TU Delft & Continental Engineering Servi{ 1
Master Thesi

MSc Thesis

Process Algebraic Performance Modeling of Embedded Software

Ravindra Seetharama Aithal
Abstract

A compilerfor embedded platform$ias many optimization flags providing code size and
speed improvement. Traditional profiling methods tdk¢ of time to identify the best
combination of the compiler flags to suit the requiremezgpecially if the software stack is
very huge AUTOSAR is one such growsofiware market in which there ia need for rapid
performance assessment. In this thesis a means to estimate the performance of a program
using the process algebraic language (PEBRANvestigated. The assembly progrdram

trace is converted in to the PEPA model and the performance unesmgbtained by solving

the model is verified against the actual execution time of the program. The experimental
results provide valuable insights on the methodology.

Master Thesis NumberCEMS 201311

]
TUDelft

Faculty of Electrical Engineering, Mematics and Computer Science, TU Delft

TU Delft & Continental Engineering Servi{ 2
Master Thesi

MSc Thesis

Process Algebraic Performance Modeling of Embedded Software

Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in
EMBEDDED SYSTEMS
by
Ravindra Seetharama Aithal

born in Bengaluru, India

Continental Engineeringervices GmBH
AUTOSAR Center
Regensburg, Germany

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

TU Delft & Continental Engineering Servi{ 3
Master Thesi

MSc Thesis

Process Algebraic Performance Modeling of Embedded Software

Laboratory : Computer Engineering

Master Thesis NumberCEMS-201311

Committee Members :

Advisor : Arjan van Genderen , CE , TU Delft
Chairperson :Stephan Wong , CE , TU Delft

Member :Anne Remke , DACS , TU Twente

Member : Herbert Hofmann , CERC, Regensburg

TU Delft & Continental Engineering Servi{ 4
Master Thesi

Contents:

1. Introduction X ¢
2. Instruction Pipeline{ X ® &
3. CaCheX X X X X X X X X X X X X X X X X XXX XXXAKXXXXXXX
4. Probability Theory & Stochastic Proceg@EX X X X X X X X X X X H M

5. Performance Modeling X 0 n
6. PEPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7. DESIgIK X X X X X X X X XXX XX XXXXXXXXXXXXXXXXXX.
8. ExperimentX BBX X X X X X X X
9. RESUEX B7ZX X X X X X X X
10. Conclusior& Future WorBK X X X X X X X X X X X X X X BEX X X X X ®
11.ReferencEE X AKX X X X X X X X"

12. AppendiX X X X X X X X X X XKL X X X X X X XE X X X

TU Delft & Continental Engineering Servi{ 5
Master Thesi

1. Introduction:

1.1 Motivation

The stateof-art automotive vehicle (Passenger Car / Commercial Vechicle) houses many
embedded systems like Enginer Management System (EMS) , Exhaust Gas Treatment ,
Adaptive Cruise Control (ACC) , Advanced Driver Assistance System (ADAS) etc offering
safety and comfort features. The basic embedded system unit of a vehicle is the Electronics
Control Unit (ECU). A typical car houses aboull®@® ECUs and about 30% cost of the
vehicle is attributed to the ECU. A ECU basically is a application specificatearand
software cadesign. The complexity of the automotive software is increasing year by year ,
with contribution of the number of patents for the software techniques being highest
combined with rapid innovation in the vehicle safety and comfort feasur

The volume of the kvehicle software is expected to increase by4806 in the coming years
[23]. Automotive applications correspond to about 17% of the embedded market . From
2012 to 2013 the automotive applications have increasg@¥%23].According to the survey
about 44% of the applications are started from scratch in 2013, and remaing 56% are the
upgrades or improvement on the earlier project. One of the main catalyst to the the rapid
changes in the automotive dmedded market is AUTOSAR

With increasing complexity of electronics in modern vehicle systems, the AUTOSAR
(AUTmotive Open System Architecture) community was born. The goal was to reduce this
complexity by meanef standardized software modules and a layered architecture. The side
effect of the standardization was that modules have to be developed in a generic way and
cannot be optimized for each single project as it was the case in the past. Although the
modulesare highly configurable, the footprint and CPU load of AUTOSAR ECUs are strongly
increasing.

In AUTOSAR, the software modules are rapidly developed/reused/configured and delivered.

The entire automotive industry is migrating to the AUTOSAR. The softtemaopment

Y2RStf R2S&ayQi AyOfdzZRS | LINRPOSaa shacreddaichh YA T Ay
in between. Although numerous guidelines (MISR)4re available to the developethey

only address compliance to safety. Guidelines for optimization are not the same among
different hardware platforms. Hence the need of the hour is to develop a tool or
methodologies in which the developer can rapidly asses the performance of theaseftw

modules validate the software reviews based on statistical measures. This project attempts

to provide the prototype of such a tool.

http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://www.autosar.org/
http://automotive.roger.free.fr/articles/miscprev.pdf

TU Delft & Continental Engineering Servi{ 6
Master Thesi

Continental Engineering Services GmBAUTOSAR Center is one of the members of the
AUTOSAR consortium. The R&D tearthefcompany extensively reserches on the compiler
optimization flags and coding guidelines for the best performance result .The team also
specializes in developing, configuring the AUTOSAR modules , tailored to the needs of the
Original Equipment ManuféicdzZNBE NBE 6 h9aQ{ fA1S .a23 +h[+hZX
series production.

1.2 Overview

Vowing to the rapid prototyping and validation of the software modules in AUTOSAR, and
the large time consumed by the traditional profiling methods, the nedd isvestigate the
possibility of assessing the performance measure with the help of modeling techniques.

| SyO0S (KS LINE o tleSetopnieiit bfia $n¥tlogolbgy Xod rapid code profiling
using process algebraic modeling languagep

In this project westatically evaluate embedded system software for different optimization
strategies/coding styles to meet the best performance without actually running on the
platform; Essentially a Static Code AnalySis.The source code is first fed through the
compiler with a particular optimization set or with a certain coding style. The compiler does
a transformation on the code and the assembly/trace file is generated. This intrinsically
providesinformation on how fast the hardware is going to run the code. A model (explained
in the subsequent sections) can be generated from the assembly code using the4PEPA [
terminology.

PEPA stands fdPerformanceEvaluation ProcessAlgebra, is a tool supporting performance
Y2RStAYy3a GSOKyAljdzSad LIQa aAyYLXe +y f3ISoNIA
the system and ascertain its performance matkite chose PEPA because it is a iyl

model specitation language for lovevel stochastic models, which allows the model of the

system to be developed as a number of interacting components undertaking certain
activities. A PEPA model has a finite set of components that correspond to indefinable parts

or roles of the systemPEPA allows us to model different actors of a system (for example in a
processor , instruction fetch unit, decode unit, execution unit, cache fetching etc.) and
analyze the effect of each of these different actors in unison or indeeethy.

The hardware properties basically refer to the basic properties like single fetch or
superscalar processor, type and amount of cycles consumed by each instructions. Once we
obtainthe performance ratingsthe source code and the compiler can be tuned for the best
optimization results. In this case the performance can be obtained in the view of optimal
speed. For validating the model we can later run the actual code on the platform and
compare the resultsrad as a feedback fine tune the model or the code.

http://en.wikipedia.org/wiki/Static_program_analysis
http://www.dcs.ed.ac.uk/pepa/

TU Delft & Continental Engineering Servi{ 7
Master Thesi

STATIC ANALYSIS

[
FROPERTY 7l PERFORMANCE
SOURCE [COMPILER ASM/TRACE | - PEPA - \ETRE
CODE . ‘| MODELER
.-"'-_
MODE L

TG
3 TARGET J bt
TuME

DPFTIMLTATION TUNIRNG

SOURCE LEVEL TUNING

Figure 1: Overview

A program can be visualized as a set of basic blocks with each consuming different time for
execution. The rate afxecution of the basic blocks depends on

1) Distribution of the type of instructions in the blocks: In the sense the amount
of cycles that each of the instructions in the block consumes.

2) Memory segment in which the block is available: In the sense the aliylab
of the block in the main memory (cache miss) or in cache (cache hit).

3) The property of the hardware in which the program is run: In the sense the
type of pipeline structure used (single fetch pipeline or dual fetch pipeline)
and also the amount afycles consumed by each memory or cache access.

Correspondingly, based on these three classification, we can define three type of execution
rates.
DLYyadNHzOGAZ2Y 9ESOdziAzy wkidsS Y LGQa GKS N
is executd by the processor.
2) 1'00Saa whlhiS Y LiQa GKS NYXaGS +id 6KAOK
from Cache
00U 9FFSOUADS NraSY LOQa GKS O2Y06AYSR NI

The figure 2 shows thieasic representation of the program in terms of blocks of instructions

> 6KSNBE NMEINHEINDXNb |NB GKS LyaidNdHzOGA2y SESC
NF3Sa FTYR 9wMI9wWHI9OwoX9wb |NBE (GKS O9FFSOGACL
NOMINBHENBoXKS LyadNHzOGA2Yy SESOdziAzy NI GS =
FYR 9wOMIOWQHIOWQoX9wQb IINB (GKS 9FFSOGAODS NI

AR1 Blk1 (r1) AR'1 Blk1 (r'1)
| ER1 |, ER'1
AR2 Blk2 (r2) AR'2 Blk2 (r'2)
B—
\| ER2 Ccompiler flag / Source code \| ER'2
Transformation
AR3 BIk3 (r3) |::> —=1 BIk3 (r'3)
AR'3
ER3 ER'3
AR4 ' .
Blk4 (ra) AR’'4 Blka (r'4)
—
T T
ERn '
\I‘x \I.f ER'4
ARnN BIkN (riN) AR'n BIkN (r'N)
—
ERn

TU Delft & Continental Engineering Ser
Master Thesi

AR : Block Access Rate

r : Instruction Execution Rate

ER : Effective Rate

ER'n

Figure 2: Program representation in terms or basic blocks

VJS

Block access rate can be theemory access (MA) or cache access (CA). In order to identify

the change in rates of the basic blocks, CTMC (Continues Time Markov Chain) terminologies

are used with the help of the modeling language PEPA. The above representation of the
system can in turrbe represented like a CTMC as shown in the following figure (with a
possible memory / cache access scenario).

