
TU Delft & Continental Engineering Services
Master Thesis

1

 MSc Thesis

Process Algebraic - Performance Modeling of Embedded Software

 Ravindra Seetharama Aithal

Abstract

A compiler for embedded platforms has many optimization flags providing code size and

speed improvement. Traditional profiling methods take lot of time to identify the best

combination of the compiler flags to suit the requirement, especially if the software stack is

very huge. AUTOSAR is one such growing software market in which there is a need for rapid

performance assessment. In this thesis a means to estimate the performance of a program

using the process algebraic language (PEPA) is investigated. The assembly program from

trace is converted in to the PEPA model and the performance measures obtained by solving

the model is verified against the actual execution time of the program. The experimental

results provide valuable insights on the methodology.

Master Thesis Number : CE-MS-2013-11

Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft

TU Delft & Continental Engineering Services
Master Thesis

2

MSc Thesis

 Process Algebraic - Performance Modeling of Embedded Software

 Submitted in partial fulfillment of the requirements for the degree of

 MASTER OF SCIENCE

 in

 EMBEDDED SYSTEMS

 by

 Ravindra Seetharama Aithal

 born in Bengaluru, India

Continental Engineering Services GmBH

AUTOSAR Center

Regensburg, Germany

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

TU Delft & Continental Engineering Services
Master Thesis

3

MSc Thesis

 Process Algebraic - Performance Modeling of Embedded Software

Laboratory : Computer Engineering

Master Thesis Number : CE-MS-2013-11

Committee Members :

Advisor : Arjan van Genderen , CE , TU Delft

Chairperson : Stephan Wong , CE , TU Delft

Member : Anne Remke , DACS , TU Twente

Member : Herbert Hofmann , CES-AC, Regensburg

TU Delft & Continental Engineering Services
Master Thesis

4

Contents:

1. Introduction ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ р

2. Instruction Pipeline ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦ мр

3. Cache ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ.17

4. Probability Theory & Stochastic ProcessesΧΧΧΧΧΧΧΧΧΧΧΧΧнм

5. Performance ModelingΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧол

6. PEPAΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦоо

7. DesignΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦΦΦпм

8. ExperimentsΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ66

9. ResultsΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ67

10. Conclusion & Future WorkΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ 75

11. ReferencesΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ.76

12. AppendixΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ.78

TU Delft & Continental Engineering Services
Master Thesis

5

1. Introduction:

1.1 Motivation

The state-of-art automotive vehicle (Passenger Car / Commercial Vechicle) houses many

embedded systems like Enginer Management System (EMS) , Exhaust Gas Treatment ,

Adaptive Cruise Control (ACC) , Advanced Driver Assistance System (ADAS) etc offering

safety and comfort features. The basic embedded system unit of a vehicle is the Electronics

Control Unit (ECU). A typical car houses about 80-100 ECUs and about 30% cost of the

vehicle is attributed to the ECU. A ECU basically is a application specific hardware and

software co-design. The complexity of the automotive software is increasing year by year ,

with contribution of the number of patents for the software techniques being highest

combined with rapid innovation in the vehicle safety and comfort features.

The volume of the in-vehicle software is expected to increase by 30-40% in the coming years

[23]. Automotive applications correspond to about 17% of the embedded market . From

2012 to 2013 the automotive applications have increased by 2%[23].According to the survey

about 44% of the applications are started from scratch in 2013, and remaing 56% are the

upgrades or improvement on the earlier project. One of the main catalyst to the the rapid

changes in the automotive embedded market is AUTOSAR[1].

With increasing complexity of electronics in modern vehicle systems, the AUTOSAR

(AUTmotive Open System Architecture) community was born. The goal was to reduce this

complexity by means of standardized software modules and a layered architecture. The side-

effect of the standardization was that modules have to be developed in a generic way and

cannot be optimized for each single project as it was the case in the past. Although the

modules are highly configurable, the footprint and CPU load of AUTOSAR ECUs are strongly

increasing.

In AUTOSAR, the software modules are rapidly developed/reused/configured and delivered.

The entire automotive industry is migrating to the AUTOSAR. The software development

ƳƻŘŜƭ ŘƻŜǎƴΩǘ ƛƴŎƭǳŘŜ ŀ ǇǊƻŎŜǎǎ ƻŦ ƻǇǘƛƳƛȊƛƴƎ ǘƘŜ ǎƻŦǘǿŀǊŜ ƳƻŘǳƭŜǎ ƻǊ ŀƴȅ ŀŘ-hoc research

in between. Although numerous guidelines (MISRA [2])are available to the developer, they

only address compliance to safety. Guidelines for optimization are not the same among

different hardware platforms. Hence the need of the hour is to develop a tool or

methodologies in which the developer can rapidly asses the performance of the software

modules validate the software reviews based on statistical measures. This project attempts

to provide the prototype of such a tool.

http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://images.content.ubmtechelectronics.com/Web/UBMTechElectronics/%7Ba7a91f0e-87c0-4a6d-b861-d4147707f831%7D_2013EmbeddedMarketStudyb.pdf?elq=~~eloqua..type--emailfield..syntax--recipientid~~&elqCampaignId=~~eloqua..type--campaign..campaignid--0..fieldna
http://www.autosar.org/
http://automotive.roger.free.fr/articles/miscprev.pdf

TU Delft & Continental Engineering Services
Master Thesis

6

Continental Engineering Services GmBH ς AUTOSAR Center is one of the members of the

AUTOSAR consortium. The R&D team of the company extensively reserches on the compiler

optimization flags and coding guidelines for the best performance result .The team also

specializes in developing, configuring the AUTOSAR modules , tailored to the needs of the

Original Equipment ManufacǘǳǊŜǊǎ όh9aΩ{ ƭƛƪŜ .a²Σ ±h[±hΣ ŜǘŎύ ŀƴŘ ŘŜƭƛǾŜǊƛƴƎ ŦƻǊ ǘƘŜ

series production.

1.2 Overview

Vowing to the rapid prototyping and validation of the software modules in AUTOSAR, and

the large time consumed by the traditional profiling methods, the need is to investigate the

possibility of assessing the performance measure with the help of modeling techniques.

IŜƴŎŜ ǘƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ƛǎ άdevelopment of a methodology for rapid code profiling

using process algebraic modeling languageέΦ

In this project we statically evaluate embedded system software for different optimization

strategies/coding styles to meet the best performance without actually running on the

platform; Essentially a Static Code Analysis [3] .The source code is first fed through the

compiler with a particular optimization set or with a certain coding style. The compiler does

a transformation on the code and the assembly/trace file is generated. This intrinsically

provides information on how fast the hardware is going to run the code. A model (explained

in the subsequent sections) can be generated from the assembly code using the PEPA [4]

terminology.

PEPA stands for Performance Evaluation Process Algebra, is a tool supporting performance

ƳƻŘŜƭƛƴƎ ǘŜŎƘƴƛǉǳŜǎΦ LǘΩǎ ǎƛƳǇƭȅ ŀƴ ŀƭƎŜōǊŀƛŎ ƭŀƴƎǳŀƎŜ ǿƘƛŎƘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ōǳƛƭŘ ŀ ƳƻŘŜƭ ƻŦ

the system and ascertain its performance matrix. We chose PEPA because it is a high-level

model specification language for low-level stochastic models, which allows the model of the

system to be developed as a number of interacting components undertaking certain

activities. A PEPA model has a finite set of components that correspond to indefinable parts

or roles of the system. PEPA allows us to model different actors of a system (for example in a

processor , instruction fetch unit, decode unit, execution unit, cache fetching etc.) and

analyze the effect of each of these different actors in unison or independently.

The hardware properties basically refer to the basic properties like single fetch or

superscalar processor, type and amount of cycles consumed by each instructions. Once we

obtain the performance ratings, the source code and the compiler can be tuned for the best

optimization results. In this case the performance can be obtained in the view of optimal

speed. For validating the model we can later run the actual code on the platform and

compare the results and as a feedback fine tune the model or the code.

http://en.wikipedia.org/wiki/Static_program_analysis
http://www.dcs.ed.ac.uk/pepa/

TU Delft & Continental Engineering Services
Master Thesis

7

 Figure 1: Overview

A program can be visualized as a set of basic blocks with each consuming different time for

execution. The rate of execution of the basic blocks depends on

1) Distribution of the type of instructions in the blocks: In the sense the amount

of cycles that each of the instructions in the block consumes.

2) Memory segment in which the block is available: In the sense the availability

of the block in the main memory (cache miss) or in cache (cache hit).

3) The property of the hardware in which the program is run: In the sense the

type of pipeline structure used (single fetch pipeline or dual fetch pipeline)

and also the amount of cycles consumed by each memory or cache access.

Correspondingly, based on these three classification, we can define three type of execution

rates.

 1) LƴǎǘǊǳŎǘƛƻƴ 9ȄŜŎǳǘƛƻƴ wŀǘŜ Υ LǘΩǎ ǘƘŜ ǊŀǘŜ όмκǘƛƳŜύ ŀǘ ǿƘƛŎƘ ǘƘŜ ōƭƻŎƪ ƻŦ ƛƴǎǘǊǳŎǘƛƻƴ

is executed by the processor.

