪƻǾ /Ƙŀƛƴ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ōȅ ŀ 

discrete Markov Chain with transition matrix P as defined above where jumps occur 

according to a Poisson process with intensity ǉǘέ 

 

4.8 First Passage Time Analysis 

/ƻƴǎƛŘŜǊ ŀ ŦƛƴƛǘŜΣ ƛǊǊŜŘǳŎƛōƭŜ Σ /¢a/ ǿƛǘƘ ƴ ǎǘŀǘŜǎ ϑмΣнΣоΧΦΦƴϒ ŀƴŘ ǘƘŜ ƛƴŦƛƴƛǘŜǎƛƳŀƭ ƎŜƴŜǊŀǘƻǊ 

matrix Q. If X(t) denotes the state of the C¢a/ ŀǘ ǘƛƳŜ ǘ όǘҗлύ Σ ǘƘŜƴ ǘƘŜ ŦƛǊǎǘ ǇŀǎǎŀƎŜ ǘƛƳŜ 

from a source state i into a non-empty set of target states  O  is given as  

T
░▒

 O(t) = inf{u > 0 : X(t+u) ɴ 
▒

 O| X(0) = i }   ᶅ  ǘҗл  

For stationary time-homogeneous CTMC    TO  is independent of t, so TO  (t) = inf{u > 0 : X(u) 

 ɴO  | X(0) = i }  .   TO  is associated with probability density function, f(x) of the random 

variable by the relation   

Pr(a< T
░▒

 O<b) = ᷿ █◄ ▀◄
╫

╪
   όлҖ ŀ ғ ōύ 

The cumulative density function (CDF) of passage is obtained by multiplying the probability 

of being in a target state j after exactly n hops within time t by the probability of performing 

n within the time t, 

     ╕▲ȟ◄  ▄▲◄ В    
▲◄▓

▓Ȧ

▪
▓  

 The probability density function (PDF) of a passage is the probability of performing n hops at 

exactly time t to reach state j  is given as 

     █▲ȟ◄   
Ἱ▪ ◄▪  ▄▲◄ 

▪ Ȧ
 

Hence the Passage time equations for CDF and PDF are as follows, 

     

                      ╣
░▒
ᴼ ◄╒╓╕ В ╕▲ȟ◄ȢВ Ⱬ▓

▪
▓ꜗ
▒
ᴼ▪     

                

          ╣
░▒
ᴼ ◄╟╓╕ В █▲ȟ◄ȢВ Ⱬ▓

▪
▓ꜗ
▒
ᴼ▪    
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4.9  Poisson process 

A continuous time stochastic process {X(t) , tҖ0} satisfying the following properties is called a 

poisson process 

(i) X(0) = 0 

(ii)  ᶅt0 = 0 < t1 < t2ΧΦғǘƴ Σ ǘƘŜ ƛƴŎǊŜƳŜƴǘǎ ·όǘ1) ς X(t0) , X(t2) ς X(t1ύ Σ ΧΦΣ·ό ǘn) ς X(tn-1) 

are independent random variables  

(iii) For tҗ 0, s > 0 and non negative integers k, the increments have Poisson 

distribution  

Then      Pr[ X(t+s) ς ·όǎύ  Ґ ƪ ϐ Ґ ό˂ǘύk e- ˂ ǘ/ k! , 

 ˂   is the rate of the Poisson process with mean of the process Ґ ˂ǘ  

The above process is a homogenous Poisson process where the number of events in an 

interval (t, t+̱ ) follows a poisson distribution. 

 

4.9.1       Properties 

мύ  ! tƻƛǎǎƻƴ ǇǊƻŎŜǎǎ ϑ·όǘύ Σ ǘ җлϒ ǿƛǘƘ ǊŀǘŜ ˂ Ҕ л ŀƴŘ ŘŜƴƻǘŜŘ ōȅ ǘл Ґ л ғǘмғǘнΧΦ ǘƘŜ 

successive occurrence times of events, then the interarrival times ʐn = t n ɀ (tn -1)  are 

ƛƴŘŜǇŜƴŘŜƴǘ ƛŘŜƴǘƛŎŀƭƭȅ ŘƛǎǘǊƛōǳǘŜŘ ŜȄǇƻƴŜƴǘƛŀƭ ǊŀƴŘƻƳ ǾŀǊƛŀōƭŜǎ ǿƛǘƘ ƳŜŀƴ мκ˂ Φ Lƴ ƻǘƘŜǊ 

words, the cumulative  distribution function , F(x) = Prώˍƴ Җ Ȅϐ Ґ м ς e-˂Ȅ 

 нύ   LŦ ·όǘύ  ŀƴŘ ¸όǘύ ŀǊŜ ǘǿƻ ƛƴŘŜǇŜƴŘŜƴǘ Ǉƻƛǎǎƻƴ ǇǊƻŎŜǎǎŜǎ ǿƛǘƘ ǊŀǘŜǎ ˂Ȅ ŀƴŘ ˂ȅ Σ then 