MEMORY

CA: Cache Access (typically 1cycle)

MA: Memory Access (typically 3-4 cycle)

CF: Cache Fill (typically 1cycle)

Figure 3: CTMC representation of basic blocks

Each block is represented as a state in the CTMC with, exit rates being the rate at which the
block is executed and at the end of execution the state changes to the next block. The entry

rate to a state depends on the rate of accesses (CA/MA) and theagxitrom the preceding

state. From a CTMC, number of mathematical measure can be derived like the transient /

TU Delft & Continental Engineering Servi{ 9
Master Thesi

steady state probability matrices, Average response time, Cumulative distribution function
etc. which in turn gives the performance of the systefncompiler flag or combination of
compiler flags may alter the execution rate of the basic block of a program by

1) changing the type of instructions used |,
or

2) by shifting the memory in which the instruction is stored(in case of a Instruction
Cache)

and such changes can be easily identified in the performance measure of the CTMC. In order
to evaluate the performance measures we need to convert the assembly program in to a
process algebraic language model which can evaluate the performance measures. The
number of instructions in a basic block and rate of cache and memory access is directly
dependent on the issue fetching capability of the hardware platform. In the following
chapters we will discuss important performance measures, methodology and toalsfarse
performance estimation and the obtained results.

1.3 Challenges

The optimization criteria are the Speed of execution and the Memory consumption. Since
memory consumption estimation is already available in the current project setup we will
only @mnsider estimating the speed of execution. A tool which can develop the PEPA script
from the assembly / trace file needs to be developed which would make methodology
scalable and less time consuming. Initial work can be dedicated to manual scriptinigeaind t
can be extended to automated scripting. If it becomes necessary to analyze the Boolean
predicate code then we also need to develop a script for the conversion to PEPA model.

LF¥ ¢S dzaS 2yteé laasSvyofte FAES TahdorigiraSoutce | £ & a A
in C and if we used Boolean predicate coélealthough it becomes easy to trace the source

in C, we miss the compiler optimization effects which can only be setre assembly file.

The best us&ase is expected to be obtained during the experimentation. We start modeling

for a simple CPU like (single core, single pipeline, and single thi€pdahdin the near

future scale it to higher level systems.

1.4 Outcomes & Expectations

This method in a way produces the performance modé€] fof the source code and the
compier or the developers. They can estimate the effect of different coding styles, and
compiler optimizationgindividually or in unisongtatically & rapidly. The user can run the
tool interactively and camnclude CSLGCHntinuous SochasticLogic)formula[12] checks to
evaluate satisfiability of stochastic criteoa estimate a stochastic measure

This kind of static performance estimation is of high importance as they are less caktly an
less time consuming. The entire setup will be rapid because of the fast solvers available in
the PEPA supported compilers and piagand easily scalable if we can develop tool for

http://research.microsoft.com/pubs/69821/tr-2000-115.pdf
http://www.cpubenchmark.net/singleThread.html
http://researcher.watson.ibm.com/researcher/view_pic.php?id=150
http://eprints.eemcs.utwente.nl/11189/01/formats.pdf

TU Delft & Continental Engineering Servi{ 10
Master Thesi

conversion to the PEPA model from the respective sources. As an extehsienthesis, we
can test the project on some dedicated platforms to evaluate it further.

15 Background

a) AUTOSAR

AUTOSARUTomotiveOpen SystemARchitecture) is a worldwide development partnership
of car manufacturers, supplieand other companies from the electronics, semiconductor
and software industry.

1 Paves the way for innovative electronic systems that further improve performance,
safety and environmental friendliness

1 Is a strong global partnership that creates one comrstamdard: "Cooperate on
standards, compete on implementation”

1 Is a key enabling technology to manage the growing electrics/electronics complexity.
It aims to be prepared for the upcoming technologies and to improveeffisiency
without making any compmmise with respect to quality

1 Facilitates the exchange and update of software and hardware over the service life of
the vehicle

Il e¢h{!w LINRPOGARSE | 0O2YY2y LA FGF2NY AYy HKAOK
collaborate with benefit that complexityf integration is reduced while improving the

Ft SEAOAfAGE = ljdatAde FYR NBtAFIOAfAGED ¢KS h
software modules across variants,simplified integration and reduced development costs. The
suppliers benefit fom reduction of version proliferation and the ease of function
development. The tool developers can produce seamless and optimized landscapes for
tools.Thus AUTOSAR allows for smoother portability between different platforms. The car
production of AUTOSABEM members covers ~81% of the total cars produced worldwide.A

N} LIAAR INBGgGK 2F ! ¢h{!wQa YINJ]SG LSYSINIGAZ2Y
least 25% of the total number of ECUs produced in 2016 will have AUTOSARL]inside

http://www.autosar.org/

TU Delft & Continental Engineering Servi{ 11
Master Thesi

Volume of ECUs with AUTOSAR
of Mio. ECUs

300

250

150 ———————— = Rel. 4.x
= Rel. 3.x
Rel. 2.x

o ———-"11

2010 5941 2012 5053

2014
2015 3936

Figure 4: FromAUTOSAR open confereifitle

b) Code analysis & Profiling

There are basically two types of analyisis that can be performed on a code.

1) Static analyisis. : is a techniqud analyzing the source code statically without
actually running the program on the hardware.These techniques extract the
information about the oppertunity for the optimization in the source code by
analysis. Such technique are usually faster than the elymanalysis but they are less
precise.

2) Dynamic analysis : is a technique of analyzing the source code by running it on a real
or virtual processor and profiling it. Profiling the program consists of collecting the
oppertunities during the execution of th@rogram in order to guide effective
optimization.The optimizations can be performed either on the source code,
assembly code or by feompilation guided by the collected information.There are
two types of dynamic analysis

a. By Instrumentation : In this teclique several instructions are inserted in
source level or assembly level or in the binary level. Instrumentation adds
code to increment counters at the entry or exit function which will simulate
the harware performance counters or even simulate hardwace get
synthetic event counts. The instrumentation technique may dramatically
increase the execution time such that the time measurement become
redundant. It also becomes time inefficient in case of a huge software stack
making profiling itself the consunng. Example MAQAGL].

b. By Sampling : In this method measurement points are inserted during short
time intervals.The validity of the result depends on the choice of the
measuement.Example Prof and Gprof.

http://www.autosar.org/
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf

TU Delft & Continental Engineering Servi{ 12
Master Thesi

c) Process algebra

Process algebras a method for formally modeling concurrent systems. Process algebra
provides a tool for the highevel description of interactions, communications, and
synchronizations between a collectiorf mdependent agents or processes. They also
provide algebraic laws that allow process descriptions to be manipulated and analyzed,
and permit formal reasoning about equivalences between processes. Examples of
process calculi include CSP, CCS, ACP, LOdd&&ulus, the ambient calculus, PEPA, the
fusion calculus and the joicalculus $7].

d) Model checking

Given a model of a system, Model checking refers to exhaustively and automatically
checking whdter the model meets a given specification.In general Model checking delas
with verifying the correctness of a finite state systems.In order to achieve this , the

model of the system and the specifications are fomulated in terms of precise

mathematical langage.

1.6 Related Work

Emphirical/Process algebraic model based performance prediction system for compiler
2LIGAYAT I GA2Y S@lFftdad GA2y Aa +y SEOfdzaAdS | NBI
survey.

Qualitative analysis tools using model checking arailable. Model checking and static
analysis are automated techniques promising to ensure that the correctness of the software
and to find certain class of bugs automatically. One of the drawbacks ofidlde! checker is

that they typically operate on a low level semantic abstraction making them suitable for
small software stack, but less so for larger stack and when the soundness is paramount as in
the case of industrial C/C++ code containing pointaharetic , unions templates and alike.
Goanna is built on an automata based static analysis framework as descril2&gl Time tool

maps the C/C++ program to its Controbwl Graph (CFG) and labels the CFG with
occurrences of syntactic constructs of interests automatically. The CFG together with the
labels can be seen as a transition system with atomic propositions, which can be easily
mapped to the input of a model check@uSMV) or translated in to a Kripke structure. The
basic checks which can be performed by Goanna are access violations, memory leaks array
and string overruns, division by zero, unspecified, -portable, and/or dangerous
constructs and security vugnabilities. Model checking has also been used to check the
malicious code patterns 4y 6]

http://www.win.tue.nl/fm/0402history.pdf
http://www.ssrg.nicta.com.au/publications/papers/Fehnker_HJLR_06.pdf
http://www7.in.tum.de/um/bibdb/kinder/mcodedimva05.pdf

TU Delft & Continental Engineering Servi{ 13
Master Thesi

One of the gantitative measures of a program execution is its Worst Case Execution Time
WCET METAMO(27] (Modular Execution Time Analysis using Model Checking) is a
modular method based on model checking and static analysis , that determines the safe and
tight WCET for programs running on platforms featugaghing and pipelining. The method
works by constructing the UPPARIS] modelof the program being analyzed and annotating
the model with information from the interprocedural value analysis. The program model is
then combined with a model of the hardware platform and the model checked for the
WCET. The tool is retargetable for platforms ARM7,ARM9 and ATMELb&kVRRh& pipeline

and cache behavior are modeled in UPPAA[29it is debated that model checking is not
suitable for WCETanalysis but if30] its shown that model checking can actually improve
the WCET estimates for hardware witaching.In the master thesig38] modeling the
Analytical Softwee Design blocks as queueing systems is investigated in order to reduce the
implementation errors in the integration phase of the software project.

Qualitative performance measure of a code produced by the compiler is essential to get high
performance. Reviously the quantitative measure was assesed by the number of
instructions. With recent generation of micro processors the matrices are no longer
valid.The number of branches , use of specific instructions , Caches which have been
introduced to improve tle temporal locality and other architectural feature like instruction
prefecting are responsible for the performance. Modular Assembler Quality Analyzer and
Optimizer (MAQAOQ|31] is a tool performing the static analyis on the assembly code. The
tool takes assembly as input, constructs the CFG , call flow graph, loop structure . Furthur
analysis can be scripted using the SQL scripting symantics. Some of the analysis that can be
performed by MAQAO are gathering statistics like number of NOPs,number of bundles with
three way branching or number of loops, generating the histogram of basic blocks size in a
function or histogram of the IPC (instruction per count) , code pattern sschedecient
sequence,missing prefetches detection , detection of the optimization performed by the
compiler etc.