2) !ŎŎŜǎǎ wŀǘŜ Υ LǘΩǎ ǘƘŜ ǊŀǘŜ ŀǘ ǿƘƛŎƘ ǘƘŜ ōƭƻŎƪ ƛǎ ŀŎŎŜǎǎŜŘ ŜƛǘƘŜǊ ŦǊƻƳ ƳŜƳƻǊȅ ƻǊ

 from Cache

 оύ 9ŦŦŜŎǘƛǾŜ ǊŀǘŜΥ LǘΩǎ ǘƘŜ ŎƻƳōƛƴŜŘ ǊŀǘŜ ƻŦ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ƛƴǎǘǊǳŎǘƛƻƴ ōƭƻŎƪΦ

The figure 2 shows the basic representation of the program in terms of blocks of instructions

Σ ǿƘŜǊŜ ǊмΣǊнΣǊоΧǊb ŀǊŜ ǘƘŜ LƴǎǘǊǳŎǘƛƻƴ ŜȄŜŎǳǘƛƻƴ ǊŀǘŜ Σ !wмΣ!wнΣ!wоΣΧ!wb ŀǊŜ ǘƘŜ !ŎŎŜǎǎ

ǊŀǘŜǎ ŀƴŘ 9wмΣ9wнΣ9wоΧ9wb ŀǊŜ ǘƘŜ 9ŦŦŜŎǘƛǾŜ ǊŀǘŜ ōŜŦƻǊŜ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴΦ {ƛƳƛƭŀǊƭȅ

ǊΩмΣǊΩнΣǊΩоΧǊΩb ŀǊŜ ǘƘŜ LƴǎǘǊǳŎǘƛƻƴ ŜȄŜŎǳǘƛƻƴ ǊŀǘŜ Σ !wΩмΣ!wΩнΣ!wΩоΣΧ!wΩb ŀǊŜ ǘƘŜ !ŎŎŜǎǎ ǊŀǘŜǎ

ŀƴŘ 9wΩмΣ9wΩнΣ9wΩоΧ9wΩb ŀǊŜ ǘƘŜ 9ŦŦŜŎǘƛǾŜ ǊŀǘŜ ŀŦǘŜǊ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴΦ

TU Delft & Continental Engineering Services
Master Thesis

8

 Figure 2: Program representation in terms or basic blocks

Block access rate can be the memory access (MA) or cache access (CA). In order to identify

the change in rates of the basic blocks, CTMC (Continues Time Markov Chain) terminologies

are used with the help of the modeling language PEPA. The above representation of the

system can in turn be represented like a CTMC as shown in the following figure (with a

possible memory / cache access scenario).

 Figure 3: CTMC representation of basic blocks

Each block is represented as a state in the CTMC with, exit rates being the rate at which the

block is executed and at the end of execution the state changes to the next block. The entry

rate to a state depends on the rate of accesses (CA/MA) and the exit rate from the preceding

state. From a CTMC, number of mathematical measure can be derived like the transient /

TU Delft & Continental Engineering Services
Master Thesis

9

steady state probability matrices, Average response time, Cumulative distribution function

etc. which in turn gives the performance of the system. A compiler flag or combination of

compiler flags may alter the execution rate of the basic block of a program by

1) changing the type of instructions used ,

 or

2) by shifting the memory in which the instruction is stored(in case of a Instruction

Cache)

and such changes can be easily identified in the performance measure of the CTMC. In order

to evaluate the performance measures we need to convert the assembly program in to a

process algebraic language model which can evaluate the performance measures. The

number of instructions in a basic block and rate of cache and memory access is directly

dependent on the issue fetching capability of the hardware platform. In the following

chapters we will discuss important performance measures, methodology and tools used for

performance estimation and the obtained results.

1.3 Challenges

The optimization criteria are the Speed of execution and the Memory consumption. Since

memory consumption estimation is already available in the current project setup we will

only consider estimating the speed of execution. A tool which can develop the PEPA script

from the assembly / trace file needs to be developed which would make methodology

scalable and less time consuming. Initial work can be dedicated to manual scripting and then

can be extended to automated scripting. If it becomes necessary to analyze the Boolean

predicate code then we also need to develop a script for the conversion to PEPA model.

LŦ ǿŜ ǳǎŜ ƻƴƭȅ ŀǎǎŜƳōƭȅ ŦƛƭŜ ŦƻǊ ǘƘŜ ŀƴŀƭȅǎƛǎ ǘƘŜƴ ƛǘΩǎ ǘŜŘƛƻǳǎ ǘƻ ǘǊŀŎŜ ōŀŎƪ the original source

in C and if we used Boolean predicate code [9] although it becomes easy to trace the source

in C, we miss the compiler optimization effects which can only be seen in the assembly file.

The best use-case is expected to be obtained during the experimentation. We start modeling

for a simple CPU like (single core, single pipeline, and single thread [10]) and in the near

future scale it to higher level systems.

1.4 Outcomes & Expectations

This method in a way produces the performance model [11] of the source code and the

compiler or the developers. They can estimate the effect of different coding styles, and

compiler optimizations (individually or in unison) statically & rapidly. The user can run the

tool interactively and can include CSL (Continuous Stochastic Logic) formula [12] checks to

evaluate satisfiability of stochastic criteria or estimate a stochastic measure.

This kind of static performance estimation is of high importance as they are less costly and

less time consuming. The entire setup will be rapid because of the fast solvers available in

the PEPA supported compilers and plug-in and easily scalable if we can develop tool for

http://research.microsoft.com/pubs/69821/tr-2000-115.pdf
http://www.cpubenchmark.net/singleThread.html
http://researcher.watson.ibm.com/researcher/view_pic.php?id=150
http://eprints.eemcs.utwente.nl/11189/01/formats.pdf

TU Delft & Continental Engineering Services
Master Thesis

10

conversion to the PEPA model from the respective sources. As an extension of the thesis, we

can test the project on some dedicated platforms to evaluate it further.

 1.5 Background

a) AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development partnership

of car manufacturers, suppliers and other companies from the electronics, semiconductor

and software industry.

¶ Paves the way for innovative electronic systems that further improve performance,

safety and environmental friendliness

¶ Is a strong global partnership that creates one common standard: "Cooperate on

standards, compete on implementation"

¶ Is a key enabling technology to manage the growing electrics/electronics complexity.

It aims to be prepared for the upcoming technologies and to improve cost-efficiency

without making any compromise with respect to quality

¶ Facilitates the exchange and update of software and hardware over the service life of

the vehicle

!¦¢h{!w ǇǊƻǾƛŘŜǎ ŀ ŎƻƳƳƻƴ ǇƭŀǘŦƻǊƳ ƛƴ ǿƘƛŎƘ h9aΩǎ Σ ǎǳǇǇƭƛŜǊǎ Σ ǘƻƻƭ ǇǊƻǾƛŘŜǊǎ ŜǘŎ Ŏŀƴ

collaborate with benefit that complexity of integration is reduced while improving the

ŦƭŜȄƛōƛƭƛǘȅ Σ ǉǳŀƭƛǘȅ ŀƴŘ ǊŜƭƛŀōƛƭƛǘȅΦ ¢ƘŜ h9aΩ{ ōŜƴŜŦƛǘ ōȅ ŜƴƘŀƴŎŜŘ ŘŜǎƛƎƴ ŦƭŜȄƛōƛƭƛǘȅ Σ ǊŜǳǎŜ ƻŦ

software modules across variants,simplified integration and reduced development costs. The

suppliers benefit from reduction of version proliferation and the ease of function

development. The tool developers can produce seamless and optimized landscapes for

tools.Thus AUTOSAR allows for smoother portability between different platforms. The car

production of AUTOSAR OEM members covers ~81% of the total cars produced worldwide.A

ǊŀǇƛŘ ƎǊƻǿǘƘ ƻŦ !¦¢h{!wΩǎ ƳŀǊƪŜǘ ǇŜƴŜǘǊŀǘƛƻƴ ōŜǘǿŜŜƴ нлмн ǘƻ нлмс ƛǎ ǇǊŜŘƛŎǘŜŘ ǎǳŎƘ ǘƘŀǘ

least 25% of the total number of ECUs produced in 2016 will have AUTOSAR inside[1]

http://www.autosar.org/

TU Delft & Continental Engineering Services
Master Thesis

11

 Figure 4: From 4th AUTOSAR open conference[1]

b) Code analysis & Profiling

There are basically two types of analyisis that can be performed on a code.

1) Static analyisis. : is a technique of analyzing the source code statically without

actually running the program on the hardware.These techniques extract the

information about the oppertunity for the optimization in the source code by

analysis. Such technique are usually faster than the dynamic analysis but they are less

precise.

2) Dynamic analysis : is a technique of analyzing the source code by running it on a real

or virtual processor and profiling it. Profiling the program consists of collecting the

oppertunities during the execution of the program in order to guide effective

optimization.The optimizations can be performed either on the source code,

assembly code or by re-compilation guided by the collected information.There are

two types of dynamic analysis

a. By Instrumentation : In this technique several instructions are inserted in

source level or assembly level or in the binary level. Instrumentation adds

code to increment counters at the entry or exit function which will simulate

the harware performance counters or even simulate hardware to get

synthetic event counts. The instrumentation technique may dramatically

increase the execution time such that the time measurement become

redundant. It also becomes time inefficient in case of a huge software stack

making profiling itself time consuming. Example MAQAO[31].

b. By Sampling : In this method measurement points are inserted during short

time intervals.The validity of the result depends on the choice of the

measurement.Example Prof and Gprof.

http://www.autosar.org/
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf

TU Delft & Continental Engineering Services
Master Thesis

12

c) Process algebra

Process algebra is a method for formally modeling concurrent systems. Process algebra

provides a tool for the high-level description of interactions, communications, and

synchronizations between a collection of independent agents or processes. They also

provide algebraic laws that allow process descriptions to be manipulated and analyzed,

and permit formal reasoning about equivalences between processes. Examples of

process calculi include CSP, CCS, ACP, LOTOS ,-̄calculus, the ambient calculus, PEPA, the

fusion calculus and the join-calculus [37].

d) Model checking

Given a model of a system, Model checking refers to exhaustively and automatically

checking whether the model meets a given specification.In general Model checking delas

with verifying the correctness of a finite state systems.In order to achieve this , the

model of the system and the specifications are fomulated in terms of precise

mathematical language.

 1.6 Related Work

Emphirical/Process algebraic model based performance prediction system for compiler

ƻǇǘƛƳƛȊŀǘƛƻƴ ŜǾŀƭǳŀǘƛƻƴ ƛǎ ŀƴ ŜȄŎƭǳǎƛǾŜ ŀǊŜŀ ƻŦ ǊŜŀǎŜŀŎƘ ŀƴŘ ƛǘΩǎ ǘƘŜ ǘƻǇƛŎ ŦƻǊ ǘƘŜ ƭƛǘŜǊŀǘǳǊŜ

survey.