½όǘύ Ґ ·όǘύ Ҍ ¸όǘύ ƛǎ ŀƭǎƻ ŀ Ǉƻƛǎǎƻƴ ǇǊƻŎŜǎǎ ǿƛǘƘ ǊŀǘŜ ˂Ȅ Ҍ ˂ȅ 

 3) A Poisson process is the most basic form of a CTMC, i.e a chain of independent 

identically distributed states with mean sojurn time of 1/qj 
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5.  Performance modeling  

Performance modeling is a process of modeling system performance considering various 

sytem parameters with the objective of proactively predicting the performance statically. To 

obtain the performance model of a system, its required to denote the system in abstract 

form of which represents average behavior. In order to perform this several operational laws 

are applied. The advantages of the laws are that, 

1) They are very general and make no assumptions about the behavior of the random 

variables  characterizing the system. 

2) They are very simple meaning that they can be applied quickly and easily by almost 

anyone.  

Based on a few simple observations of the system , by applying these simple laws, we can 

derive more information. Using this information as input , we can gradually build up a more 

complete picture of the behavior of the system.  

Operational laws are built on observable variables. These are values which we could derive 

from watching a system over a finite period of time. Consider a system receiving requests 

from its environment. Each requests generates a job in the system . when the job has been 

processed by the system the system responds to the environment with the completion of 

the requests. Based on this analogy , we can identify the following variables 

  

 

                    Figure 9 : A sample system model 

T : the length of time we observe the system 

A : the number of request arrivals we observe 

C : the number of request completions we observe 

B : the total amount of time during which the system is busy (B<T) 

N : The average number of jobs in the system.  
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From these observed values we can derive the following four  quantities: 

 ˂  = A/T, the arrival rate, 

 X = C/T, the throughput or completion rate, 

 U = B/T, the utilization, 

 S = B/C, the mean service time per completed job 

Response time = Service time + Wait time , where response time is the time between the 

initiation and completion of the response to a request and wait time is the time between the 

submission of the request and initiation of the response. We assume that the system is job 

flow balanced , meaning that number of arrivals is equal to number of completions  during 

an observation period and hence A = C => ˂ Ґ ·. 

           рΦм  [ƛǘǘƭŜΩǎ [ŀǿ 

It states that the average number of jobs in a system is equal to the product of the 

throughput of the system and the average time spent in that system by a job 

If average number of jobs in the system is N , and W is the average residence time of the 

jobs in the system , then the throughput of the system X = N / W 

          5.2  Forced flow law  

It states that the throughput at the ith resource is equal to the product of the throughput of 

the system and the visit count at that resource. 

If  ὠ is the visit count of the ith resource , the ratio of number of completions at that 

resource to the number of system completions is  ὠ = ὅ/C. Hence if ὢ is the throughput of 

the system at ith resource then ὢ = X. ὠ 

         5.3  Utilization Law 

It states that the utilization of a resource is equal to the product of the throughput of that 

resource and the average service requirement at that resource.  

The total amount of the service Si that a system job generates at the ith resource is called 

the service demand Ὀ. Ὀ = Ὓὠ. The utilization of a resource is the percentage of time that 

the ith resource is in use processing the job   

   ╤░ = ╧░╢░ = X╓░. 
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         5.4  Residence Time Law 

It states that the average residence time or average response time of a job in the system will 

be the sum of the product of its average residence time at each resource and the number of 

visits it makes to that resource.  

   W = В ╦░╥░
╝
░  

        5.5   Queueing theory  

Queueing theory describes basic phenomena such as the waiting time, the throughput, the 

losses, the number of queueing items, etc. in queueing systems. A queueing system basically 

consists of a) Arrival process b) Queueing process c) Service process and d) Departure 

Process  

 

  Figure 10 : Queueing model 

The general syntax is A/B/n/K/m, where A specifies the interarrival process, B the service 

process, n the number of servers, K the number of positions in the queue and m restricts the 

number of allowed arrivals in the queueing system. Examples for both the interarrival 

distribution A and the service distribution B are M (memoryless or Markovian) for the 

exponential distribution, G for a general distribution and D for a deterministic distribution. 