The lack of statically available information may prevent user to apply different compiler
optimization or program transformation aggressivelyr @pplying them together.
Performance aware compilation systems address this problem by a combination-tinein
testing and static information. Dynamic compilation systems sucf8Zsenalde the code
generation at the runtime allowing the compiler to exploit the knowledge about the input
values and hence generate more efficient code. In another a3eat runtime the best
combination of the optimizations is chosen by evaluating the performance of each of the
versions. In case of performance prediction systems, empherical model of the code is used
as static estimators to guide the application of the program transidroms with goal to
select the highest possible performance as done 3d].[In several other cases the
performance of the application is modeled based on analytical expressions as d86g in

http://metamoc.dk/
http://www.uppaal.com/
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_25#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_26#page-1
http://www.utwente.nl/ewi/dacs/assignments/completed/master/reports/2010_hettinga.pdf
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf
http://people.cs.pitt.edu/~mock/papers/fdo99.pdf
http://web.eecs.utk.edu/~gmarin/papers/hpcview-tjs02.pdf
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.cs.rochester.edu%2Fu%2Fumit%2Fpapers%2Fjsp99.ps&ei=YtjnUcvNBom1O8mCgcgH&usg=AFQjCNG319YLLbJXuMeOSkzhxHCFpUVnPQ&sig2=O6FBJdkYYkenj3rLs-kjBw
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.6227&rep=rep1&type=pdf

TU Delft & Continental Engineering Servi{ 14
Master Thesi

Performance oriented modeling techniqu¢s6] offer an alternative way of enabling the
compiler to derive and select a set of program transformations . This modeling approach is
valuable in scenarios in which the application takes extremely long time to execute making
profiling impractical or even pdict the performance on future architectures. Using the
target architecture description in terms of the number of functional units , pipelines and
their depth the compiler can derive a set of performance analytical expression for a set of
scenarios and dermine for each of these scenarios what the expected performance is in
terms of consumed clock cycles and peak performance and execution of the code section
would take. For example if one of the various memory references in the basic block casues a
TLB mis that leads to pipeline stall (due to data dependencies) this leads to a substantial
decrease in overall performance.Fdifferent scenario emperical model can be obtained or

by target architecture cycle level accurate simulations.

http://www.isi.edu/~pedro/PUBLICATIONS/Diniz.PMA03.pdf

TU Delft & Continental Engineering Servi{ 15
Master Thesi

2. Instruction Pipeline

2.1 Pipelines:

A assembly program is a contiguous set of instructions derived from the original C program.
Each instruction in an assembly program takes certain cycles for execAtidnstruction
pipeline is a technique used in the design of computers architecture to increase their
instruction throughput (the number of instructions that can be executed in a unit of time).
Pipelining does not reduce the time to complete an instruction, but increases théewuai
instructions that can be processed at once.

Each instruction is split into a sequence of dependent steps. The first step is always to fetch
the instruction from memory; the final step is usually writing the results of the instruction to
processor rgisters or to memory. Pipelining seeks to let the processor work on as many
instructions as there are dependent steps, rather than waiting until the current instruction is
executed before admitting the next one. Pipelining lets the computer's cycle timihée

time of the slowest step, and ideally lets one instruction complete in every cycle.

A pipeline typically includes the following 5 steps
1. Instruction fetch (IF)
2. Instruction decode and register fetch (ID)
3. Execute (EX)
4. Memory access (MEM)
5. Register writeback (WB)

The following diagram shows the typicaistage instruction pipeline and the way the
instruction is processed in each stage.

Instruction No Pipeline stage
1 IF ID EX MEM WB
2 IF ID EX MEM WB
3 IF ID EX MEM WB
4 IF ID EX MEM
5 IF ID EX
Clock Cycle 1 2 3 4 5 6 7

TU Delft & Continental Engineering Servi{ 16
Master Thesi

Figure 5 : Single Fetch Instruction Pipeline

2.2 SuperscalaCPU

A superscalar CPU incorporates instructiorelgvarallelism within a single processor and
hence achieving faster throughput than a single fetch processor. A superscalar processor
executes more than one instruction during clock cycle by simultaneously dispatching
multiple instructions

The followingdiagram shows the typical dual fetckstage instruction pipeline.

Instruction No Pipeline stage

1 IF D EX MEM WB

2 IF ID EX MEM WB

3 IF ID EX MEM WB

4 IF D EX MEM WB

5 IF ID EX MEM WB

B IF 1D EX MEM WB
Clock Cycle 1 2 3 4 5 6 7

Figure 6 : Dual Fetch Instruction Pipeline

Similar to the single fetch CPU even in a dual fetch CPU, the instructions are fetched
sequentially . The CPU checks dynamically the data dependencies between instructions at
the run time

TU Delft & Continental Engineering Servi{ 17
Master Thesi

3. Cache

A cache is a small amount of memory which igppes more quickly than main memory. Data
is moved from the main memory to the cache, so that it can be accessed faster. The cache
memory performance is the most significant factor in achieving high processor performance.

Cache works by storing a smalbseat of the external memory contents, typically out of its
original order. Data and instructions that are being used frequently, such as a data array or a
small instruction loop, are stored in the cache and can be read quickly without having to
access thenain memory. Cache runs at the same speed as the rest of the processor, which is
typically much faster than the external RAM operates at. This means that if data is in the
cache, accessing it is faster than accessing memory.

When the processor needs to r@drom or write to a location in main memory, it first checks
whether a copy of that data is in the cache. If so, the processor immediately reads from or
writes to the cache, which is much faster than reading from or writing to main memdriy. A

in a cacle is when the processor finds data in the cache that it is looking forisgis when

the processor looks for data in the cache, but the data is not available. In the event of a miss,
the cache controller unit must gather the data from the main memoryicvltan cost more

time for the processor. Most modern CPUs have at least three independent caches: an
instruction cacheto speed up executable instruction fetch,data cacheto speed up data

fetch and store, and a translation look aside buffer (TLB) tsegeed up virtuato-physical
address translation for both executable instructions and data. The data cache is usually
organized as a hierarchy of more cache levels

3.1 Cache Entry

Data is transferred between memory and cache in ldook fixed size, calledache lines

When a cache line is copied from memory into the cache, a cache entry is created. The cache
entry will include the copied data as well as the requested memory location which is called
as a tag.

When the processor needs to read or write a location in main memory, it first checks for a
corresponding entry in the cache. The cache checks for the contents of the requested
memory location in any cache lines that might contain that address. If the gsocdinds

that the memory location is in the cache, a cache hit has occurred (otherwise, a cache
misses).

TU Delft & Continental Engineering Servi{ 18
Master Thesi

In the case of
T a cache hit, the processor immediately reads or writes the data in the cache line.

T a cache miss, the cache allocates a new entrgl,@pies in data from main memory.
Then, the request is fulfilled from the contents of the cache

Cache row entries usually have the following structure:

| TAG |DATA BLOCK| FLAGBITS |

Thedata block(cache line) contains the actual data fetched from the main memorytade
contains a part of the address of the actual data fetched from the main memory. Flag bits
indicate whether a cache block has been loaded with a valid data(valid bit).A instruction
cache has only one flag bit(valid bit) per cache row where as a data bash&vo flag bits
(valid bit and dirty bit) per cache row.

The size of the cache is the amount of main memory data it can hold. This size can be
calculated as the number of bytes stored in each data block times the number of blocks
stored in the cache. (Bhnumber of tag and flag bits is irrelevant to this calculation, although

it does affect the physical area of a cache).

An effective memory address is split (MSB to LSB) into the tag, the index and the block
offset.

| TAG | |INDEX |BLOCK OFFSET]|

The index describes which cactev (which cache line) that the data has been put in. The
index length idogy(cache rowshpits. The block offset specifies the desired data within the
stored data block within the cache row. Typically the effective address is in bytes, so the
block offsetlength islog,(byte per data block)its. The tag contains the most significant bits

of the address, which are checked against the current row (the row has been retrieved by
index) to see if it is the one we need or another, irrelevant memory locatiahhbhppened

to have the same index bits as the one we want. The tag length in b{eeddress_lengtlg
index_lengthg block_offset_length)

TU Delft & Continental Engineering Servi{ 19
Master Thesi

3.2 Cache Replacement Policy

In order to make room for the new entry on a cache miss,cdighe may have to evict one of
the existing entries. The heuristic that it uses to choose the entry to evict is called the
replacement policy. The fundamental problem with any replacement policy is that it must
predict which existing cache entry is leastely to be used in the future. Predicting the
future is difficult, so there is no perfect way to choose among the variety of replacement
policies available. The following replacement policies exist.

Least Recently Used (LRU)
Round Robin (or FIFO)
Most Reently Used (MRU)
Random Replacement

= =4 =4 A

3.3 Cache Associativity

The replacement policy decides where in the cache a copy of a particular entry of main
memory will go. If the replacement policy is free to choose any entry in the cache to hold the
copy, the cahe is calledully associative Accordingly there are-®ay,4way associatie
cache.fleach entry in main memory can go in just one place in the cache, the caddiked

to bedirectly mapped

3.4 Cache Performance:

A processor with a cach@st looks in the cache for data (or instructions). On a miss, the
processor then fetches the data (or instructions) from main memory. On a miss, this process
takes longer time than an equivalent processor without a cache.

There are three ways a cachéves better net performance than a processor without a
cache:

1 A hit (read from the cache) is faster than the time it takes a processor without a
cache to fetch from main memory. The trick is to design the cache so we get hits
often enough that theiincrease in performance more than makes up for the loss in
performance on the occasional miss. (This requires a cache that is faster than main
memory).