Qualitative analysis tools using model checking are available. Model checking and static

analysis are automated techniques promising to ensure that the correctness of the software

and to find certain class of bugs automatically. One of the drawbacks of the model checker is

that they typically operate on a low level semantic abstraction making them suitable for

small software stack, but less so for larger stack and when the soundness is paramount as in

the case of industrial C/C++ code containing pointer arithmetic , unions templates and alike.

Goanna is built on an automata based static analysis framework as described in [25].The tool

maps the C/C++ program to its Control Flow Graph (CFG) and labels the CFG with

occurrences of syntactic constructs of interests automatically. The CFG together with the

labels can be seen as a transition system with atomic propositions, which can be easily

mapped to the input of a model checker (NuSMV) or translated in to a Kripke structure. The

basic checks which can be performed by Goanna are access violations, memory leaks array

and string overruns, division by zero, unspecified, non-portable, and/or dangerous

constructs and security vulnerabilities. Model checking has also been used to check the

malicious code patterns by [26]

http://www.win.tue.nl/fm/0402history.pdf
http://www.ssrg.nicta.com.au/publications/papers/Fehnker_HJLR_06.pdf
http://www7.in.tum.de/um/bibdb/kinder/mcodedimva05.pdf

TU Delft & Continental Engineering Services
Master Thesis

13

One of the quantitative measures of a program execution is its Worst Case Execution Time

WCET. METAMOC [27] (Modular Execution Time Analysis using Model Checking) is a

modular method based on model checking and static analysis , that determines the safe and

tight WCET for programs running on platforms featuring caching and pipelining. The method

works by constructing the UPPAAL [28] model of the program being analyzed and annotating

the model with information from the interprocedural value analysis. The program model is

then combined with a model of the hardware platform and the model checked for the

WCET. The tool is retargetable for platforms ARM7,ARM9 and ATMEL AVR 8-bit. The pipeline

and cache behavior are modeled in UPPAAL. In [29] it is debated that model checking is not

suitable for WCET analysis but in [30] its shown that model checking can actually improve

the WCET estimates for hardware with caching. In the master thesis [38] modeling the

Analytical Software Design blocks as queueing systems is investigated in order to reduce the

implementation errors in the integration phase of the software project.

Qualitative performance measure of a code produced by the compiler is essential to get high

performance. Previously the quantitative measure was assesed by the number of

instructions. With recent generation of micro processors the matrices are no longer

valid.The number of branches , use of specific instructions , Caches which have been

introduced to improve the temporal locality and other architectural feature like instruction

prefecting are responsible for the performance. Modular Assembler Quality Analyzer and

Optimizer (MAQAO) [31] is a tool performing the static analyis on the assembly code. The

tool takes assembly as input, constructs the CFG , call flow graph, loop structure . Furthur

analysis can be scripted using the SQL scripting symantics. Some of the analysis that can be

performed by MAQAO are gathering statistics like number of NOPs,number of bundles with

three way branching or number of loops, generating the histogram of basic blocks size in a

function or histogram of the IPC (instruction per count) , code pattern such as defecient

sequence,missing prefetches detection , detection of the optimization performed by the

compiler etc.

The lack of statically available information may prevent user to apply different compiler

optimization or program transformation aggressively or applying them together.

Performance aware compilation systems address this problem by a combination of run-time

testing and static information. Dynamic compilation systems such as [32] enable the code

generation at the runtime allowing the compiler to exploit the knowledge about the input

values and hence generate more efficient code. In another case [33] at run-time the best

combination of the optimizations is chosen by evaluating the performance of each of the

versions. In case of performance prediction systems, empherical model of the code is used

as static estimators to guide the application of the program transformations with goal to

select the highest possible performance as done in [34]. In several other cases the

performance of the application is modeled based on analytical expressions as done in [35].

http://metamoc.dk/
http://www.uppaal.com/
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_25#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-27813-9_26#page-1
http://www.utwente.nl/ewi/dacs/assignments/completed/master/reports/2010_hettinga.pdf
http://www.vi-hps.org/upload/material/tw09/vi-hps-tw09-MAQAO.pdf
http://people.cs.pitt.edu/~mock/papers/fdo99.pdf
http://web.eecs.utk.edu/~gmarin/papers/hpcview-tjs02.pdf
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.cs.rochester.edu%2Fu%2Fumit%2Fpapers%2Fjsp99.ps&ei=YtjnUcvNBom1O8mCgcgH&usg=AFQjCNG319YLLbJXuMeOSkzhxHCFpUVnPQ&sig2=O6FBJdkYYkenj3rLs-kjBw
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.6227&rep=rep1&type=pdf

TU Delft & Continental Engineering Services
Master Thesis

14

Performance oriented modeling techniques [36] offer an alternative way of enabling the

compiler to derive and select a set of program transformations . This modeling approach is

valuable in scenarios in which the application takes extremely long time to execute making

profiling impractical or even predict the performance on future architectures. Using the

target architecture description in terms of the number of functional units , pipelines and

their depth the compiler can derive a set of performance analytical expression for a set of

scenarios and determine for each of these scenarios what the expected performance is in

terms of consumed clock cycles and peak performance and execution of the code section

would take. For example if one of the various memory references in the basic block casues a

TLB miss that leads to pipeline stall (due to data dependencies) this leads to a substantial

decrease in overall performance.For different scenario emperical model can be obtained or

by target architecture cycle level accurate simulations.

http://www.isi.edu/~pedro/PUBLICATIONS/Diniz.PMA03.pdf

TU Delft & Continental Engineering Services
Master Thesis

15

2. Instruction Pipeline

2.1 Pipelines:

A assembly program is a contiguous set of instructions derived from the original C program.

Each instruction in an assembly program takes certain cycles for execution. An instruction

pipeline is a technique used in the design of computers architecture to increase their

instruction throughput (the number of instructions that can be executed in a unit of time).

Pipelining does not reduce the time to complete an instruction, but increases the number of

instructions that can be processed at once.

Each instruction is split into a sequence of dependent steps. The first step is always to fetch

the instruction from memory; the final step is usually writing the results of the instruction to

processor registers or to memory. Pipelining seeks to let the processor work on as many

instructions as there are dependent steps, rather than waiting until the current instruction is

executed before admitting the next one. Pipelining lets the computer's cycle time be the

time of the slowest step, and ideally lets one instruction complete in every cycle.

A pipeline typically includes the following 5 steps

1. Instruction fetch (IF)

2. Instruction decode and register fetch (ID)

3. Execute (EX)

4. Memory access (MEM)

5. Register write back (WB)

The following diagram shows the typical 5-stage instruction pipeline and the way the

instruction is processed in each stage.

TU Delft & Continental Engineering Services
Master Thesis

16

 Figure 5 : Single Fetch Instruction Pipeline

2.2 Superscalar CPU

A superscalar CPU incorporates instruction level parallelism within a single processor and

hence achieving faster throughput than a single fetch processor. A superscalar processor

executes more than one instruction during clock cycle by simultaneously dispatching

multiple instructions

The following diagram shows the typical dual fetch 5-stage instruction pipeline.

 Figure 6 : Dual Fetch Instruction Pipeline

Similar to the single fetch CPU even in a dual fetch CPU, the instructions are fetched

sequentially . The CPU checks dynamically the data dependencies between instructions at

the run time

TU Delft & Continental Engineering Services
Master Thesis

17

3. Cache

 A cache is a small amount of memory which operates more quickly than main memory. Data

is moved from the main memory to the cache, so that it can be accessed faster. The cache

memory performance is the most significant factor in achieving high processor performance.

Cache works by storing a small subset of the external memory contents, typically out of its

original order. Data and instructions that are being used frequently, such as a data array or a

small instruction loop, are stored in the cache and can be read quickly without having to

access the main memory. Cache runs at the same speed as the rest of the processor, which is

typically much faster than the external RAM operates at. This means that if data is in the

cache, accessing it is faster than accessing memory.

When the processor needs to read from or write to a location in main memory, it first checks

whether a copy of that data is in the cache. If so, the processor immediately reads from or

writes to the cache, which is much faster than reading from or writing to main memory. A hit

in a cache is when the processor finds data in the cache that it is looking for. A miss is when

the processor looks for data in the cache, but the data is not available. In the event of a miss,

the cache controller unit must gather the data from the main memory, which can cost more

time for the processor. Most modern CPUs have at least three independent caches: an

instruction cache to speed up executable instruction fetch, a data cache to speed up data

fetch and store, and a translation look aside buffer (TLB) used to speed up virtual-to-physical

address translation for both executable instructions and data. The data cache is usually

organized as a hierarchy of more cache levels

 3.1 Cache Entry

Data is transferred between memory and cache in blocks of fixed size, called cache lines.

When a cache line is copied from memory into the cache, a cache entry is created. The cache

entry will include the copied data as well as the requested memory location which is called

as a tag.

When the processor needs to read or write a location in main memory, it first checks for a

corresponding entry in the cache. The cache checks for the contents of the requested

memory location in any cache lines that might contain that address. If the processor finds

that the memory location is in the cache, a cache hit has occurred (otherwise, a cache

misses).

TU Delft & Continental Engineering Services
Master Thesis

18

In the case of

¶ a cache hit, the processor immediately reads or writes the data in the cache line.

¶ a cache miss, the cache allocates a new entry, and copies in data from main memory.

Then, the request is fulfilled from the contents of the cache

Cache row entries usually have the following structure:

The data block (cache line) contains the actual data fetched from the main memory. The tag

contains a part of the address of the actual data fetched from the main memory. Flag bits

indicate whether a cache block has been loaded with a valid data(valid bit).A instruction

cache has only one flag bit(valid bit) per cache row where as a data cache has two flag bits

(valid bit and dirty bit) per cache row.

The size of the cache is the amount of main memory data it can hold. This size can be

calculated as the number of bytes stored in each data block times the number of blocks

stored in the cache. (The number of tag and flag bits is irrelevant to this calculation, although

it does affect the physical area of a cache).

An effective memory address is split (MSB to LSB) into the tag, the index and the block

offset.