The traffic intensity of a Queueing  system , also called Load or Utilization   ́= E[x]/ E[̱] = ˂ κ˃ 

Σ ǿƘŜǊŜ ˂ ƛǎ ǘƘŜ ƳŜŀƴ ƛƴǘŜǊŀǊǊƛǾŀƭ ǊŀǘŜ ŀƴŘ ˃ ƛǎ ǘƘŜ ƳŜŀƴ ǎŜǊǾƛŎŜ ǊŀǘŜΦ !ǇǇƭȅƛƴƎ [ƛǘǘƭŜΩǎ ƭŀǿ  Σ 

the average number of jobs in the system E[Ns] equals to the average arrival rate ˂ ǘƛƳŜǎ ǘƘŜ 

average time spend in the system E[T], E[Ns] = ˂ Φ E[T]. 

      5.6   Queueing Models 

The M/M/1 queue (with unlimited positions in the queue , which will not be indicated in the 

notation) consists of a Poisson arrival process of jobs with exponentially distributed 

interarrival times, a service process with exponentially distributed service time, one server 

and an infinitely long queue.  Similarly M/M/1/K queue consists of a Poisson arrival process 

of jobs with exponentially distributed interarrival times , a service process with exponentially 

distributed service time, one server and with a queue capacity of K.The following tables 

summarizes different performance measures of M/M/1 and M/M/1/K queue 
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Performance Measures M/M/1  M/M/1/K  

¢ǊŀŦŦƛŎ ƛƴǘŜƴǎƛǘȅΣ ˊ ˂κ ˃ ˂κ ˃ 

Utilization , U (per server) ʄ ˊόм ς ((1- ́ ύΦ ˊK/(1- ́ K+1)) 

Average number of jobs in 
the system , E[Ns] 

ˊκόм- ́ ύ ˊκόм- ́ ύ ς όόYҌмύΦ ˊ(K+1))/ (1- 
ˊK+1)) 

Average response time, E[T] 1/ ˃  (1- ́ ύ N/ ˂ ϝмκόм-  ((1- ́ ύΦ ˊK /(1- 
ˊK+1)) 

   

        Table  1 : Queueing  model parameters 

 

6.  PEPA 

PEPA is a stochastic process algebra designed for modeling computer and communication 

systems introduced by Jane Hillston. The language extends classical process algebras such as 

Milner's CCS and Hoare's CSP by introducing probabilistic branching and timing of 

transitions. 

PEPA consists of set of agents which engage in action . Models can be constructed from 

components which engaged in activities. The structured operational (interleaving ) semantics 

of language is used to generate a labeled transition system (LTS) . The behavior of the model 

is dictated by the semantic rules (Structure Operational Semantics) governing the 

combinator of the language. The possible evolutions of a model are captured by applying the 

rules exhaustively generating a labeled transition system. The resulting system can be 

viewed as a graph in which each node can be viewed as a state of the model and the arcs 

representing the actions which can cause the model to move from one state to another i.e a 

CTMC . 

 

 

      Figure 11 : PEPA overview 

Rates are drawn from the exponential distribution and PEPA models are finite-state and so 

give rise to a stochastic process (CTMC). Thus the language can be used to study quantitative 

properties of models of computer and communication systems such as throughput, 

utilization and response time as well as qualitative properties such as freedom from 

deadlock. The language is formally defined using a structured operational semantics in the 

style invented by Gordon Plotkin. 
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PEPA has four combinators, prefix, choice, co-operation and hiding. Prefix is the basic 

building block of a sequential component: the process (a, r).P performs activity a at a rate r 

before evolving to behave as component P. Choice sets up a competition between two 

possible alternatives: in the process (a, r).P + (b, s).Q either a wins the race (and the process 

subsequently behaves as P) or b wins the race (and the process subsequently behaves as Q). 

The co-operation operator requires the two "co-operands" to join for those activities which 

are specified in the co-operation set: in the process P < a, b> Q the processes P and Q must 

co-operate on activities a and b, but any other activities may be performed independently. 

Finally, the process P/{a} hides the activity a from view (and prevents other processes from 

joining with it). 

6.1  Syntax & Properties 

Given a set of action names, the set of CCS processes is defined by the following BNF 

grammar: 

t ΥΥҐ όŀΣ ˂ύΦt μ t Ҍ v μ t ғ[Ҕ vμ tκ[ μ ! 