T Multiprocessor computers with a shared main memory often have a bottleneck
accessing main memory. When lacal cache succeeds in satisfying memory
operations without going all the way to main memory, main memory bandwidth is
freed up for the other processors, and the local processor doesn't need to wait for
the other processors to finish their memory opemats.

1 Many systems are designed so the processor often read multiple items from cache
simultaneously-- either 3 separate caches for instruction, data, and TLB; or a multi

TU Delft & Continental Engineering Servi{ 20
Master Thesi

ported cache; or both- which takes less time than reading the same items from
main memory one at a time.

A processor without a cache has a constant memory reference time,”Y + E
A processor with a cache has an average memory access ¥mem *"Y +"Y + E
where

T mis the miss ratio

T Y is the time to make a main mempreference

T Y is the time to make a cache reference on a hit

1 E accounts for various secondary factors (memory refresh time, multiprocessor
contention, etc.)

Cache hit/miss is evident in any assembly program and both the programmer and the
compiler are he reason for the cache miss in a program. Depending on the cache
configuration, the cache hit miss scenario can be modeled from the assembly program and
the overall delay can be evaluated statically the best configuration can be selected.

TU Delft & Continental Engineering Servi{ 21
Master Thesi

4. Probability Theory & Stochastic Processes

4.1 Probability

If n is the number of possible outcomes of an system, each of them equally likesythe
number of events in favor of event A , the Pr[A]s# A. Set of all possible outcomes is called
the sample space S. The following axioms hold good.

1 Pr[s]=1

1 Given A .. , Bvents A & B are mutually exclusive thedAUB] = Pr[A] + Pr[B]
& Pr[AU B = Pr[A] + Pr[B]JPr[A].

1 If two events A an® are independenPr[A] =Pr[A]Pr[B] .

1 Conditional probabilityer[A | Bl =Pr[A]/ Pr[B]

f Law of total probabilityPr[A] = 0A0s"E0OO E,Bk ..2 T

4.2 Random Variables

A variable whose possible values are the numerical outcome of a random phenomenon is
called as a random variable. More formally a random variable is a measurable function from
a probability spacésV,P)into a measurable spacg a\QBnown as the statespace. Also a
random variableXis a real function whose domain is the probability spa@nd such that:

1. The sef - i¥an Eveént for any real number
2. The probability of the even{sX = ¥ Yand{X =k €eYuals zero.
There are two typesfaandom variables,

Discrete time random variable takes values in discrete steps denoted as X[k] where k=
NZMZHZ0oX K O

| 2yGAYydz2dza GAYS NIYYyR2Y @GFENAIFIOoES Gl 1Sa Ay O2y
4.2.1 Cumulative Distribution Function

A cumulativedistribution function describes the probability that a real valued random
variable X with a given probability distribution will be found at a value less than or equal to x

COEUV I t NbH- XKEO

TU Delft & Continental Engineering Servi{ 22
Master Thesi

4.2.2 Probability Density Function

A probability density functiorlescribes the relative likelihood for the random variable to
take a given value.

(X) =g (FX)

4.3 Probability Distribution Functions
1) Exponential Distribution

A random variable X is said to be exponentially distributed if it satisfiesptobability
RSyaarde TFTdzySlisByx Fo&EKSRBhh SA&E (GKS NI GS G o

The cumulative distribution function i$(x) = 2 h " §

The mean , paverage of the distributior>, ' . Maciancex | NX- 8 I mk h

Exponential distribution satisfies memoryless propettyNto- x4 H¢ py - B (6 T
2) Poisson Distribution

A random variable X is said to be Poisson distributed if its satisfies the probability density
function ,

TOoESPFUKLI <
The cumulatie distribution functionF(x,k) = & ﬁ A

>=Var[X] =<

4.4 Discrete Time Markov Chain

A stochastic process formally denoted agf) , tlW }7s a sequence of random variables X(t)

, Where the parameter t time runs over an index set T. The state space of the stochastic
process is the set of all possible values of the random varia¥{gsand each of these
possible values is called the staikthe process. If the index set T is a countable 3efk]is

a discrete stochastic process. If T is continud(i¥is a continuous stochastic process.

A stochastic processX(t) , tW }1s a Markov process if the future state of the process only
depends on the current state of the process and not on its past history. Formally, a

stochastic processX(t) , tW }7s a continuous time Markov process if for #I< t1 < t2 <
X X (i yobthe index seffand for any sef E n = E m I bl XtadEpAde it holds that

TU Delft & Continental Engineering Servi{ 23
Master Thesi

PriX(tn+1)=e, |X(t0)=e X X ® 3 -e =PiX(tri+1)=e. [X(tn)=e,]

The Markov property states that at any times>t > 0, the conditional probability
distribution of the process at timea given the whole history of the process up to and
including timet, depends only on the state of the process at timén effect, the state of the
process at times is conditionally independent of the history of the procdsforetime t,
given the stateof the procesat time t.

A discrete time Markov chainX [k] k W }7is a stochastic process whose state space is
finite or countably infinite set with index sét=9 n = wkeyingX ®Y

Prisg =eg |= =o = XZegl=PrEg =g |-g=og

A Markov process is called a Markov chain if its state space is discrete. The conditional
probabilitiesPr [ﬁ = j|$§: i] are called the transition probabilities of the Markov chain.

In general, these transitioprobabilities can depend on the (discrete) time k. A Markov chain

is entirely defined by théransition probabilities and the initial distribution of the Markov
chainPrf= =e].

By using the definition of the conditional probability it can &ieown that the complete
information of the Markov chain is obtained if, apart from the initial distribution, all time
depending transition probabilities are known as per the formula.

Prik =o I XtyZog) = B || oL oo [»E o

If the transition probabilities are independent of time.e if 0 =Pr fg = jl-5g=i] the
Markov chain is called stationary. In a state sp@weath N states (whereN = dim@)can be
infinite) SinceXkcan take N possible values, we denote the corresponding state vector at
discretetime k by k] = [s1[K] s2[K] - - -sN[K]] with s(iJK] = PrKi=Kk].Hence,gk] is a 1 N
vector. Since the statXk at discretetime k must be in one of theN possible tates and
hence ,

J Frsg or,

4l

in vector notation sk.u=B7 8w i where u'=[11---.--. 1].

In a stationary Markov chain the states Xk+1 and Xk are connected by the equation of total
J
probability Pr{Xk+1=j= O "ET i foralljorin vector notation s[k+1] = s[k].

J
P where P is the transition probability matrix and iigh hold that 0 , means

that at discretetime k, there certainly occurs a transition in the Markov chain, possibly to
the same state as at timek A matrix P satisfying this relation is called stochastic matrix. If
Pij is independent dt then its called time homogeneous Markov chain.

Given an initial state vector s[0], the general solution of s[k] = sfohrRl s[k+n] = s[0]'®"

TU Delft & Continental Engineering Servi{ 24
Master Thesi

The elements of matrix"Rire called rstep transition probabilities,

Prisg . = j | 3g =i

The transition probability matrix P is of the form

Py P19 Pz - PN Py]
Psy Pso Pz oo Py Py
P34 P39 Pz oo Pyn_g P3N
P =
Py_11 Pn-ip Pyoisz -+ Pnoin—1 Pyoiw
| Pna Pn.o Pys -+ Pn.N-1 Pyn

Figure 7 Transition probability matrix

Since it must hold for any initial staS OG 2NJ aOn6xX o6& OK22aAy3d a&aw)
column zero except for ith column) which expresses that Markov chain starts from one of
the possible states , say state i, then s[1]ZRPP3 X X X

4.4.1 The hitting time and Sojourn time

If A is a subset of states ,GAS , the hitting time TA is the first positive time the Markov

chain is in a state of set A , thus foxR , TA = min(kdd W A The.sojourn time of state i

in a Markov chain is the amount of time the system speindstate i before leaving to state
jri.

4.4.2 Transient ,Recurrent and Absorbing states
The probability that a Markov chain , starting at state i will come to state j is given as

n e

If i = j then D is the probabilityof returning to state in i. If Pii =1 then the state is a
recurrent and i) < 1, then the state is transient.df =1 and) =0forie G KSy A{Qa ¢«
an absorbing state.

4.4.3 The steady state vector

The state of the system witH'kx ~ dafed the steady state and the vector=IimKtx a wl 6
is called the steady state vector and it must hold that “ & or for each component

for DK2 Mb g |g

TU Delft & Continental Engineering Ser

The solution of is obtained from the following equation

Master Thesi

VL' 25

[P —1 Poy P3q PN—l;l Pny [™ [07
P12 Py —1 P32 Pn_1;2 P2 T2 0
Pr3 Pa3 P33 —1 Pn_133 P 3 0

Pino1 Ponoa Pynoa Py_i1n-1—1 Pyn-oa TN-1 0

1 1 1 1 TR I =V B I

45 Continuous Time Markov Chain

For the continuoudi A Y S
written as

al Nl 2@ OKIFIAY 9-00G0Z0x nY SAGK b

t NDo- 60 b 0dDBFEO0AZVETN iXdzxr _ 0 € I t NW- 0

and reflects the fact that the future state at timie t only depends on the current state at
time _ . Similarly as for the discreteme Markov chain, we assume that the transition
probabilities for the corhuousi A YS al NJ 2 @ OKFAY 9.
independent of a point in time,

0G0 X0

Pijt) = PriX(t +) = jIX() = i] = Pr{X(1) = jIX(0) = 1]

Similar to discrete time Markov chain, the state vector s(t) in continuous time conmg®ne
sk(t) = Pr[Xk = k, with P(t) being the transition probability matriatisfies

s(t+_) = s() P(t) & P(t+ u) = P(t) P(u)= P(u).P(t)

Since Markov chain should be in one of the N states

J
with P(0) =1 Ed 0 O.

Given the infinitesimal generat® 't © o} 131] L‘L the transition probability matrix
is differentiable for all¥Q and hence
t 000

tQodGuo I todo v ' v

TU Delft & Continental Engineering Servi{ 26
Master Thesi

nop Blxoandaxo,

ntwhere

It can be proved that

which implies that sum of rows @ is zero . of Q are the derivatives of the probabilities
and they reflect the change in the probability frostate i towards state j and arealled
rates.