The index describes which cache row (which cache line) that the data has been put in. The

index length is log2(cache rows) bits. The block offset specifies the desired data within the

stored data block within the cache row. Typically the effective address is in bytes, so the

block offset length is log2(byte per data block) bits. The tag contains the most significant bits

of the address, which are checked against the current row (the row has been retrieved by

index) to see if it is the one we need or another, irrelevant memory location that happened

to have the same index bits as the one we want. The tag length in bits is (address_length ς

index_length ς block_offset_length).

TU Delft & Continental Engineering Services
Master Thesis

19

 3.2 Cache Replacement Policy

In order to make room for the new entry on a cache miss, the cache may have to evict one of

the existing entries. The heuristic that it uses to choose the entry to evict is called the

replacement policy. The fundamental problem with any replacement policy is that it must

predict which existing cache entry is least likely to be used in the future. Predicting the

future is difficult, so there is no perfect way to choose among the variety of replacement

policies available. The following replacement policies exist.

¶ Least Recently Used (LRU)

¶ Round Robin (or FIFO)

¶ Most Recently Used (MRU)

¶ Random Replacement

3.3 Cache Associativity

The replacement policy decides where in the cache a copy of a particular entry of main

memory will go. If the replacement policy is free to choose any entry in the cache to hold the

copy, the cache is called fully associative. Accordingly there are 2-way,4-way associative

cache. If each entry in main memory can go in just one place in the cache, the cache is called

to be directly mapped.

 3.4 Cache Performance:

A processor with a cache first looks in the cache for data (or instructions). On a miss, the

processor then fetches the data (or instructions) from main memory. On a miss, this process

takes longer time than an equivalent processor without a cache.

There are three ways a cache gives better net performance than a processor without a

cache:

¶ A hit (read from the cache) is faster than the time it takes a processor without a

cache to fetch from main memory. The trick is to design the cache so we get hits

often enough that their increase in performance more than makes up for the loss in

performance on the occasional miss. (This requires a cache that is faster than main

memory).

¶ Multiprocessor computers with a shared main memory often have a bottleneck

accessing main memory. When a local cache succeeds in satisfying memory

operations without going all the way to main memory, main memory bandwidth is

freed up for the other processors, and the local processor doesn't need to wait for

the other processors to finish their memory operations.

¶ Many systems are designed so the processor often read multiple items from cache

simultaneously -- either 3 separate caches for instruction, data, and TLB; or a multi

TU Delft & Continental Engineering Services
Master Thesis

20

ported cache; or both -- which takes less time than reading the same items from

main memory one at a time.

A processor without a cache has a constant memory reference time, Ὕ = Ὕ + E

A processor with a cache has an average memory access time, Ὕ = m * Ὕ+ Ὕ + E

where

¶ m is the miss ratio

¶ Ὕ is the time to make a main memory reference

¶ Ὕ is the time to make a cache reference on a hit

¶ E accounts for various secondary factors (memory refresh time, multiprocessor

contention, etc.)

Cache hit/miss is evident in any assembly program and both the programmer and the

compiler are the reason for the cache miss in a program. Depending on the cache

configuration, the cache hit miss scenario can be modeled from the assembly program and

the overall delay can be evaluated statically the best configuration can be selected.

TU Delft & Continental Engineering Services
Master Thesis

21

4. Probability Theory & Stochastic Processes

4.1 Probability

If n is the number of possible outcomes of an system, each of them equally likely, nA is the

number of events in favor of event A , the Pr[A] = nA / A. Set of all possible outcomes is called

the sample space S. The following axioms hold good.

¶ Pr [S] =1

¶ Given A . Ґ ˒, events A & B are mutually exclusive then Pr [A U B] = Pr[A] + Pr[B]

& Pr [A U B] = Pr[A] + Pr[B] - Pr [A .]

¶ If two events A and B are independent Pr [A .] = Pr [A] Pr [B] .

¶ Conditional probability Pr [A | B] = Pr [A .] / Pr [B]

¶ Law of total probability Pr [A] = 0Ò ! ȿ "Ë 0Ò "Ë , Bk .Ƨ Ґ ˒

4.2 Random Variables

A variable whose possible values are the numerical outcome of a random phenomenon is

called as a random variable. More formally a random variable is a measurable function from

a probability space (s,Ṿ,P) into a measurable space όǎΩΣ ṾΩύ known as the state space. Also a

random variable X is a real function whose domain is the probability space s and such that:

1. The set ϑ· Җ Ȅϒ is an event for any real number x.

2. The probability of the events { X = +қϒ and {X = -қ ϒ equals zero.

There are two types of random variables,

Discrete time random variable takes values in discrete steps denoted as X[k] where k=

лΣмΣнΣоΧ қ Φ

/ƻƴǘƛƴǳƻǳǎ ǘƛƳŜ ǊŀƴŘƻƳ ǾŀǊƛŀōƭŜ ǘŀƪŜǎ ƛƴ Ŏƻƴǘƛƴǳƻǳǎ ǎǘŜǇǎ ŘŜƴƻǘŜŘ ŀǎ ·όǘύ ǿƘŜǊŜ лҖǘғқ

4.2.1 Cumulative Distribution Function

A cumulative distribution function describes the probability that a real valued random

variable X with a given probability distribution will be found at a value less than or equal to x

CόȄύ Ґ tǊό·ҖȄύ

TU Delft & Continental Engineering Services
Master Thesis

22

4.2.2 Probability Density Function

A probability density function describes the relative likelihood for the random variable to

take a given value.

f(x) =
▀

▀●
 (Fx)

4.3 Probability Distribution Functions

1) Exponential Distribution

A random variable X is said to be exponentially distributed if it satisfies the probability

ŘŜƴǎƛǘȅ ŦǳƴŎǘƛƻƴ ŦόȄύ Ґ ʰ Ŝ-ʰȄ h ΣȄ җ л ǿƘŜǊŜ ʰ ƛǎ ǘƘŜ ǊŀǘŜ ŀǘ ǿƘƛŎƘ ǘƘŜ ŜǾŜƴǘ ƻŎŎǳǊǎ Φ

The cumulative distribution function is F(x) = 1 - h Ŝ-ʰȄ

The mean , or average of the distribution ,˃ Ґ мκʰ . Variance ±ŀǊώ·ϐ Ґ мκʰ2.

Exponential distribution satisfies memoryless property , tǊώ·җǘ Ҍ¢ μ · Ҕ ǘϐ Ґ tǊώ· Ҕ ¢ ϐ

2) Poisson Distribution

A random variable X is said to be Poisson distributed if its satisfies the probability density

function ,

ŦόȄΣƪύ Ґ ˂k e-˂ / k!.

The cumulative distribution function F(x,k) = e-˂ ἱȾἱȦ
ȿ▓ȿ

░

 ˃= Var[X] = ˂

4.4 Discrete Time Markov Chain

A stochastic process formally denoted as { X(t) , t Ԝ T} is a sequence of random variables X(t)

, where the parameter t ς time runs over an index set T. The state space of the stochastic

process is the set of all possible values of the random variables X(t) and each of these

possible values is called the state of the process. If the index set T is a countable set , X [k] is

a discrete stochastic process. If T is continuous X(t) is a continuous stochastic process.

A stochastic process { X(t) , t Ԝ T} is a Markov process if the future state of the process only

depends on the current state of the process and not on its past history. Formally, a

stochastic process { X(t) , t Ԝ T} is a continuous time Markov process if for all t0 < t1 < t2 <

ΧΧǘƴҌм of the index set T and for any set ϑȄлΣȄмΣȄнΣΧΦȄƴҌмϒ of the state space it holds that

TU Delft & Continental Engineering Services
Master Thesis

23

 Pr[X(tn+1)= ●▪ |X(t0)= ●ΣΧΦΣ·όǘƴύҐ ●]=Pr[X(tn+1)= ●▪ |X(tn)=●▪]

The Markov property states that at any times s > t > 0, the conditional probability

distribution of the process at time s given the whole history of the process up to and

including time t, depends only on the state of the process at time t. In effect, the state of the

process at time s is conditionally independent of the history of the process before time t,

given the state of the process at time t.

A discrete time Markov chain { X [k], k Ԝ T} is a stochastic process whose state space is

finite or countably infinite set with index set T = ϑлΣ мΣ нΧΦϒ obeying

 Pr[╧▓ =●▓ |╧=●ΣΧΦΣ ╧▓=●▓]=Pr[╧▓ =●▓ |╧▓=●▓]

A Markov process is called a Markov chain if its state space is discrete. The conditional

probabilities Pr [╧▓ = j|╧▓ = i] are called the transition probabilities of the Markov chain.

In general, these transition probabilities can depend on the (discrete) time k. A Markov chain

is entirely defined by the transition probabilities and the initial distribution of the Markov

chain Pr [╧ = ●] .

By using the definition of the conditional probability it can be shown that the complete

information of the Markov chain is obtained if, apart from the initial distribution, all time

depending transition probabilities are known as per the formula.

Pr[╧=●ΣΧΦΣ ╧▓=●▓] = Б ╟►╧▒ ●▒ȿ╧▒ ●▒ ╟►╧ ●▓
▒

If the transition probabilities are independent of time k i.e if ὖ = Pr [╧▓ = j|╧▓ = i] the

Markov chain is called stationary. In a state space S with N states (where N = dim(S) can be

infinite) Since Xk can take N possible values, we denote the corresponding state vector at

discrete-time k by s[k] = [s1[k] s2[k] · · · sN [k]] with s(i)[k] = Pr[Xi = k].Hence, s[k] is a 1 × N

vector. Since the state Xk at discrete-time k must be in one of the N possible states and

hence ,

 ╟► ╧▓ ░
╝

░
 or,

 in vector notation, s[k].u = В Ȣ ▼░ ἳ
╝
░ where uT = [1 1 · · · · · · · 1].

In a stationary Markov chain the states Xk+1 and Xk are connected by the equation of total

probability Pr[Xk+1 = j] = ὖ ἜἺ ὢ ἱ
╝

░
 for all j or in vector notation s[k+1] = s[k].