The parts of the syntax are, in the order given above 

(i) action : 

The process όŀΣ ˂ύΦt can perform an action a at a rate ˂  and continue as the process  P. 

(ii)   choice : 

The process P+Q may behave as either the process P or the process Q. 

(iii) Cooperation : 

The processes P and Q exist simultaneously and behave independently for actions whose 

names do not appear in <>. For actions whose names appear in <>, the action must be 

carried out jointly and a race condition determines the time this takes.  E.g.  P< a,b >Q  : P 

and Q are synchronized over a and b 

              (iv) Parallel :  

The processes P and Q exist simultaneously and behave independently. E.g.  P < > Q. 

(v) Hiding:  

The process P behaves as usual for action names not in L, and performs a action for action  

names that appear in < L >. E.g.   P/{a}. 

(vi) Process identifier:  

write ὃ Ḱὖ to use the identifier A to refer to the process P. 
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6.1.1 Synchronization 

PEPA has a bounded capacity for synchronization . When two activates with different rates 

are synchronized by co-operation operator, the rate of the shared activity is reduced to the 

minimum of the apparent rates of the activity in the co-operating components. 

 

6.1.2 Activity Rate 

²ƘŜƴ ŀƴ ŀŎǘƛǾƛǘȅ ʰ ƛǎ ŜƴŀōƭŜŘ ōȅ ŀ ǇǊƻŎŜǎǎ t Ґ όʰΣ ˂ ύ Σ ǘƘŜ ŎƻƳǇƭŜǘƛƻƴ ƻŦ ǘƘŜ ŀŎǘƛǾƛǘȅ ƛǎ 

delayed for a period determined by the associated exponential distribution. The probability 

ǘƘŀǘ ǘƘŜ ŀŎǘƛǾƛǘȅ ʰ ƘŀǇǇŜƴǎ ǿƛǘhin a period of time t , is given by the cumulative distribution 

function  F(t) = 1 -  Ὡ .If several activities are enabled at the same time each will have their 

own associated timer.When the time t expires the activity is said to be completed w.r.t an 

external observer. A activity is preempted or aborted if another activity completes first.  

¢ƘŜ ŀǇǇŀǊŜƴǘ ǊŀǘŜ ƻŦ ŀ ŎƻƳǇƻƴŜƴǘ t ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘŜ ŀŎǘƛƻƴ ǘȅǇŜ ʰ Σ ƛǎ ǘƘŜ ǘƻǘŀƭ ŎŀǇŀŎƛǘȅ 

ƻŦ ǘƘŜ ŎƻƳǇƻƴŜƴǘ t ǘƻ ŎŀǊǊȅ ƻǳǘ ŀŎǘƛǾƛǘƛŜǎ ƻŦ ǘȅǇŜ ʰ Σ ŘŜƴƻǘŜŘ ōȅ Ǌ(hP) 

6.1.3 Time Homogeneity 

PEPA models are time-homogeneous , since all the activities are time-homogeneous, i.e the 

rate and type of activates enabled by a component are independent of time.  

6.1.4 Irreducibility & Positive recurrence 

Only the PEPA models with finite number of states are solved, i.e the models should be 

irreducible and positive recurrent (strongly connected) which are expressed in terms of the 

derivation graph. This means that in the system whenever we chose a path it must 

eventually return to the point where the original choice is made possibly with different 

outcome 

6.1.5 Exponential Property 

The memory less property of the exponential distribution makes the recording of the 

residual time of an activity redundant. 

6.1.6 Structured Operation Semantics  

PEPA is defined using Plotkin-style structured operational semantics. The rules are described 

as follows 

Prefix          όʰ ΣǊ ύΦ 9 
♪ȟ►
ự  E  
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Choice         
╔
♪ȟ►
ựự╔

╔ ╕
♪ȟ►
ựự ╔

  ,   
╕
♪ȟ►
ựự╕

╔ ╕
♪ȟ►
ựự ╕

 

Cooperation    
╔
♪ȟ►
ựự╔

╔
♪ȟ►
ựự ╔

 Σ ʰ ƴƻǘ ōŜƭƻƴƎǎ ǘƻ [ 

                         
╔
ȟἺ
ựựự╔ ȟ╕

ȟἺ
ựựự╕

╔
ȟἠ
ựự ╔

  Σ  ʰL ,  

                where R = r1/r (hE) . r1/rh (F) min( rh(E) , rh(F) ) .    