4.5.1 Propertiesof

J
If & =- 4 X0 then, _ SAS A . This demonstrates thd is bounded if and only

if the rates a are bounded. For finite state Markov processasare finite (since qij are

finite), but, if & KX O0KS adladsS Aa OFftftSR AyadlyidlyS?
state, it immediately leaves the state. Continugiirme Markov chains with all states nen
instantaneous are called conservative.

4.5.2 Properties of Q

Q has the property thaP(t)= € =m in #(and can be explicitly given as follows
[12 Gz " Qi N-1 GIN]
q21 —{q2 423 "t (2;N-—-1 2N
q31 32 —(q3 o (q3:N-—1 43N
Q) =
gN-1:1 gN-12 (gN-—-13 -+ —(GN—-1 (N-—-1;N
GN1 4N:2 4gN3 " ({N;N-1 —gN

Figure 8Infinitesimal generator matrix
4.5.3 Steady state

If the finite state Markov chain is irreducible, the steady statxists. Since steady state
vector* R2 Say Qi OK I Iy BSQ 620S NJ nil AAYYSLIDQ $@, whiefelPli E iv 6 t
P(t). Similar to the argument with discrete time markov chain , the steady state (row) vector
“ is solution of Q = 0. Sincé Es{(t) = "@ndl_Eak@® = 0.

AlternativelyZ = s(0) (=m, | 0) €

The main difference between discrete and continudnse Markov chains lies, apart from
the concept of time, in the determination of the number of transitions. In case of a
continuous time Markov chain, the sojourn time in a discrete chain is determiistcall

TU Delft & Continental Engineering Servi{ 27
Master Thesi

times are equal to 1. The sojourn timesaf a continuougime Markov process in a staje
are independent, exponential random variables with meaa1

46 Embedded Markov chain :

A method of finding of an ergodic continuousme Markov clain, Q, is by first finding its
embedded Markov chain (EMC). EMC is a regular distreeeMarkov chain, also called as a
jump process Each element of the orgtep transition probability matrix of the EMG, is
denoted bys;, and represents the conditional probability of transitioning from staieto
statej.The relation between the steady state vector of the continuous time Markov ¢hain
and its corresponding embedded discrete time markov chain v are,

J
and Z.= . 74)/

The classification in the discretene case into transient and recurrent can be transferred
via the embedded Markov chain to continuous Markov processes.

4.7 Uniformization:

Uniformizationis a method to compute the transient solution of a finite state CTMC. The
method involves construction of analogous DTMC , where transition occur to an exponential
distribution with the same parameter in every state and hence the name uniformization.

For acontinuous time Markov chain with infinitesimal generator matrix Q , the uniformized
transition matrix P§) is given as follows

Where q is a rate value which is chosenbt greater than the magnitude of all the rates
within the generator matrix , i.@xa @ g0 "GQs. In matrix notiation it can be written as

» ==

P= L, where | is the Identity matrix

For a starting distributiort’ 11 , the distribution at time t, with system having completed n
hops can be derived as

TU Delft & Continental Engineering Servi{ 28
Master Thesi

A 4

¢tKAa NBLNBaSyilidAzy akKz2gazr O(GKIFIG alF O2ydAydz
discrete Markov Chain with transition matriR as defined above where jumps occur
according to a Poisson process with inten§ityi €

4.8 First Passage Time Analysis

/| 2Y&ARSNI I FAYAGSET ANNBRAzOAGES = /[¢al H6AGK vy
matrix Q. If X(t) denotes the state ofth¢ @/ & GAYS G o6dxn0 I (GKSy
from a source state i into a neempty set of target state® is given as

T (0 =inf{u>0: X(t+uy 2 | X(0) =i} / G % n

For stationary timehomogeneous CTMC © Tis independent of t, sG° (t) = inf{u > 0 : X(u)
NO | X(0) =i} . 9 is associated with probability density function, f(x) of the random

variable by the relation

Pr(a< P _<b) ;j. MG K b F 60

The cumulative density function (CDF) of passage is obtained by multiplying the probability
of being in a target state j aftexxactly n hops within time Iby the probability of performing
n within the time t

A &

|

The probability density function (PDF) of a passage is the probability of performing n hops at
exactly time t to reach state j is given as

1" 4 -A<

| 5« -

Hence the Passage time equations for CDF and PDF are as follows,

B. 3 Ah<8 Bg«o Zg'

B. [/<8BgoZg

TU Delft & Continental Engineering Servi{ 29
Master Thesi

4.9 Poisson process

A continuous time stochastic process {X(J}tsatisfying the following propertiesdslled a
poisson process

() X(0)=0

(i) Vto=0<i<tXdr iy I GKS)XEOXNBIGY (i & X&x&.)o
are independent random variables

(i) For tk 0, s > 0 and non negative integers k, the increments have Poisson
distribution

Then P X(t+s)C - 6 & 0 Fe<fki8 ' 6<i0
< is the rate of the Poisson process witleam of the procesé <

The above process is a homogenous Poisson process where the number of events in an
interval (t, t+) follows a poisson distribution.

4.9.1 Properties

MU I t2Aaa2y LINRBOSaa 9-600 I G xnY gAGK
successive occurrence times of events, then the interarrival times tn z (tn -1) are
AYRSLISYRSYyild ARSYy(GAOFrffe RAAGNAROdZISR SELRYSy(
words, the cumulative distribution functiorF(x) =Prw _ Y X@;eﬁ% ™

HO LF - 600 FYR , o000 IINB (62 AYRSBLISYRSY

votio I -0 b ,00G0 A& faz2 | LRArAaazy LINROSAaa
3) A Poisson process is the most basic form of a CTBI@ chain ofndependent

identically distributed states with mean sojurn time of 1/qj

TU Delft & Continental Engineering Servi{ 30
Master Thesi

5. Performance modeling

Performance modeling is a process of modeling system performance considering various
sytem parameters with the objective of proactively predicting the performance statically. To
obtain the performance model of a system, its required to denote the systeabstract

form of which represents average behavior. In order to perform this several operational laws
are applied. The advantages of the laws are that,

1) They are very general and make no assumptions about the behavior of the random
variables charactezing the system.

2) They are very simple meaning that they can be applied quickly and easily by almost
anyone.

Based on a few simple observations of the system , by applying these simple laws, we can
derive more information. Using this information as impwe can gradually build up a more
complete picture of the behavior of the system.

Operational laws are built on observable variables. These are values which we could derive
from watching a system over a finite period of time. Consider a system rega®guests

from its environment. Each requests generates a job in the system . when the job has been
processed by the system the system responds to the environment with the completion of
the requests. Based on this analogy , we can identify the follovanghies

Arrival Completion

— System ——

Figure 9 A sample system model
: the length of time we observe the system

: the number of request arrivals we observe

O » -

: the number of request completions we observe

oy)

: the total amount of time during which the sgst is busy (B<T)

N : The average number of jobs in the system.

TU Delft & Continental Engineering Servi{ 31
Master Thesi

From these observed values we caniderthe following fourquantities:
<= A/T, the arrival rate,

X = CIT, the throughput or completion rate,

U = B/T, the utilization,

S = B/C, the mean service time per completed job

Response time = Service time + Wait time , where response time is the time between the
initiation and completion of the response to a request and wait time is the time between the
submission of the requestnd initiation of the response. Wassume that the system is job
flow balanced , meaning that number of arrivals is equal to number of completions during
an observation period and hence A = G=> T

pom [AGGESQE [6

It states that the averge number of jobs in a system is equal to the product of the
throughput of the system and the average time spent in that system by a job

If average number of jobs in the system is N , and W is the average residence time of the
jobs in the system , then thilaroughput of the system X =N /W

5.2 Forced flow law

It states that the throughput at the ith resource is equal to the product of the throughput of
the system and the visit count at that resource.

If wis the vsit count of the ith resorce ,the ratio of number of completions at that
resource to the number of system completioissw =06 /C. Hence it is the throughput of
the system at ith resource thed = X.w

5.3 Utilization Law

It states that the utilizatiorof a resource is equal to the product of the throughput of that
resource and the average service requirement at that resource.

The totalamount of the service Si that system job generates at the ith resource is called
the service deman®. O ="Yw. The utilization of a resource is the percentage of time that
the ith resource is in use processing the job

TU Delft & Continental Engineering Servi{ 32
Master Thesi

5.4 Residence Time Law

It states that the average residence tirneaverage response timaf a job in the system will
be the sum of the product of its average residence time at each resource and the number of
visits it makes to that resource.

5.5 Queueing theory

Queueing theory describes basic phenomena saglthe waiting time, the throughput, the
losses, the number of queueing items, etc. in queueing systems. A queueing system basically
consists of a) Arrival process b) Queueing process c) Service process and d) Departure
Process

Service process

Arrival | Departure
process process

Queueing process

Figure 1Q Queueing model

The general syntax is A/B/n/K/m, where A specifies the interarrival process, B the service
process, n the number of servers, K the number of positions in the queue and m restricts the
number of allowed arrivals in the queueing system. rieples for both the interarrival
distribution A and the service distribution B are M (memoryless or Markovian) for the
exponential distribution, G for a general distribution and D for a deterministic distribution.

The traffic intensity of a Queueing systemso called Load or Utilization= E[x]/ E[] =< K >

> BKSNBE < Aad GKS YSIY AYUSNINNAGIE NYXYaGS I yR
the average number of jobs in the syst&fNs] equals to the average arrivalrate G A YS & K
averagetime spend in the syster&[T], E[Ns] = E[@].

5.6 Queueing Models

The M/M/1 queue(with unlimited positions in the queugwhich will not be indicated in the
notation) consists of a Poisson arrival process of jobs with exponentially distributed
interarrival times, a service process with exponentially distributed service time, one server
and an infinitely long queue. Similarly M/M/1/K queue consists of a Poisson grodss

of jobs with exponentially distributed interarrival times , a service process with exponentially
distributed service time, one server and with a queue capacity of K.The following tables
summarizes different performance measures of M/M/1 and M/MKldueue

TU Delft & Continental Engineering Ser

Master Thesi

v;' 33

Performance Measures M/M/1 M/M/1/K
¢CNI FFAO AY <K > <K >
Utilization , U (per server) i T AeM(1- T 0 ML TY)
Average number of jobs in K-6 " k-6 M6 6 Y BN (@
the system , E[Ns] b))
Average response timeg[T] 1/>(1-" 0 N/ < F M-K}S((%—M 0 fa(1-
Ky

Table 1: Queueing model parameters

6. PEPA

PEPASs a stochastic process algebra designed for modeling computer and communication
systems introduced by Jane Hillston. The language exteladsical process algebras such as
Milner's CCS and Hoare's CSP by introducing probabilistic branching and timing of

transitions

PEPA consists of set of agents which engage in action .