P where P is the transition probability matrix and it must hold that ὖ
╝

▒
 , means

that at discrete-time k, there certainly occurs a transition in the Markov chain, possibly to

the same state as at time k-1. A matrix P satisfying this relation is called stochastic matrix. If

Pij is independent of k then its called time homogeneous Markov chain.

Given an initial state vector s[0], the general solution of s[k] = s[0] .Pk and s[k+n] = s[0].Pk+n

TU Delft & Continental Engineering Services
Master Thesis

24

The elements of matrix Pn are called n-step transition probabilities,

 ╟░▒
▪ = Pr[╧▓ ▪= j | ╧▓ =i]

The transition probability matrix P is of the form

 Figure 7 : Transition probability matrix

Since it must hold for any initial state ǾŜŎǘƻǊ ǎώлϐΣ ōȅ ŎƘƻƻǎƛƴƎ ǎώлϐ Ґ ώл ΧΦΦл м лΧΧΦлϐ όŀƭƭ

column zero except for ith column) which expresses that Markov chain starts from one of

the possible states , say state i , then s[1] = [Pi1 Pi2 Pi3 ΧΧΧtiN]

4.4.1 The hitting time and Sojourn time

If A is a subset of states , A Ṓ S , the hitting time TA is the first positive time the Markov

chain is in a state of set A , thus for k җ 0 , TA = min(k : ὢ Ԝ A). The sojourn time of state i

in a Markov chain is the amount of time the system spends in state i before leaving to state

jґi.

4.4.2 Transient ,Recurrent and Absorbing states

The probability that a Markov chain , starting at state i will come to state j is given as

╟░▒ = Pr[╣▒ < қμ ·л Ґ Ƨ] .

If i = j then , ὖ is the probability of returning to state in i. If Pii =1 then the state is a

recurrent and if ὖ< 1 , then the state is transient. If ὖ = 1 and ὖ = 0 for iґƧ ǘƘŜƴ ƛǘΩǎ ŎŀƭƭŜŘ

an absorbing state.

4.4.3 The steady state vector

The state of the system with kҦқ ƛǎ called the steady state and the vector “ = lim kҦқ ǎώƪϐ

is called the steady state vector and it must hold that “ “ Ȣὖ or for each component

Ⱬ▒ = ╟▓▒ Ⱬ▓
╝

▓

TU Delft & Continental Engineering Services
Master Thesis

25

 for 1ҖƧҖb ■░□▓O ╟▓▒ =Ⱬ▒ such that Ⱬ▒
╝

▒

The solution of “ is obtained from the following equation

4.5 Continuous Time Markov Chain

For the continuous-ǘƛƳŜ aŀǊƪƻǾ ŎƘŀƛƴ ϑ·όǘύΣǘҗ лϒ ǿƛǘƘ b ǎǘŀǘŜǎΣ ǘƘŜ aŀǊƪƻǾ ǇǊƻǇŜǊǘȅ Ŏŀƴ ōŜ

written as

 tǊώ·όǘ Ҍ ˍύҐƧμ·όˍύҐƛΣ ·όǳύҐȄόǳύΣ лҖǳғ ˍύ ϐ Ґ tǊώ·όǘ Ҍ ˍύҐ Ƨμ·όˍύҐ ƛ ϐ

and reflects the fact that the future state at time ǘҌ ˍ only depends on the current state at

time ̱ . Similarly as for the discrete-time Markov chain, we assume that the transition

probabilities for the continuous-ǘƛƳŜ aŀǊƪƻǾ ŎƘŀƛƴ ϑ·όǘύΣǘҗ лϒ ŀǊŜ ǎǘŀǘƛƻƴŀǊȅΣ ƛΦŜΦ

independent of a point ̱ in time,

 Pij(t) = Pr[X(t + ̱) = j|X(̱) = i] = Pr[X(t) = j|X(0) = i]

Similar to discrete time Markov chain, the state vector s(t) in continuous time components

sk(t) = Pr[Xk = k] , with P(t) being the transition probability matrix ,satisfies

s(t+ ̱) = s(̱) P(t) & P(t+ u) = P(t) . P(u)= P(u).P(t)

Since Markov chain should be in one of the N states

 ╟░▒◄
╝

░
 , with P(0) = ÌÉÍO0Ô.

Given the infinitesimal generator Q Ґ tΩόлύ Ґ ■░□▐O
╟▐ ╘

▐
 the transition probability matrix

is differentiable for all tҗ0 and hence ,

tΩόǘύ Ґ tόǘύ v Ґ v tόǘύ

TU Delft & Continental Engineering Services
Master Thesis

26

It can be proved that ▲░▒ ▲░░ π

 where ▲░▒ = ■░□▐O
╟░▒▐

▐
 җ 0 and ▲░░Җ 0 ,

which implies that sum of rows of Q is zero . ▲░▒ of Q are the derivatives of the probabilities

and they reflect the change in the probability from state i towards state j and are called

rates.

4.5.1 Properties of ▲░▒

If ▲░ = - ▲░░ җ 0 then, ȿ▲░▒ȿ ▲░
╝

▒
 . This demonstrates that Q is bounded if and only

if the rates ▲░ are bounded. For finite state Markov processes, ▲▒ are finite (since qij are

finite), but, if ▲▒ Ґ қΣ ǘƘŜ ǎǘŀǘŜ ƛǎ ŎŀƭƭŜŘ ƛƴǎǘŀƴǘŀƴŜƻǳǎ ǎƛƴŎŜ ǿƘŜƴ ǘƘŜ ǇǊƻŎŜǎǎ ŜƴǘŜǊǎ ǘƘƛǎ

state, it immediately leaves the state. Continuous-time Markov chains with all states non-

instantaneous are called conservative.

4.5.2 Properties of Q

Q has the property that P(t) = eQt = ■░□▪O
╠◄

▪

▪

 and can be explicitly given as follows

 Figure 8: Infinitesimal generator matrix

4.5.3 Steady state

If the finite state Markov chain is irreducible, the steady state “ exists. Since steady state

vector “ ŘƻŜǎƴΩǘ ŎƘŀƴƎŜ ƻǾŜǊ ǘƛƳŜ ÌÉÍ
ᴼ

 tΩόǘύ Ґл ƛƳǇƭƛŜǎ ǘƘŀǘ vόtl) = (Pl)Q = 0 , where Pl=ÌÉÍ
ᴼ

P(t). Similar to the argument with discrete time markov chain , the steady state (row) vector

“ is solution of “ Q = 0. Since ÌÉÍ
ᴼ

sk(t) = “Ὧ and ÌÉÍ
ᴼ
ǎΩk(t) = 0.

Alternatively Ⱬ = s(0) (Pl) = ■░□
◄O
 ▼(0) eQt

The main difference between discrete and continuous-time Markov chains lies, apart from

the concept of time, in the determination of the number of transitions. In case of a

continuous time Markov chain, the sojourn time in a discrete chain is deterministic and all

TU Delft & Continental Engineering Services
Master Thesis

27

times are equal to 1. The sojourn times ˍƧ of a continuous-time Markov process in a state j

are independent, exponential random variables with mean 1/▲▒

4.6 Embedded Markov chain :

A method of finding ̄ of an ergodic continuous-time Markov chain, Q, is by first finding its

embedded Markov chain (EMC). EMC is a regular discrete-time Markov chain, also called as a

jump process. Each element of the one-step transition probability matrix of the EMC, S, is

denoted by sij, and represents the conditional probability of transitioning from state i into

state j.The relation between the steady state vector of the continuous time Markov chain “

and its corresponding embedded discrete time markov chain v are,

○░ =Ⱬ░ ▲░ / Ⱬ▒
╝

▒
▲░ and Ⱬ░ = (○░Ⱦ▲░) /

○▒

▲▒

╝

▒

The classification in the discrete-time case into transient and recurrent can be transferred

via the embedded Markov chain to continuous Markov processes.

4.7 Uniformization:

Uniformization is a method to compute the transient solution of a finite state CTMC. The

method involves construction of analogous DTMC , where transition occur to an exponential

distribution with the same parameter in every state and hence the name uniformization.

For a continuous time Markov chain with infinitesimal generator matrix Q , the uniformized

transition matrix P(ὖ) is given as follows

╟░▒

▲░▒

▲
ȟ ░█ ░ ▒

 В▒░
▲░▒

▲
 ȟ░█ ░ ▒

Where q is a rate value which is chosen to be greater than the magnitude of all the rates

within the generator matrix , i.e q җ άὥὼ ȿ ὗὭȟὭ ȿ . In matrix notiation it can be written as

,

 P =
╠

▲
 ╘ , where I is the Identity matrix

For a starting distribution “π , the distribution at time t, with system having completed n

hops can be derived as

TU Delft & Continental Engineering Services
Master Thesis

28

Ⱬ◄ Ⱬ

▪

╟▪
▲◄▪

▪Ȧ
▄▲◄

¢Ƙƛǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ǎƘƻǿǎΣ ǘƘŀǘ άŀ Ŏƻƴǘƛƴǳƻǳǎ ǘƛƳŜ aŀǊƪƻǾ /Ƙŀƛƴ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ōȅ ŀ

discrete Markov Chain with transition matrix P as defined above where jumps occur

according to a Poisson process with intensity ǉǘέ

4.8 First Passage Time Analysis

/ƻƴǎƛŘŜǊ ŀ ŦƛƴƛǘŜΣ ƛǊǊŜŘǳŎƛōƭŜ Σ /¢a/ ǿƛǘƘ ƴ ǎǘŀǘŜǎ ϑмΣнΣоΧΦΦƴϒ ŀƴŘ ǘƘŜ ƛƴŦƛƴƛǘŜǎƛƳŀƭ ƎŜƴŜǊŀǘƻǊ

matrix Q. If X(t) denotes the state of the C¢a/ ŀǘ ǘƛƳŜ ǘ όǘҗлύ Σ ǘƘŜƴ ǘƘŜ ŦƛǊǎǘ ǇŀǎǎŀƎŜ ǘƛƳŜ

from a source state i into a non-empty set of target states O is given as

T
░▒

 O(t) = inf{u > 0 : X(t+u) ɴ
▒

 O| X(0) = i } ᶅ ǘҗл

For stationary time-homogeneous CTMC TO is independent of t, so TO (t) = inf{u > 0 : X(u)