 

     

    Hiding           
╔
ȟἺ
ựự╔

 ╔Ⱦ╛
ȟἺ
ựự╔Ⱦ╛   

  , h  not belongs to L 

                              
╔
ȟἺ
ựự╔

╔Ⱦ╛
ȟἺ
ự╔Ⱦ╛ 

    Σ ʰL 

Constant         
╔
ȟἺ
ựự╔ 

═
ȟἺ
ựự╔

 ═Ḱ╔  

 

6.1.7 Multiway co-operation 

Co-operation in PEPA can be multiway. Two , three , four or more partners may cooperate 

and they all need to synchronize for the activity to happen.  

6.1.8 Solving PEPA 

The generated CTMC are solved using the linear algebra in terms of the equilibrium 

behavior. IPC and PEPA eclipse plugin solve the equations and derives the performance 

measures.   

6.1.9 State space Explosion problem  

The solver in PEPA relies on constructing the  N*N infinitesimal generation matrix Q and N 

ŘƛƳŜƴǎƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘȅ ǾŜŎǘƻǊ ˉ Σ where N is the size of the state space. Sometimes the size 

exceeds what could be handled by the memory and its called states space explosion 

problem. 

It can be avoided by three methods  

¶ State space reduction by Aggregation  

¶ Stochastic simulation over discrete state space 

¶ Fluid approximation of the state space  
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We use Aggregation method , in which the states space is partitioned in to number of 

ǎƳŀƭƭŜǊ ǎǘŀǘŜǎΣ ŀƴŘ ǊŜǇƭŀŎŜ ŜŀŎƘ ǎŜǘ ōȅ ŀ ƳŀŎǊƻ ǎǘŀǘŜΦ .ȅ ǳǎƛƴƎ ǘƘŜ aŀǊƪƻǾ ǇǊƻǇŜǊǘȅ άThe 

sojourn times ̱ Ƨ of a continuous-time Markov process in a state j are independent, 

exponential random variables with mean 1κǉƧέ Σ ǿŜ Ŏŀƴ ǾƛŜǿ ǘƘŜ ƳŀŎǊƻ ǎǘŀǘŜ ŀǎ ŀ ǎǘŀǘŜ ƛƴ ŀ 

new CTMC. 

 

             6.2  PEPA Plug-in project: 

The PEPA Plug-in Project [14] is a software tool for the Markovian analysis of PEPA models. 

The tool is implemented as a collection of plug-ins for Eclipse.The PEPA Plug-in contributes 

an editor for the language and views which assist the user during the entire cycle of model 

development. Static analysis is used for checking the well-formedness of a model and 

detecting potential errors prior to inferring the derivation graph of the system. A well-

formed model can be derived, i.e. the underlying Markov process is extracted and the 

corresponding state space can thus be navigated and iterated via the State Space view. 

Finally, the CTMC view allows numerical steady-state analyses such as activity throughput 

and component utilization. 

The plug-in will report errors in the model function:  

¶ deadlock, 

¶ absorbing states, 

¶ static synchronization mismatch (co-operations which do not involve active 

participants). 

The plug-in also generates the transition graph of the model ,  computes the number of 

states, formulates the Markov process matrix Q , communicates the matrix to a solver. The 

plug-in provides a simple pattern language for selecting states from the stationary 

distribution 

The plug-in integrates the Hydra [15] compiler which can be used to process the well formed 

PEPA model for performance measures like  

¶ Transient Analysis & Steady State analysis : Measures the transient and steady state 

probabilities of the system 

¶ Passage Time Analysis  : Measures the probability of the system response time to be 

at a certain value. 

¶ Throughput, Utilization & Population: Measures the percentage occupation and 

utilization of the action components of the system. 

 

 

http://www.dcs.ed.ac.uk/pepa/tools/plugin/
http://pubs.doc.ic.ac.uk/ipc-hydra-qest/
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            6.3 IPC 

LǇŎ ǎǘŀƴŘǎ ŦƻǊ LƳǇŜǊƛŀƭ t9t! /ƻƳǇƛƭŜǊΦ LǘΩǎ ŀ ŎƻƳǇƛƭŜǊ ŦƻǊ ǎƻƭǾƛƴƎ t9t! ƳƻŘŜƭǎ ŀƴŘ ŦƻǊ 
performing various measurements. In ipc there are five general kinds of measurements that 
can be specified. 
 