Models can be constructed from

components which engaged in activiti@$he structured operational (interleaving) semantics

of language is used to generate a labeled transition system (LTS) . The behavior of the model
is dictated by the semantic rules (Structure Operational Semantics) governing the
combinator of the languagerhe possible evolutions of a model are captured by applying the
rules exhaustively generating a labeled transition system. The resulting system can be
viewed as a graph in which each node can be viewed as a state of the model and the arcs
representing tle actions which can cause the model to move from one state to another i.e a

CTMC.

PROCESS

SEMANTIC RULES

ALGEBRAIC
MODEL

LABLED
TRANSITION
SYSTEM

Figure 11 PEPA overview

cTMC
STATE TRANSITION, |
INFINITESIMAL
DIAGRAM GENERATOR Q

Rates are drawn from the exponential distribution and PEPA models arediate and so
give rise to a stochastic process (CTMC). Theigahguage can be used to study quantitative
properties of models of computer and communication systems such as throughput,
utilization and response time as well as qualitative properties such as freedom from
deadlock. The language is formally definechgsa structured operational semantics in the

style invented by Gordon Plotkin.

TU Delft & Continental Engineering Servi{ 34
Master Thesi

PEPA has four combinatorprefix, choice co-operation and hiding Prefix is the basic
building block of a sequential component: the process).P performs activitya at a rate r
before evolving to behave as componelt Choice sets up a competition between two
possible alternatives: in the process £).P+ [, s).Q either a wins the race (and the process
subsequently behaves & orb wins the race (and the process subsequently behave&d.as

The coeoperation operator requires the two "coperands” to join for those activities which
are specified in the coperation set: in the procesB< a, b> Q the processe$ and Q must
co-operate on activitiesa and b, but any other activities may be performed independently.
Finally, the procesB/{a} hides the activitya from view (and prevents other processes from
joining with it).

6.1 Syntax & Properties

Given a set of action names, the seilQES processes is defined by the following BNF
grammar:

t YYI o0l <0®dt p t b v
The parts of the syntax are, in the order given above
(1) action:
The process | 2 can pedhdrm an actiom at a rate<and continue as the proces?
(i) choice:
The proces®+Qmay behave as either the proce8sr the proces).
(i) Cooperation:

The processe® and Q exist simultaneously and behave independently for actions whose
names do not appear k> For actions whose names appear in #» action must be
carried out jointly and a race condition determines the time this takes. E.g. P<ab>Q : P
and Q are synchronized over a and b

(iv) Parallel:
The processeBandQ exist simultaneously and behave independently. g > Q.
(v) Hiding:

The proces®behaves as usual for action names noLiand performs a action for action
names that appear in k>. E.g. P/a}

(vi) Process identifier:

write & K 0 to use the identifierAto refer to the proces®.

TU Delft & Continental Engineering Servi{ 35
Master Thesi

6.1.1 Synchronization

PEPA has a bounded capacity for synchronization . When two activates with different rates
are synchronized by eoperation operator, the rate of the shared activity is reduced to the
minimum of the apparent rates of the activity in the-operating components.

6.1.2 Activity Rate

2 KSy +y FTOUA@AGE h A& SylofSR o6& I LINRPOSaa
delayed for a period determined by the associated exponential distribution. The probability
GKFG GKS I O Anida pediod of tirkelt |3 d8/¢hzby tieAcdimulative distribution
function F(t) =1 'Q .If several activities are enabled at the same time each will have their

own associated timer.When the time t expires the activity is said to be completed w.r.t an
external observer. A activity is preempted or aborted if another activity completes first.

¢CKS LI NBYydG NIXrdsS 2F | O02YLRYSyld t gA0GK NBal
2F GKS O2YLRyYySyd t G2 OF NNEB«(PRdzi | OGAGAGASE 2

6.1.3 Time Homogeneity

PEPA models are tinf@omogeneous , since all the activities are timemogeneous, i.e the
rate and type of activates enabled by a component are independent of time.

6.1.4 Irreducibility & Positive recurrence

Only the PEPA modelsttifinite number of states are solved, i.e the models should be
irreducible and positive recurrent (strongly connected) which are expressed in terms of the
derivation graph. This means that in the system whenever we chose a path it must
eventually return o the point where the original choice is made possibly with different
outcome

6.1.5 Exponential Property

The memory less property of the exponential distribution makes the recording of the
residual time of an activity redundant.

6.1.6 Structured OperationrSemantics

PEPA is defined using Plotsityle structured operational semantics. The rules are described
as follows

. , 11
Prefix oh ZNIJEODP 9

TU Delft & Continental Engineering Servi{ 36
Master Thesi

FA 4 F FA41
s
. A % = A v %
Cooperation LI T h y2i o6St2y3a (2 |
F 4 F

fil . Bl
ALt iy
Ak Wmhl M3 s | oh

F MO

where R x1/rv(E) . r1/n(F) min(§(E) , §(F)).

fil

Hiding ~ —T=T — h notbelongstoL
Pl A

fil
u
o g

Constant LT =K
M

6.1.7 Multiway co-operation

Cooperation in PEPA can be multiway. Two , three , four or more partners may cooperate
and they all need to synchronize for the activity to happen.

6.1.8 Solving PEPA

The generated CTMC are solved using the linear algebra in terms of the equilibrium
behavior. IPC and PEPA eclipse plugin solve the equations and derives the performance
measures.

6.1.9 State space Explosion problem

The solver in PEPA relies on constructing the N*N infinitesimal generation matrix Q and N
RAYSYyaAzyl t LINRRele ol js tha sizé of (& sate 3ddde.” Sonietimes the size
exceeds what could be handled by the memory and its called states space explosion
problem.

It can be avoided by three methods

i State space reduction by Aggregation
9 Stochastic simulation over digte state space
1 Fluid approximation of the state space

TU Delft & Continental Engineering Servi{ 37
Master Thesi

We use Aggregation method , in which the states space is partitioned in to number of
ayYrFftfSN aGdraSas FyR NBLIX I OS SIHOK aSidithee I Y
sojourn times_ ®f a corinuoustime Markov process in a statg are independent,
exponential random variables with mearlj 2¢ >~ ¢S Oly ©@ASg GKS YI O
new CTMC.

6.2 PEPA Plugn project:

The PEPA Plig Project[14] is a software tool for the Markovian analysis of PEPA models.
The tool is implemented as a collection of ping for Eclipse.The PEPA Rlugontributes

an editor for the language and views which assist the user duriagttire cycle of model
development. Static analysis is used for checking the-faetiedness of a model and
detecting potential errors prior to inferring the derivation graph of the system. A-well
formed model can be derived, i.e. the underlying Markowagass is extracted and the
corresponding state space can thus be navigated and iterated via the State Space view.
Finally, the CTMC view allows numerical stesidye analyses such as activity throughput
and component utilization.

The plugin will report erors in the model function:

1 deadlock,

1 absorbing states,

i static synchronization mismatch (operations which do not involve active
participants).

The plugin also generates the transition graph of the model , computes the number of
states, formulategshe Markov process matrix Q , communicates the matrix to a soles.
plugin provides a simple pattern language for selecting states from the stationary
distribution

The plugin integrates the Hydr@l5] compiler which can be used to process the well formed
PEPA model for performance measures like

1 Transient Analysis & Steady State analysis : Measures the transient and steady state
probabilities ofthe system

1 Passage Time Analysis : Measures the probability of the system response time to be
at a certain value.

1 Throughput, Utilization & Population: Measures the percentage occupation and
utilization of the action components of the system.

http://www.dcs.ed.ac.uk/pepa/tools/plugin/
http://pubs.doc.ic.ac.uk/ipc-hydra-qest/

TU Delft & Continental Engineering Servi{ 38
Master Thesi

6.3 IPC

LLJO adlyR&a F2NJ LYLISNRARFE t9t! [/ 2YLAESND LGQ2
performing various measurements. In ipc there are five general kinds of measurements that
can be specified.

1 Steadystate

1 Passag¢ime

1 Average response time
M1 Transient
I Count measures

Special probe components are used to specify complex performance measurements and use
the simpler interface of specifying activities of interest. The first four kinds of measurements
NBIj dzA NE Qaidl NI Q IlvehRy tie &iser? il a EoOril rhes(ird requizes anly 3 A
one set of action names. A passagee measurement is used to measure between two
events. The user specifies a set of start actions, the observation of the model performing any
one of these actions wiltart the measurement. The user also specifies a set of stop actions

and the measurement is terminated when the model performs any actions within that set.

This can be done with the following command line:

ipc --source <source actions>target <target actions> <PEPA file name>
In addition to this, the start , stop and time step can also be specified in the command line as
follows

ipc --source <source actions>target <target actions>--start-time <start time>
--stop-time <stop tine> --time-step <time step> <PEPA file name>

The average response time measurement is also used to measure between two events, with
a start and end action or a set of start and end actions with the following command

ipc --source <source action>target <target action>--averageresponse <PEPA
file name>

The following command can be issued to generate the state space view of the model

ipc --dot-file <PEPA file name >

TU Delft & Continental Engineering Servi{ 39
Master Thesi

The ipc compiler is integrated in to the tool for analysis of tHeIRELIN , 2PIPELINE &
Cache PEPA models. We use both Passage time measurement and Average response time
measurement for the analysis.