 ɴO | X(0) = i } . TO is associated with probability density function, f(x) of the random

variable by the relation

Pr(a< T
░▒

 O<b) = ᷿ █◄ ▀◄
╫

╪
 όлҖ ŀ ғ ōύ

The cumulative density function (CDF) of passage is obtained by multiplying the probability

of being in a target state j after exactly n hops within time t by the probability of performing

n within the time t,

 ╕▲ȟ◄ ▄▲◄ В
▲◄▓

▓Ȧ

▪
▓

 The probability density function (PDF) of a passage is the probability of performing n hops at

exactly time t to reach state j is given as

 █▲ȟ◄
Ἱ▪ ◄▪ ▄▲◄

▪ Ȧ

Hence the Passage time equations for CDF and PDF are as follows,

 ╣
░▒
ᴼ ◄╒╓╕ В ╕▲ȟ◄ȢВ Ⱬ▓

▪
▓ꜗ
▒
ᴼ▪

 ╣
░▒
ᴼ ◄╟╓╕ В █▲ȟ◄ȢВ Ⱬ▓

▪
▓ꜗ
▒
ᴼ▪

TU Delft & Continental Engineering Services
Master Thesis

29

4.9 Poisson process

A continuous time stochastic process {X(t) , tҖ0} satisfying the following properties is called a

poisson process

(i) X(0) = 0

(ii) ᶅt0 = 0 < t1 < t2ΧΦғǘƴ Σ ǘƘŜ ƛƴŎǊŜƳŜƴǘǎ ·όǘ1) ς X(t0) , X(t2) ς X(t1ύ Σ ΧΦΣ·ό ǘn) ς X(tn-1)

are independent random variables

(iii) For tҗ 0, s > 0 and non negative integers k, the increments have Poisson

distribution

Then Pr[X(t+s) ς ·όǎύ Ґ ƪ ϐ Ґ ό˂ǘύk e- ˂ ǘ/ k! ,

 ˂ is the rate of the Poisson process with mean of the process Ґ ˂ǘ

The above process is a homogenous Poisson process where the number of events in an

interval (t, t+̱) follows a poisson distribution.

4.9.1 Properties

мύ ! tƻƛǎǎƻƴ ǇǊƻŎŜǎǎ ϑ·όǘύ Σ ǘ җлϒ ǿƛǘƘ ǊŀǘŜ ˂ Ҕ л ŀƴŘ ŘŜƴƻǘŜŘ ōȅ ǘл Ґ л ғǘмғǘнΧΦ ǘƘŜ

successive occurrence times of events, then the interarrival times ʐn = t n ɀ (tn -1) are

ƛƴŘŜǇŜƴŘŜƴǘ ƛŘŜƴǘƛŎŀƭƭȅ ŘƛǎǘǊƛōǳǘŜŘ ŜȄǇƻƴŜƴǘƛŀƭ ǊŀƴŘƻƳ ǾŀǊƛŀōƭŜǎ ǿƛǘƘ ƳŜŀƴ мκ˂ Φ Lƴ ƻǘƘŜǊ

words, the cumulative distribution function , F(x) = Prώˍƴ Җ Ȅϐ Ґ м ς e-˂Ȅ

 нύ LŦ ·όǘύ ŀƴŘ ¸όǘύ ŀǊŜ ǘǿƻ ƛƴŘŜǇŜƴŘŜƴǘ Ǉƻƛǎǎƻƴ ǇǊƻŎŜǎǎŜǎ ǿƛǘƘ ǊŀǘŜǎ ˂Ȅ ŀƴŘ ˂ȅ Σ then

½όǘύ Ґ ·όǘύ Ҍ ¸όǘύ ƛǎ ŀƭǎƻ ŀ Ǉƻƛǎǎƻƴ ǇǊƻŎŜǎǎ ǿƛǘƘ ǊŀǘŜ ˂Ȅ Ҍ ˂ȅ

 3) A Poisson process is the most basic form of a CTMC, i.e a chain of independent

identically distributed states with mean sojurn time of 1/qj

TU Delft & Continental Engineering Services
Master Thesis

30

5. Performance modeling

Performance modeling is a process of modeling system performance considering various

sytem parameters with the objective of proactively predicting the performance statically. To

obtain the performance model of a system, its required to denote the system in abstract

form of which represents average behavior. In order to perform this several operational laws

are applied. The advantages of the laws are that,

1) They are very general and make no assumptions about the behavior of the random

variables characterizing the system.

2) They are very simple meaning that they can be applied quickly and easily by almost

anyone.

Based on a few simple observations of the system , by applying these simple laws, we can

derive more information. Using this information as input , we can gradually build up a more

complete picture of the behavior of the system.

Operational laws are built on observable variables. These are values which we could derive

from watching a system over a finite period of time. Consider a system receiving requests

from its environment. Each requests generates a job in the system . when the job has been

processed by the system the system responds to the environment with the completion of

the requests. Based on this analogy , we can identify the following variables

 Figure 9 : A sample system model

T : the length of time we observe the system

A : the number of request arrivals we observe

C : the number of request completions we observe

B : the total amount of time during which the system is busy (B<T)

N : The average number of jobs in the system.

TU Delft & Continental Engineering Services
Master Thesis

31

From these observed values we can derive the following four quantities:

 ˂ = A/T, the arrival rate,

 X = C/T, the throughput or completion rate,

 U = B/T, the utilization,

 S = B/C, the mean service time per completed job

Response time = Service time + Wait time , where response time is the time between the

initiation and completion of the response to a request and wait time is the time between the

submission of the request and initiation of the response. We assume that the system is job

flow balanced , meaning that number of arrivals is equal to number of completions during

an observation period and hence A = C => ˂ Ґ ·.

 рΦм [ƛǘǘƭŜΩǎ [ŀǿ

It states that the average number of jobs in a system is equal to the product of the

throughput of the system and the average time spent in that system by a job

If average number of jobs in the system is N , and W is the average residence time of the

jobs in the system , then the throughput of the system X = N / W

 5.2 Forced flow law

It states that the throughput at the ith resource is equal to the product of the throughput of

the system and the visit count at that resource.

If ὠ is the visit count of the ith resource , the ratio of number of completions at that

resource to the number of system completions is ὠ = ὅ/C. Hence if ὢ is the throughput of

the system at ith resource then ὢ = X. ὠ

 5.3 Utilization Law

It states that the utilization of a resource is equal to the product of the throughput of that

resource and the average service requirement at that resource.

The total amount of the service Si that a system job generates at the ith resource is called

the service demand Ὀ. Ὀ = Ὓὠ. The utilization of a resource is the percentage of time that

the ith resource is in use processing the job

 ╤░ = ╧░╢░ = X╓░.

TU Delft & Continental Engineering Services
Master Thesis

32

 5.4 Residence Time Law

It states that the average residence time or average response time of a job in the system will

be the sum of the product of its average residence time at each resource and the number of

visits it makes to that resource.

 W = В ╦░╥░
╝
░

 5.5 Queueing theory

Queueing theory describes basic phenomena such as the waiting time, the throughput, the

losses, the number of queueing items, etc. in queueing systems. A queueing system basically

consists of a) Arrival process b) Queueing process c) Service process and d) Departure

Process

 Figure 10 : Queueing model

The general syntax is A/B/n/K/m, where A specifies the interarrival process, B the service

process, n the number of servers, K the number of positions in the queue and m restricts the

number of allowed arrivals in the queueing system. Examples for both the interarrival

distribution A and the service distribution B are M (memoryless or Markovian) for the

exponential distribution, G for a general distribution and D for a deterministic distribution.

The traffic intensity of a Queueing system , also called Load or Utilization ́= E[x]/ E[̱] = ˂ κ˃

Σ ǿƘŜǊŜ ˂ ƛǎ ǘƘŜ ƳŜŀƴ ƛƴǘŜǊŀǊǊƛǾŀƭ ǊŀǘŜ ŀƴŘ ˃ ƛǎ ǘƘŜ ƳŜŀƴ ǎŜǊǾƛŎŜ ǊŀǘŜΦ !ǇǇƭȅƛƴƎ [ƛǘǘƭŜΩǎ ƭŀǿ Σ

the average number of jobs in the system E[Ns] equals to the average arrival rate ˂ ǘƛƳŜǎ ǘƘŜ

average time spend in the system E[T], E[Ns] = ˂ Φ E[T].

 5.6 Queueing Models

The M/M/1 queue (with unlimited positions in the queue , which will not be indicated in the

notation) consists of a Poisson arrival process of jobs with exponentially distributed

interarrival times, a service process with exponentially distributed service time, one server

and an infinitely long queue. Similarly M/M/1/K queue consists of a Poisson arrival process

of jobs with exponentially distributed interarrival times , a service process with exponentially

distributed service time, one server and with a queue capacity of K.The following tables

summarizes different performance measures of M/M/1 and M/M/1/K queue

TU Delft & Continental Engineering Services
Master Thesis

33

Performance Measures M/M/1 M/M/1/K

¢ǊŀŦŦƛŎ ƛƴǘŜƴǎƛǘȅΣ ˊ ˂κ ˃ ˂κ ˃

Utilization , U (per server) ʄ ˊόм ς ((1- ́ ύΦ ˊK/(1- ́ K+1))

Average number of jobs in
the system , E[Ns]

ˊκόм- ́ ύ ˊκόм- ́ ύ ς όόYҌмύΦ ˊ(K+1))/ (1-
ˊK+1))

Average response time, E[T] 1/ ˃ (1- ́ ύ N/ ˂ ϝмκόм- ((1- ́ ύΦ ˊK /(1-
ˊK+1))

 Table 1 : Queueing model parameters

6. PEPA

PEPA is a stochastic process algebra designed for modeling computer and communication

systems introduced by Jane Hillston. The language extends classical process algebras such as

Milner's CCS and Hoare's CSP by introducing probabilistic branching and timing of

transitions.