¶ Steady-state 
 

¶ Passage-time 
 

¶ Average response time 
 

¶ Transient 
 

¶ Count measures 
 
Special probe components are used to specify complex performance measurements and use 
the simpler interface of specifying activities of interest. The first four  kinds of measurements 
ǊŜǉǳƛǊŜ ΩǎǘŀǊǘΩ ŀƴŘ ΩǎǘƻǇΩ ŀŎǘƛƻƴǎ ǘƻ ōŜ Ǝƛven by the user, while a count measure requires only 
one set of action names. A passage-time measurement is used to measure between two 
events. The user specifies a set of start actions, the observation of the model performing any 
one of these actions will start the measurement. The user also specifies a set of stop actions 
and the measurement is terminated when the model performs any actions within that set.   
 
This can be done with the following command line: 
 

ipc  --source <source actions>  --target  <target actions>   <PEPA file name> 
 

 
In addition to this, the start , stop and time step can also be specified in the command line as 
follows 
 

ipc  --source  <source actions>  --target  <target actions>  --start-time  <start time>    
--stop-time  <stop time>  --time-step  <time step>  <PEPA file name> 

 
The average response time measurement is also used to measure between two events, with 

a start and end action or a set of start and end actions with the following command 

ipc  --source  <source action>  --target  <target action>  --average-response   <PEPA 
file name> 

 

The following command can be issued  to generate the state space view of the model 

 ipc  --dot-file  <PEPA file name >  
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The ipc compiler is integrated in to the tool for analysis of the 1-PIPELINE , 2-PIPELINE & 

Cache PEPA models. We use both Passage time measurement and Average response time 

measurement for the analysis. 

            6.4  PEPA Example 

The following PEPA script models 2 processes, P and Q synchronizing over actions b and c 

r = 1.0; s = 2.0; t = 1.5;           // Rate of transitions  
 
P1 = (a, r).P2;                          // Transition P1 - > P2  
P2 = (b ,r).P3 + (c ,s).P4;       // System can do a Transition  P2 -> P3 or P2 ->P4 (it has a choice)  
P3 = (d ,r).P4;                        // Transition  P3 -> P4  
P4 = (e ,r).P1;            // Transition  P4 -> P1    
Q1 = (b, t).Q2;                        // Transition  Q1 -> Q2  
Q2 = (c, t).Q1;           // Transition  Q2 -> Q1  
 
P1<b,c>Q1               // P1  & Q1 paths synchronize over actions b & c , i.e b & c should be      
                                  // performed at the same time in both P1 & Q1  
                                                Figure 14 : Example PEPA script 

In the first stage the model is parsed and checked for errors. The tool generated CTMC is as 

shown below. 

 

      Figure 14 : Abstract State space View 

The system has 2 components P & Q , which will co-operate / synchronize over actions b & c 

. By synchronization it means that P & Q will adjust each other to carry out actions b & c in 

unison where as in other cases they can carry out their actions independently but no actions 

can be missed. 

The  Passage time cumulative distribution with source action as a and target action as c is as 

shown in the Figure 15. This measure indicates, (as described in the section 4.8 ) the 

probability that the system starting from the state with action a , reaches state with action c 

(the number of hops determined by the actions) within a specific time.  The effect of change 

in the rates r, s & t on the time to reach the target state with 99.99% probability is as shown 

below.  
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     Figure 12 : Passage time CDF 

 

The average response time (ART) of the model with source action as a and target action as c  

with different values of r,t and s along with time to reach 99.99% probability are as 

tabulated  below. From the table its certain that the model runs faster when the rates 

arer=2,t=1 & s=1. 

 

 

 

 

 

      Table 2 : Rate vs ART  
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r = 1.0 , t =1.5, s= 1.0     2.5 9.8 

r = 2.0 , t =1.0, s= 1.0      1.75 7.8 

r = 2.0 , t =1.0, s= 1.5      1.75 7.8 

r = 1.0 , t =1.5, s= 2.0     2.333 9.73 
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7.  Design  
 
 

In this chapter the different modeling approaches and the performance measures obtained 
in each is discussed.  

 
 

7.1     Single fetch Pipeline Modeling 

A typical 5 stage pipeline instruction execution sequence is as shown in the figure 5. For the 

sake of PEPA modeling we consider each instruction is made to undergo three actions. 

1) Fetch : if 

2) Decode :id 

3) Execution : exe  

The execution action can involve Memory Read/Write and or register Read/Write actions 

which is abstracted to a single exe action. The rate of execution (r) for each action is the 

inverse of the cycle taken for completion. Hence rate of if = 1, rate of id = 1 and rate of exe = 

(1/C). In an instruction set, each type of instruction has its own cycle of execution which is 

directly used in the PEPA equations.  