6.4 PEPA Example

The following PEPA script models 2 processes, P and Q synchronizing over actions b and ¢

r=10;s=2.0;t=1.5; /I Rate of transitions

P1=(a,)xP2; /I Transition P1-> P2

P2 =b ,r).P3 + (c,s).P4; I/l System can do a Transition P2P3 or P2>P4 (it has a choice)
P3 =(d ,r).P4; /I Transition P3> P4

P4 = (e r).P1,; /[Transition P4> P1

Q1 = (b, 1).Q2; /l Transition Q1> Q2

Q2 =(c, 1).Q1; /[Transition Q2-> Q1

P1<b,c>Q1 /I P1Q& paths synchronize over actiong c, i.eb & cshould be

/l performed at the same time in both P1 & Q1
Figure 14 : Example PEPA script

In the first stage the modes$ parsed and checked for errors. The tool generated CTMC is as
shown below.

P3->P4
P2->P3 & S~ PaP1

a1-»02) P1 *P2 _
P1-> P2 / ‘\ b \r/,)\? /L\‘(PRasaral
| 4 25)
/ \// '/‘\\".‘/“\-.
\ /’ Pa > P1 \5)

Figure 14 : Abstract State space View

The system has 2 components P & Q , which witiperate / synchronize over actions b & ¢

. By synchronization it means that P &\l adjust each other to carry out actions b & c in
unison where as in other cases they can carry out their actions independently but no actions
can be missed.

The Passagentie cumulative distributiorwith source action aa and target action asis as
shown in theFigure 15. This measure indicates, (as described in the section 4.8) the
probability that the system starting from the state with actian reaches state with actioo

(the number of hops determined by the actiongithin a specific time.The effect of change

in the rates rs & ton the time to reach the target state with 99.99% probabilitpgsshown
below.

TU Delft & Continental Engineering Seer 40

Master Thesi

CDF

7 8 9101112131415

e—r=1,t=1.5,5=1

— =2 t=1,5=1
r=2,t=1,s=1.5

—r=]1,t=1.5,5=2

Figure 12 Passage time CDF

The average response time (ART) of the model with source actiamard target action as
with different values of r,t and s@long with time to reach 99.99% probability ases
tabulated below. From the table its certain that the model runs faster when the rates

arer=2,t=1 & s=1.

Rate Average Time to reach
Response 99.99%
Time probability
r=10,t=15,s=1.0 2.5 9.8
r=2.0,t=1.0,s=1.0 1.75 7.8
r=2.0,t=1.0,s=15 1.75 7.8
r=1.0,t=15,s=2.0 2.333 9.73

Table 2 : Rate vs ART

TU Delft & Continental Engineering Servi{ 41
Master Thesi

7. Design

In this chapter the different modeling approaches and the performance measures obtained
in each is discussed.

7.1 Single fetch Pipeline Modeling

A typical 5 stage pipeline instruction execution sequence is as shown in the figure 5. For the
sake of PEP#odeling we consider each instruction is made to undergo three actions.

1) Fetch:if
2) Decode :id
3) Execution : exe

The execution action can involve Memory Read/Write and or register Read/Write actions
which is abstracted to a single exe action. The rate of execution (r) for each action is the
inverse of the cycle taken for completion. Hence rat& ef1, rate ofid =1 and rate oexe=

(1/C). In an instruction set, each type of instruction has its own cycle of execution which is
directly used in the PEPA equations.

Each instruction execution is imagined to be a Process component P(i) , which will
synchronize withe@K & dz0 4S1jdz2Sy i AyaidaNdzOGA2ya toAbmoy
figure 2, the if, id of instruction 2 must synchronize with id , exe (MEM,WB) of instruction
1. Similarly Instruction 3 must synchronize with the respective actions of instruttir?.
However we can see that till the actions , the rate of the synchronized action matches ,
but with exe action, the rate will be different for different type of instructioR&€EPA assumes
bounded capacity: that is, a component cannot be made tdgse an activity faster by
cooperation, so the rate of shared activity is the minimum of the apparent rates of the
activity in the cooperating component&o if we synchronize witbxe can execute at the

NI GS 27 M 2NJ oyl n ®p etdhbl 1@ pull thedwonbineeze M,JdAtE to D H p
the lowest of the set. (For example if we are synchronizing actions with rates 1,0.5,0.333
then the combined rate of execution is min{1,0.5,0.333}=0.333). This will be wrong
interpretation of the system. Howevdor the sake of experiments we will also model the
system by synchronizing thexe It should also be noted that while synchronizing the actions
we should maintain common name for the actions to be synchronized. The following
approaches are possible forodeling.

The number of instructions for modeling is limited to 4 because

1 beyond 4 processes, the PEPA undergoes a population explosion in some approaches.
1 In order to maintain uniformity in experimentation

>

S

TU Delft & Continental Engineering Servi{ 42
Master Thesi

Consider the following set of 4 instructiottsbe executed in a 5 stage pipeline
mr r5, ré

stmw r7,r8

mr r4, r8

bl r7

Approach 1:

The model of the system in approach 1 is as shown in the figure 19. In this approach we
synchronize only the if and id stages of the instructions.

Instructions Stages
10 if exe
11 exe
12 exe
13 id exe

Synchronizing
Actions

PEPA CONVERSION

10 = (if,1) . (em,1) . (mr0,1) . 10;

11= (em,1) . (em1,1) . (stmw1,0.5) . 11;
12= (em1,1). (em2,1). (mr2,1).12;
13 = (em2,1) . (em3,1). (bl3,0.333).13;

I0<cm>11<cml>12<cm2>13

Figure 13 Approach 1 overview

TU Delft & Continental Engineering Servi{ 43
Master Thesi

Figureld: Approach 1 state space

Approach 2:

The model of the system in approach 21 is as shown in the figure. In this approach we
synchronize the if, id and exe of the instructions.

Instructions Stages

13 exe

Synchronizing W W Y
Actions

PEPA CONVERSION

10 = (if,1) . (em,1) . (em1,1). 10;

1= (em,1) . (em1,1). (em2, 0.5).11;
12= (em1,1). (em2,1) . (ecm3,1) .12;
13= (em2,1). (cm3, 1). (bl3,0.333) . 13;

D<cm,cml1>11<cml,cm2>12<ecm2,cm3 =13

Figure 15 Approach 2 overview

TU Delft & Continental Engineering Serv;' 44

1
ON
it o3 o

Figure 16 Approach 2 state space

Master Thesi

The following table summarizes the Averagep@sse time measure for each approadhie
useif as the source action and the set of all #eQ @s the target action to evaluate ART.

Type Average Respons
Time
Approach 1 | 2.94
Approach 2 | 3.40
Table 3 : Comparison
Population
0.5
0.4
c
S0.3
%0_2 m Approach 1
IS 0.1 - m Approach 2
£ 0
10 11 12 13
Processes

TU Delft & Continental Engineering Servi{ 45
Master Thesi

Throughput

0.165 -
3 0.16 -
ey
%’0.155 : m Approach 1
E 0.15 + m Approach 2
X0.145 -
bl3 cm cml cm2 cm3 if mrO

mr2 stmwl

Actions

Similar to the evaluation of ART uas the source action and the set of all #e=Q @s the
target action to evaluate Passage time CDF.

Passage time CDF

[En

o
o

o
o

= Approach 1

/ = Approach 2

Probability
o
N

o
(V)

o

01234567 8 9101112131415161718192021222324252627282930
Time

Figure 17 Population, Throughput & Passage time CDF comparison

TU Delft & Continental Engineering Servi{ 46
Master Thesi

7.2 Dual fetch tPipeline Modeling

A typical dual fetckpb stage pipeline instruction execution sequence is as shown in the below
figure 26. For the sake of PEPA modeling we consider eathcinen is made to undergo
three actions.

1) Fetch:if
2) Decode :id
3) Execution : exe

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are
executed in parallel. Each instruction in a first set , execution is imagined to be a Process
component P(i) , which will synchronize with each subsequent instructiang)P(P(i+2
VXPSGOD l'a ¢S Ol y iftcStBe toNdBtYictidnKf&chedl AsTaziviBn H
and should synchronizegl of instruction 2 must synchronize. Similarly Instruction 3 must
synchronize with the respective actions of instruction 4. ideer we can see that till the id
actions , the rate of the synchronized action matches. Alsaction on both the instruction

set can be synchronized. Depending on the actions used for synchronization there are 2
approaches.

Approach 1

In this approactthe if of the first two instructions will synchronize with each other, followed
by id of the first 2 instructions along with the if of th& thstruction set, followed by the id
of the 2¥instructions set.

Instructions Stages
10 exe
11 exe
12 ' exe
13 [exe

Synchronizing

Actions
PEPA CONVERSION

10=(if , 1) . (cm,1) . (mr0,1) . 10;

I1= (if , 1) . (em,1) . (stmw1,0.5) . I1;

12= (cm,1). (em2,1) . (mr2,1).12;
13= {cm,1) . (em2,1) . (bl3,0.333).13;

(I0<if,em>I11){12<cm,cm2 >13)

Figure 18 Approach 1 overview

lj

TU Delft & Continental Engineering Servi{ 47
Master Thesi

Figure 19 Approach 1 state space

Approach 2

In this approach the if of the first two instructions will synchronize, followed by id of the first
2 instructions along with the if of the"%instruction set, followed by the exe of thé' et
with the i of the 2%instructions set , followed by the exe of th&'2et.

Instructions Stages
[1]
11
12
13 |

Synchronizing
Actions
PEPA CONVERSION

10=(if , 1) . (em,1) . (em1, 1) . 10;

11= (if , 1) . {ecm,1) . (cm1,0.5) . 11;

12= {ecm,1). (cm1,1). (cm2,1).12;

13= (em,1). (em1,1). (cm2,0.333).13;

(lo<if,em,cml>I1)<cm,cml>(12<cm,cml,cm2>13)

Figure 2Q Approach 2 overview

TU Delft & Continental Engineering Ser

cm2
f L2 /= 3) ./
I.f_"\l/f\._/ - ./ 9) S
\2
Figure 21 Approach 2 state space
Approach 3

Master Thesi

VJ 48

In this approach the if of the first two instructions will synchronize, followed by id dfirtste

2 instructions. Along with the similar actions of tH¥ @struction set.