PEPA consists of set of agents which engage in action . Models can be constructed from

components which engaged in activities. The structured operational (interleaving) semantics

of language is used to generate a labeled transition system (LTS) . The behavior of the model

is dictated by the semantic rules (Structure Operational Semantics) governing the

combinator of the language. The possible evolutions of a model are captured by applying the

rules exhaustively generating a labeled transition system. The resulting system can be

viewed as a graph in which each node can be viewed as a state of the model and the arcs

representing the actions which can cause the model to move from one state to another i.e a

CTMC .

 Figure 11 : PEPA overview

Rates are drawn from the exponential distribution and PEPA models are finite-state and so

give rise to a stochastic process (CTMC). Thus the language can be used to study quantitative

properties of models of computer and communication systems such as throughput,

utilization and response time as well as qualitative properties such as freedom from

deadlock. The language is formally defined using a structured operational semantics in the

style invented by Gordon Plotkin.

TU Delft & Continental Engineering Services
Master Thesis

34

PEPA has four combinators, prefix, choice, co-operation and hiding. Prefix is the basic

building block of a sequential component: the process (a, r).P performs activity a at a rate r

before evolving to behave as component P. Choice sets up a competition between two

possible alternatives: in the process (a, r).P + (b, s).Q either a wins the race (and the process

subsequently behaves as P) or b wins the race (and the process subsequently behaves as Q).

The co-operation operator requires the two "co-operands" to join for those activities which

are specified in the co-operation set: in the process P < a, b> Q the processes P and Q must

co-operate on activities a and b, but any other activities may be performed independently.

Finally, the process P/{a} hides the activity a from view (and prevents other processes from

joining with it).

6.1 Syntax & Properties

Given a set of action names, the set of CCS processes is defined by the following BNF

grammar:

t ΥΥҐ όŀΣ ˂ύΦt μ t Ҍ v μ t ғ[Ҕ vμ tκ[μ !

The parts of the syntax are, in the order given above

(i) action :

The process όŀΣ ˂ύΦt can perform an action a at a rate ˂ and continue as the process P.

(ii) choice :

The process P+Q may behave as either the process P or the process Q.

(iii) Cooperation :

The processes P and Q exist simultaneously and behave independently for actions whose

names do not appear in <>. For actions whose names appear in <>, the action must be

carried out jointly and a race condition determines the time this takes. E.g. P< a,b >Q : P

and Q are synchronized over a and b

 (iv) Parallel :

The processes P and Q exist simultaneously and behave independently. E.g. P < > Q.

(v) Hiding:

The process P behaves as usual for action names not in L, and performs a action for action

names that appear in < L >. E.g. P/{a}.

(vi) Process identifier:

write ὃ Ḱὖ to use the identifier A to refer to the process P.

TU Delft & Continental Engineering Services
Master Thesis

35

6.1.1 Synchronization

PEPA has a bounded capacity for synchronization . When two activates with different rates

are synchronized by co-operation operator, the rate of the shared activity is reduced to the

minimum of the apparent rates of the activity in the co-operating components.

6.1.2 Activity Rate

²ƘŜƴ ŀƴ ŀŎǘƛǾƛǘȅ ʰ ƛǎ ŜƴŀōƭŜŘ ōȅ ŀ ǇǊƻŎŜǎǎ t Ґ όʰΣ ˂ ύ Σ ǘƘŜ ŎƻƳǇƭŜǘƛƻƴ ƻŦ ǘƘŜ ŀŎǘƛǾƛǘȅ ƛǎ

delayed for a period determined by the associated exponential distribution. The probability

ǘƘŀǘ ǘƘŜ ŀŎǘƛǾƛǘȅ ʰ ƘŀǇǇŜƴǎ ǿƛǘhin a period of time t , is given by the cumulative distribution

function F(t) = 1 - Ὡ .If several activities are enabled at the same time each will have their

own associated timer.When the time t expires the activity is said to be completed w.r.t an

external observer. A activity is preempted or aborted if another activity completes first.

¢ƘŜ ŀǇǇŀǊŜƴǘ ǊŀǘŜ ƻŦ ŀ ŎƻƳǇƻƴŜƴǘ t ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƘŜ ŀŎǘƛƻƴ ǘȅǇŜ ʰ Σ ƛǎ ǘƘŜ ǘƻǘŀƭ ŎŀǇŀŎƛǘȅ

ƻŦ ǘƘŜ ŎƻƳǇƻƴŜƴǘ t ǘƻ ŎŀǊǊȅ ƻǳǘ ŀŎǘƛǾƛǘƛŜǎ ƻŦ ǘȅǇŜ ʰ Σ ŘŜƴƻǘŜŘ ōȅ Ǌ(hP)

6.1.3 Time Homogeneity

PEPA models are time-homogeneous , since all the activities are time-homogeneous, i.e the

rate and type of activates enabled by a component are independent of time.

6.1.4 Irreducibility & Positive recurrence

Only the PEPA models with finite number of states are solved, i.e the models should be

irreducible and positive recurrent (strongly connected) which are expressed in terms of the

derivation graph. This means that in the system whenever we chose a path it must

eventually return to the point where the original choice is made possibly with different

outcome

6.1.5 Exponential Property

The memory less property of the exponential distribution makes the recording of the

residual time of an activity redundant.

6.1.6 Structured Operation Semantics

PEPA is defined using Plotkin-style structured operational semantics. The rules are described

as follows

Prefix όʰ ΣǊ ύΦ 9
♪ȟ►
ự E

TU Delft & Continental Engineering Services
Master Thesis

36

Choice
╔
♪ȟ►
ựự╔

╔ ╕
♪ȟ►
ựự ╔

 ,
╕
♪ȟ►
ựự╕

╔ ╕
♪ȟ►
ựự ╕

Cooperation
╔
♪ȟ►
ựự╔

╔
♪ȟ►
ựự ╔

 Σ ʰ ƴƻǘ ōŜƭƻƴƎǎ ǘƻ [

╔
ȟἺ
ựựự╔ ȟ╕

ȟἺ
ựựự╕

╔
ȟἠ
ựự ╔

 Σ ʰL ,

 where R = r1/r (hE) . r1/rh (F) min(rh(E) , rh(F)) .

 Hiding
╔
ȟἺ
ựự╔

 ╔Ⱦ╛
ȟἺ
ựự╔Ⱦ╛

 , h not belongs to L

╔
ȟἺ
ựự╔

╔Ⱦ╛
ȟἺ
ự╔Ⱦ╛

 Σ ʰL

Constant
╔
ȟἺ
ựự╔

═
ȟἺ
ựự╔

 ═Ḱ╔

6.1.7 Multiway co-operation

Co-operation in PEPA can be multiway. Two , three , four or more partners may cooperate

and they all need to synchronize for the activity to happen.

6.1.8 Solving PEPA

The generated CTMC are solved using the linear algebra in terms of the equilibrium

behavior. IPC and PEPA eclipse plugin solve the equations and derives the performance

measures.

6.1.9 State space Explosion problem

The solver in PEPA relies on constructing the N*N infinitesimal generation matrix Q and N

ŘƛƳŜƴǎƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘȅ ǾŜŎǘƻǊ ˉ Σ where N is the size of the state space. Sometimes the size

exceeds what could be handled by the memory and its called states space explosion

problem.

It can be avoided by three methods

¶ State space reduction by Aggregation

¶ Stochastic simulation over discrete state space

¶ Fluid approximation of the state space

TU Delft & Continental Engineering Services
Master Thesis

37

We use Aggregation method , in which the states space is partitioned in to number of

ǎƳŀƭƭŜǊ ǎǘŀǘŜǎΣ ŀƴŘ ǊŜǇƭŀŎŜ ŜŀŎƘ ǎŜǘ ōȅ ŀ ƳŀŎǊƻ ǎǘŀǘŜΦ .ȅ ǳǎƛƴƎ ǘƘŜ aŀǊƪƻǾ ǇǊƻǇŜǊǘȅ άThe

sojourn times ̱ Ƨ of a continuous-time Markov process in a state j are independent,

exponential random variables with mean 1κǉƧέ Σ ǿŜ Ŏŀƴ ǾƛŜǿ ǘƘŜ ƳŀŎǊƻ ǎǘŀǘŜ ŀǎ ŀ ǎǘŀǘŜ ƛƴ ŀ

new CTMC.

 6.2 PEPA Plug-in project:

The PEPA Plug-in Project [14] is a software tool for the Markovian analysis of PEPA models.

The tool is implemented as a collection of plug-ins for Eclipse.The PEPA Plug-in contributes

an editor for the language and views which assist the user during the entire cycle of model

development. Static analysis is used for checking the well-formedness of a model and

detecting potential errors prior to inferring the derivation graph of the system. A well-

formed model can be derived, i.e. the underlying Markov process is extracted and the

corresponding state space can thus be navigated and iterated via the State Space view.

Finally, the CTMC view allows numerical steady-state analyses such as activity throughput

and component utilization.

The plug-in will report errors in the model function:

¶ deadlock,

¶ absorbing states,

¶ static synchronization mismatch (co-operations which do not involve active

participants).

The plug-in also generates the transition graph of the model , computes the number of

states, formulates the Markov process matrix Q , communicates the matrix to a solver. The

plug-in provides a simple pattern language for selecting states from the stationary

distribution

The plug-in integrates the Hydra [15] compiler which can be used to process the well formed

PEPA model for performance measures like

¶ Transient Analysis & Steady State analysis : Measures the transient and steady state

probabilities of the system

¶ Passage Time Analysis : Measures the probability of the system response time to be

at a certain value.

¶ Throughput, Utilization & Population: Measures the percentage occupation and

utilization of the action components of the system.

http://www.dcs.ed.ac.uk/pepa/tools/plugin/
http://pubs.doc.ic.ac.uk/ipc-hydra-qest/

TU Delft & Continental Engineering Services
Master Thesis

38

 6.3 IPC

LǇŎ ǎǘŀƴŘǎ ŦƻǊ LƳǇŜǊƛŀƭ t9t! /ƻƳǇƛƭŜǊΦ LǘΩǎ ŀ ŎƻƳǇƛƭŜǊ ŦƻǊ ǎƻƭǾƛƴƎ t9t! ƳƻŘŜƭǎ ŀƴŘ ŦƻǊ
performing various measurements. In ipc there are five general kinds of measurements that
can be specified.