Each instruction execution is imagined to be a Process component P(i) , which will 

synchronize with eaŎƘ ǎǳōǎŜǉǳŜƴǘ ƛƴǎǘǊǳŎǘƛƻƴǎ tόƛҌмύ Σ tόƛҌн ύΧΦŜǘŎΦ  !ǎ ǿŜ Ŏŀƴ ǎŜŜ ŦǊƻƳ ǘƘŜ 

figure 2, the  if, id of   instruction 2 must synchronize with id , exe (MEM,WB) of instruction 

1. Similarly Instruction 3 must synchronize with the respective actions of instruction 1 & 2. 

However we can see that till the id actions , the rate of the synchronized action matches , 

but with exe action, the rate will be different for different type of instructions. PEPA assumes 

bounded capacity: that is, a component cannot be made to perform an activity faster by 

cooperation, so the rate of a shared activity is the minimum of the apparent rates of the 

activity in the cooperating components. So if we synchronize with exe can execute at the 

ǊŀǘŜ ƻŦ  м ƻǊ ѹҐлΦр ƻǊ Ѻ ҐлΦооо ƻǊ ѻҐлΦнр ŜǘŎ Σ ǿe tend to pull the combined exe,if,id rate to 

the lowest of the set. (For example if we are synchronizing actions with rates 1,0.5,0.333 

then the combined rate of execution is min{1,0.5,0.333}=0.333). This will be wrong 

interpretation of the system. However for the sake of experiments we will also model the 

system by synchronizing the exe. It should also be noted that while synchronizing the actions 

we should maintain common name for the actions to be synchronized. The following 

approaches are possible for modeling. 

The number of instructions for modeling is limited to 4 because  

¶ beyond 4 processes, the PEPA undergoes a population explosion in some approaches.  

¶ In order to maintain uniformity in experimentation 
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Consider the following set of 4 instructions to be executed in a 5 stage pipeline 

mr  r5, r6 

stmw r7,r8 

mr r4, r8 

bl r7 

 

Approach 1: 

The model of the system in approach 1 is as shown in the figure 19. In this approach we 

synchronize only the if and id stages of the instructions. 

 

 

   Figure 13 : Approach 1 overview 
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    Figure 14 : Approach 1 state space 

Approach 2: 

The model of the system in approach 21 is as shown in the figure. In this approach we 

synchronize the if, id and exe of the instructions. 

 

   Figure 15 :  Approach 2 overview 
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   Figure 16: Approach 2 state space 

 

 

The following table summarizes the Average response time measure for each approach. We 

use if as the source action and the set of  all the exeΩǎ as the target action to evaluate ART. 

 

  

               

Table 3 : Comparison 
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Similar to the evaluation of ART use if as the source action and the set of  all the exeΩǎ as the 

target action to evaluate Passage time CDF. 

 

  Figure 17 : Population, Throughput & Passage time CDF comparison  
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7.2 Dual fetch 1-Pipeline Modeling 

 
A typical dual fetch-5 stage pipeline instruction execution sequence is as shown in the below 

figure 26. For the sake of PEPA modeling we consider each instruction is made to undergo 

three actions. 

1) Fetch : if 

2) Decode :id 

3) Execution : exe  

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are 
executed in parallel. Each instruction in a first set , execution is imagined to be a Process 
component P(i) , which will synchronize with each subsequent instructions P(i+1) , P(i+2 
ύΧΦŜǘŎΦ  !ǎ ǿŜ Ŏŀƴ ǎŜŜ ŦǊƻƳ ǘƘŜ ŦƛƎǳǊŜ нΣ ǘƘŜ if of the two instructions fetched is common 
and should synchronize; id of instruction 2 must synchronize. Similarly Instruction 3 must 
synchronize with the respective actions of instruction 4. However we can see that till the id 
actions , the rate of the synchronized action matches. Also id action on both the instruction 
set can be synchronized. Depending on the actions used for synchronization there are 2 
approaches. 
 
 
Approach 1 

 
In this approach the if of the first two instructions will synchronize with each other, followed 
by id of the first 2 instructions along with the if of the 2nd instruction set, followed by the id 
of the 2nd instructions set. 

 

 
    Figure 18 : Approach 1 overview 
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    Figure 19: Approach 1 state space 

 
 
Approach 2 

 
In this approach the if of the first two instructions will synchronize, followed by id of the first 
2 instructions along with the if of the 2nd instruction set, followed by the exe of the 1st set 
with the  id of the 2nd instructions set , followed by the exe of the 2nd set. 