Instructions Stages
[} exe
11 exe
12 I exe
13 | exe

Synchronizing
Actions
PEPA CONVERSION

10= (if , 1) . (em,1) . (mr0,1) . 10;

11= (if , 1) . (em,1) . (stmw1,0.5) . I1;

12= (em,1) . (em2,1) . (mr2,1).12;
13= (em,1) . (em2,1) . (bl3,0.333).13;

(lo<if,cm=>11)< >(12<cm,cm2>13)

Figure 22 Approach 3 overview

Figure 23 Approach 3 state space

Master Thesi

TU Delft & Continental Engineering Serv;' 49

Population
0.8
c 0.6
i)
T0.4 m Approach 1
>
08_'0 5 | m Approach 2
S = Approach 3
0 |
10 11 12 13
Processes
Throughput
0.5
04
g. 0.3
%3» 02 m Approach 1
27 m Approach 2
= _
S 0.1 m Approach 3
0 i
bl3 cm cm2 if mr0 mr2 stmwl cml
Actions
Passage Time CDF
1.00E+00 —
,
7
y 4
8.00E-01 #~
y 4
y 4
% 6.00E-01 /’1',
< 1/ Approach 1
o .
a 4.00E-01 Approach 2
2.00E-01- Approach 3
/
0.00E+00 T T T)
0 5 10 15 20
Time

Figure 24 Population, throughput & passage time CDF comparison

TU Delft & Continental Engineering Servi{ 50
Master Thesi

The averageaesponse time of models in three different approaches is as shown in the
following table We useif as the source action and the set of all #we=Q @s the target action
to evaluate ART.

Type Average Response Time
Approach 1 3.28
Approach 2 3.18
Approach 3 2.47

Table 4 : Comparison

In order to choose the best approach, we compare the traditional performance measure i.e
Cycle per instruction (CPI) with ART of the corresponding PEPA model. The cycle per
instruction is given by the formula

B
CPI =

Where ICi: Number of Instructions of type i
Ci : Number of cycles consumed by instruction of type
IC: Total instruction count

In the below table 10,11,12,I3 in sequence are the number of execution cycles (EXE) of the
instructions. For 4 instructions the value of CPI for a single fetch 5 stage pipeline can be
calculated using the formula, CPIl = (Total Cycles taken ftit IOI2 +13) /4

Total cycle taken by an Instruction cycle fol cycle forlD + Cycle foEXE In case ok

dual fetch CPU the CPI is 0.5 times the CPI of a single fetch CPU.

TU Delft & Continental Engineering Servi{ 51

Master Thesi

PEPA Single PEPA Dual Fetch
Mo Iexe) 11{exe} |12{exe] 13[exe] Single Fetch CPI Fetch ART Dual Fetch CPI ART
1 1 1 1 1 3 2.17 1.5 1.78
2 1 1 1 2 3.25 2.43 1.625 2.02
3 i 1 i 3 5 1.E2 1.75 2.23
4 1 1 1 4 3.7% 3.31 1.B75 2.4
5 1 1 2 2 3.5 268 1.75 2.17
& 1 1 2 3 3.75 301 1 E7S 2.32
r i 1 2 4 4 346 2 2.48
B 1 1 3 3 4 3.29 2 2.43
- 1 1 3 4 4.25 3.67 2.125 2.53
10 1 1 4 4 4.5 3.93 2.25 2.61
11 i 2 2 2 3.75 2.B4 1.E7S 2.4
12 1 2 2 3 4 3.15 2 2.6
13 1 2 2 4 4.25% 3.55 2.125 .78
14 1 e 3 3 425 344 2125 2.75
is i 2 3 4 4.5 3.79 2.25 2.B9
16 1 2 4 4 4.75 4.08 2,373 2.599
17 1 3 3 3 4.5 3.59 2.25% 3
iE i 3 3 4 4.75 382 2375 3.18
iz i 3 4 4 5 4.22 2.5 3.32
20 1 4 4 4 5.25 4.35 2.625 3.59
21 2 2 2 2 4 2.99 2 2.56
22 2 i 2 3 4.25 3.26 2,125 2.EL
23 2 2 2 4 4.5 3.62 2.25 3.03
24 2 2 3 3 4.5 3.56 2.25% 2.98
25 ri 2 3 4 4.75 3.BET 2.375 3.16
28 2 i 4 4 5 4.1% 2.5 3.28
27 2 3 3 3 4.75 3.7 2,373 3.19
8 2 3 3 4 5 4 2.5 3.4
2% 2 3 4 4 5.25 432 2625 3.56
30 2 4 4 4 5.5 4.45 .75 3.7
31 3 3 3 3 5 3.B5 2.5 3.35
32 3 3 3 4 5.25 4.13 2.625 3.59
33 3 3 4 4 5.5 4.44 2.75 3.78
34 3 4 4 4 5.75 4.58 2.E7S 3.528
35 4 4 4 4 & 4.72 3 4.14

Table 5 : CPI vs ART comparison

TU Delft & Continental Engineering Servi{ 52
Master Thesi

The following graph shows the variation of the CPI and ART with different combination of
the instruction cycles.

Comparison of ART & CPI
7
6
5 A\ /\/
4 - ;
E Fetch CPI
& 3 - === Single Fetch ART
a, Dual Fetch CPI
2 / -
- Dual Fetch ART
1
0 T 1
01234567 8910111213141516171819202122232425262728293031323334353637
Instruction combination

Figure 25 CPI vs ART comparison

We take different combination of the instruction types with number of instructions being 4
and compae the variation of the CPI in case of the single fetch & dual fetch pipeline
execution model, against the corresponding average response time. Only for Approach 1 in
case of single fetch , and approach 3 in case of dual fetch pipeline, the CPI isortipnojo

the average response time as shown in the figdée Along with this reason, those two
models also avoid the bounded rate capacity drawback of the PEPA. Hence we choose
approach 1 of single fetch and approach 3 of dual fetch for final modéimge the plots of

CPIl and ART are proportional, this could be the closest possible model of program execution
by the processor.

TU Delft & Continental Engineering Servi{ 53
Master Thesi

7.3 Single fetch Cache Memory Access Modeling

A typical single fetckb stage pipeline instruction execution, along with cache and memory
action sequence is as shown in the fig@@ For the sake of PEPA modeling we consider
each instruction is made to undergo the following actions.

1) Cache access: ca
2) Memory Access :ma
3) Fetch:if

4) Decode :id

5) Execution : exe

In case of a single fetch pipeline, single instruction is fetched. The synchronization of actions
as described in-pipeline modeling is followed. The algorithm for finding if the instruction is
avdlable in cache or in memory as shown in the fig@&is used. If the instruction is
available in the cache, then ca action appears in the equation else ma action appears in the
equation. For showing the modeling example, we assume a scenario thand 3
instructions are available in cache anf and 4" instructions are available in memory. We
also assumead a show a distinctive rates of execution of the instruction blocks , ¢eaehe
access takes dyclesand memory access takes 10 cycles.

Instructions Stages
10 ca if exe
11 ma exe
12 (E] exe
13 ma id exe

Synchronizing
Actions
PEPA CONVERSION

10 = (ca,0.25).(if,1) . (cm,1) . (mr0,1) . 10;

I1= (ma,0.1).{cm,1) . {em1,1) . (stmw1,0.5) . I1;
12= (ca,0.1).{em1,1) . (em2,1) . (mr2,1).12;
13= (ma,0.25).(cm2,1) . (cm3,1) . (bl3,0.333) . 13;

DI1<ecml>I2<cm2>13

* Cache fetch 4 cycle , Memory Access 10 Cycles

Figure 26 Overview

TU Delft & Continental Engineering Ser

Average response time643

Master Thesi

Population
0.6

%population

Processes

0.5
0.4
0.3
0.2 - m single fetch
a8 B
0 |
10 11 12 13

v;' 54

Throughput

1.20E-01

1.00E-01

8.00E-02

6.00E-02
4.00E-02+
2.00E-02 -
0.00E+00-

%throughput

> O

XY
SR P O R N P R R

%\’@

Actions

E Throughput

Passage Time CDF

Probability
o
S

0 20 40 60 80 100 120 140

Time

—gingle fetch

Figure 27 Population, throughput & passage time CDF

TU Delft & Continental Engineering Servi{ 55
Master Thesi

7.4 Dual fetch Cache Memory Access Modeling

A typical dual fetch5 stage pipeline instruction execution, along with cache and memory
action sequence is as shown in the fig@& For the sake of PEPA modeling we consider
each instruction is made to undergo three actions.

1) Cache access: ca
2) MemoryAccess :ma
3) Fetch:if

4) Decode :id

5) Execution : exe

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are
executed in parallel. The synchronization of actions as described in dual fetigelihe
modeling is followed. The agthm for findingif the instruction is available in cache or in
memory as shown in the figui@6 is used. If the instruction is available in the cache, then ca
action appears in the equation else ma action appears in the equation. For showing the
modeling example, we assume a scenario thitahd 2 instructions are available in cache
and 3% and 4" instructions are available in memore also assume to a show a distinctive
rates of execution of the instructioblocks,that cache access takes 4 cycles and memory
access takes 10 cycles.

Instructions Stages
10 ca exe
11 ca exe
12 ma exe
13 ma exe

Synchronizing
Actions
PEPA CONVERSION

10= (ca,0.25).(if , 1) . (em,1) . (mr0,1) . 10;
I1= (ca,0.25).(if , 1) . (cm,1) . (stmw1,0.5) . I1;

12= (ma,0.1). (em,1) . (em2,1) . (mr2,1).12;
13= {ma,0.1). (em,1) . (em2,1) . (bl3,0.333).13;

(10< if,cm>11)< »{12<cm,cm2>13)

Figure 28 Overview

TU Delft & Continental Engineering Ser

Master Thesi

Figure 29 State space

%Population

Population

0.6

0.4
0 -
10 11 12 13

Processes

% Throughput

Throughput

2.50E-01

(621

o

o

m

o

N
]

. E m dual fetch

2.00E-01
1.50E-01
1.00E-01
0.00E+00—:.
bl3 ca

cm

cm2 if ma mrO

Actions

mr2 stmwl

v;' 56