 

 
 
   Figure 20 : Approach 2 overview 
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  Figure 21: Approach 2 state space  

 
Approach 3 

 
In this approach the if of the first two instructions will synchronize, followed by id of the first 
2 instructions. Along with the similar actions of the 2nd instruction set. 
 
 
 

 
      Figure 22 : Approach 3 overview 

 
 

 
    Figure 23 : Approach 3 state space 
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   Figure 24: Population, throughput & passage time CDF comparison 
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The average response time of models in three different approaches is as shown in the 

following table. We use if as the source action and the set of all the exeΩǎ as the target action 

to evaluate ART. 

 

Type Average Response Time 

Approach 1 3.28 

Approach 2 3.18 

Approach 3 2.47 

 

     Table 4 : Comparison 

In order to choose the best approach, we compare the traditional performance measure i.e 

Cycle per instruction (CPI) with ART of the corresponding PEPA model. The cycle per 

instruction is given by the formula  

     CPI =
 В ᶻ

                    

Where   ICi  :  Number of Instructions of type i 

   Ci  : Number of cycles consumed by instruction of type i 

  IC : Total instruction count  

In the below table I0,I1,I2,I3  in sequence are the  number of execution cycles (EXE) of the 
instructions.  For 4 instructions the value of CPI for a single fetch 5 stage pipeline can be 
calculated using the formula ,   CPI =  ( Total Cycles taken for I0 + I1 + I2 + I3 ) / 4 
Total cycle taken by an Instruction  = cycle for IF+ cycle for ID + Cycle for EXE . In case of a 
dual fetch CPU the CPI is 0.5 times the  CPI of a single fetch CPU. 
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    Table 5 : CPI vs ART comparison 
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The following graph shows the variation of the CPI and ART with different combination of 

the instruction cycles. 

 

    Figure 25 : CPI vs ART comparison 

 

We take different combination of the instruction types with number of instructions being 4 

and compare the variation of the CPI in case of the single fetch & dual fetch pipeline 

execution model, against the corresponding average response time. Only for Approach 1  in 

case of single fetch , and approach 3 in case of dual fetch pipeline, the CPI is in proportion to 

the average response time as shown in the figure 25. Along with this reason, those two 

models also avoid the bounded rate capacity drawback of the PEPA. Hence we choose 

approach 1 of single fetch and approach 3 of dual fetch for final modeling. Since the plots of 

CPI and ART are proportional, this could be the closest possible model of program execution 

by the processor. 
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7.3       Single fetch Cache Memory Access Modeling 

 

A typical single fetch -5 stage pipeline instruction execution, along with cache and memory 

action sequence is as shown in the figure 26. For the sake of PEPA modeling we consider 

each instruction is made to undergo the following actions. 

1) Cache access : ca 

2) Memory Access :ma 

3) Fetch : if 

4) Decode :id 

5) Execution : exe  

In case of a single fetch pipeline, single instruction is fetched. The synchronization of actions 
as described in 1-pipeline modeling is followed. The algorithm for finding if the instruction is 
available in cache or in memory as shown in the figure 36 is used. If the instruction is 
available in the cache, then ca action appears in the equation else ma action appears in the 
equation. For showing the modeling example, we assume a scenario that 1st and 3rd 
instructions are available in cache and 2nd and 4th instructions are available in memory. We 
also assume to a show a distinctive rates of execution of the instruction blocks , that cache 
access takes 4 cycles and memory access takes 10 cycles. 
 

 

 

    Figure 26 : Overview 
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Average response time = 6.43 

 

 

 

 

  Figure 27: Population, throughput & passage time CDF 
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7.4 Dual fetch Cache Memory Access Modeling 

 

A typical dual fetch -5 stage pipeline instruction execution, along with cache and memory 

action sequence is as shown in the figure 28. For the sake of PEPA modeling we consider 

each instruction is made to undergo three actions. 

1) Cache access : ca 

2) Memory Access :ma 

3) Fetch : if 

4) Decode :id 

5) Execution : exe  

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are 
executed in parallel. The synchronization of actions as described in dual fetch 1-pipeline 
modeling is followed. The algorithm for finding if the instruction is available in cache or in 
memory as shown in the figure 36 is used. If the instruction is available in the cache, then ca 
action appears in the equation else ma action appears in the equation. For showing the 
modeling example, we assume a scenario that 1st and 2nd instructions are available in cache 
and 3rd and 4th instructions are available in memory. We also assume to a show a distinctive 
rates of execution of the instruction blocks, that cache access takes 4 cycles and memory 
access takes 10 cycles. 
 

 

    Figure 28 : Overview 
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    Figure 29 : State space 
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