¶ Steady-state

¶ Passage-time

¶ Average response time

¶ Transient

¶ Count measures

Special probe components are used to specify complex performance measurements and use
the simpler interface of specifying activities of interest. The first four kinds of measurements
ǊŜǉǳƛǊŜ ΩǎǘŀǊǘΩ ŀƴŘ ΩǎǘƻǇΩ ŀŎǘƛƻƴǎ ǘƻ ōŜ Ǝƛven by the user, while a count measure requires only
one set of action names. A passage-time measurement is used to measure between two
events. The user specifies a set of start actions, the observation of the model performing any
one of these actions will start the measurement. The user also specifies a set of stop actions
and the measurement is terminated when the model performs any actions within that set.

This can be done with the following command line:

ipc --source <source actions> --target <target actions> <PEPA file name>

In addition to this, the start , stop and time step can also be specified in the command line as
follows

ipc --source <source actions> --target <target actions> --start-time <start time>
--stop-time <stop time> --time-step <time step> <PEPA file name>

The average response time measurement is also used to measure between two events, with

a start and end action or a set of start and end actions with the following command

ipc --source <source action> --target <target action> --average-response <PEPA
file name>

The following command can be issued to generate the state space view of the model

 ipc --dot-file <PEPA file name >

TU Delft & Continental Engineering Services
Master Thesis

39

The ipc compiler is integrated in to the tool for analysis of the 1-PIPELINE , 2-PIPELINE &

Cache PEPA models. We use both Passage time measurement and Average response time

measurement for the analysis.

 6.4 PEPA Example

The following PEPA script models 2 processes, P and Q synchronizing over actions b and c

r = 1.0; s = 2.0; t = 1.5; // Rate of transitions

P1 = (a, r).P2; // Transition P1 - > P2
P2 = (b ,r).P3 + (c ,s).P4; // System can do a Transition P2 -> P3 or P2 ->P4 (it has a choice)
P3 = (d ,r).P4; // Transition P3 -> P4
P4 = (e ,r).P1; // Transition P4 -> P1
Q1 = (b, t).Q2; // Transition Q1 -> Q2
Q2 = (c, t).Q1; // Transition Q2 -> Q1

P1<b,c>Q1 // P1 & Q1 paths synchronize over actions b & c , i.e b & c should be
 // performed at the same time in both P1 & Q1
 Figure 14 : Example PEPA script

In the first stage the model is parsed and checked for errors. The tool generated CTMC is as

shown below.

 Figure 14 : Abstract State space View

The system has 2 components P & Q , which will co-operate / synchronize over actions b & c

. By synchronization it means that P & Q will adjust each other to carry out actions b & c in

unison where as in other cases they can carry out their actions independently but no actions

can be missed.

The Passage time cumulative distribution with source action as a and target action as c is as

shown in the Figure 15. This measure indicates, (as described in the section 4.8) the

probability that the system starting from the state with action a , reaches state with action c

(the number of hops determined by the actions) within a specific time. The effect of change

in the rates r, s & t on the time to reach the target state with 99.99% probability is as shown

below.

TU Delft & Continental Engineering Services
Master Thesis

40

 Figure 12 : Passage time CDF

The average response time (ART) of the model with source action as a and target action as c

with different values of r,t and s along with time to reach 99.99% probability are as

tabulated below. From the table its certain that the model runs faster when the rates

arer=2,t=1 & s=1.

 Table 2 : Rate vs ART

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
a

b
ili

ty

Time

CDF

r=1,t=1.5,s=1

r=2,t=1,s=1

r=2,t=1,s=1.5

r=1,t=1.5,s=2

 Rate Average
Response
Time

Time to reach
99.99%
probability

r = 1.0 , t =1.5, s= 1.0 2.5 9.8

r = 2.0 , t =1.0, s= 1.0 1.75 7.8

r = 2.0 , t =1.0, s= 1.5 1.75 7.8

r = 1.0 , t =1.5, s= 2.0 2.333 9.73

TU Delft & Continental Engineering Services
Master Thesis

41

7. Design

In this chapter the different modeling approaches and the performance measures obtained
in each is discussed.

7.1 Single fetch Pipeline Modeling

A typical 5 stage pipeline instruction execution sequence is as shown in the figure 5. For the

sake of PEPA modeling we consider each instruction is made to undergo three actions.

1) Fetch : if

2) Decode :id

3) Execution : exe

The execution action can involve Memory Read/Write and or register Read/Write actions

which is abstracted to a single exe action. The rate of execution (r) for each action is the

inverse of the cycle taken for completion. Hence rate of if = 1, rate of id = 1 and rate of exe =

(1/C). In an instruction set, each type of instruction has its own cycle of execution which is

directly used in the PEPA equations.

Each instruction execution is imagined to be a Process component P(i) , which will

synchronize with eaŎƘ ǎǳōǎŜǉǳŜƴǘ ƛƴǎǘǊǳŎǘƛƻƴǎ tόƛҌмύ Σ tόƛҌн ύΧΦŜǘŎΦ !ǎ ǿŜ Ŏŀƴ ǎŜŜ ŦǊƻƳ ǘƘŜ

figure 2, the if, id of instruction 2 must synchronize with id , exe (MEM,WB) of instruction

1. Similarly Instruction 3 must synchronize with the respective actions of instruction 1 & 2.

However we can see that till the id actions , the rate of the synchronized action matches ,

but with exe action, the rate will be different for different type of instructions. PEPA assumes

bounded capacity: that is, a component cannot be made to perform an activity faster by

cooperation, so the rate of a shared activity is the minimum of the apparent rates of the

activity in the cooperating components. So if we synchronize with exe can execute at the

ǊŀǘŜ ƻŦ м ƻǊ ѹҐлΦр ƻǊ Ѻ ҐлΦооо ƻǊ ѻҐлΦнр ŜǘŎ Σ ǿe tend to pull the combined exe,if,id rate to

the lowest of the set. (For example if we are synchronizing actions with rates 1,0.5,0.333

then the combined rate of execution is min{1,0.5,0.333}=0.333). This will be wrong

interpretation of the system. However for the sake of experiments we will also model the

system by synchronizing the exe. It should also be noted that while synchronizing the actions

we should maintain common name for the actions to be synchronized. The following

approaches are possible for modeling.

The number of instructions for modeling is limited to 4 because

¶ beyond 4 processes, the PEPA undergoes a population explosion in some approaches.

¶ In order to maintain uniformity in experimentation

TU Delft & Continental Engineering Services
Master Thesis

42

Consider the following set of 4 instructions to be executed in a 5 stage pipeline

mr r5, r6

stmw r7,r8

mr r4, r8

bl r7

Approach 1:

The model of the system in approach 1 is as shown in the figure 19. In this approach we

synchronize only the if and id stages of the instructions.

 Figure 13 : Approach 1 overview

TU Delft & Continental Engineering Services
Master Thesis

43

 Figure 14 : Approach 1 state space

Approach 2:

The model of the system in approach 21 is as shown in the figure. In this approach we

synchronize the if, id and exe of the instructions.

 Figure 15 : Approach 2 overview

TU Delft & Continental Engineering Services
Master Thesis

44

 Figure 16: Approach 2 state space

The following table summarizes the Average response time measure for each approach. We

use if as the source action and the set of all the exeΩǎ as the target action to evaluate ART.

Table 3 : Comparison

0

0.1

0.2

0.3

0.4

0.5

I0 I1 I2 I3

%
 P

o
p

u
la

ti
o

n

Processes

Population

Approach 1

Approach 2

Type Average Response
Time

Approach 1 2.94

Approach 2 3.40

TU Delft & Continental Engineering Services
Master Thesis

45

Similar to the evaluation of ART use if as the source action and the set of all the exeΩǎ as the

target action to evaluate Passage time CDF.

 Figure 17 : Population, Throughput & Passage time CDF comparison

0.145

0.15

0.155

0.16

0.165

0.17

bl3 cm cm1 cm2 cm3 if mr0 mr2 stmw1

%
 T

h
ro

u
g
h

p
u

t

Actions

Throughput

Approach 1

Approach 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

P
ro

b
a

b
ili

ty

Time

Passage time CDF

Approach 1

Approach 2

TU Delft & Continental Engineering Services
Master Thesis

46

7.2 Dual fetch 1-Pipeline Modeling

A typical dual fetch-5 stage pipeline instruction execution sequence is as shown in the below

figure 26. For the sake of PEPA modeling we consider each instruction is made to undergo

three actions.

1) Fetch : if

2) Decode :id

3) Execution : exe

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are
executed in parallel. Each instruction in a first set , execution is imagined to be a Process
component P(i) , which will synchronize with each subsequent instructions P(i+1) , P(i+2
ύΧΦŜǘŎΦ !ǎ ǿŜ Ŏŀƴ ǎŜŜ ŦǊƻƳ ǘƘŜ ŦƛƎǳǊŜ нΣ ǘƘŜ if of the two instructions fetched is common
and should synchronize; id of instruction 2 must synchronize. Similarly Instruction 3 must
synchronize with the respective actions of instruction 4. However we can see that till the id
actions , the rate of the synchronized action matches. Also id action on both the instruction
set can be synchronized. Depending on the actions used for synchronization there are 2
approaches.

Approach 1

In this approach the if of the first two instructions will synchronize with each other, followed
by id of the first 2 instructions along with the if of the 2nd instruction set, followed by the id
of the 2nd instructions set.

 Figure 18 : Approach 1 overview

TU Delft & Continental Engineering Services
Master Thesis

47

 Figure 19: Approach 1 state space

Approach 2

In this approach the if of the first two instructions will synchronize, followed by id of the first
2 instructions along with the if of the 2nd instruction set, followed by the exe of the 1st set
with the id of the 2nd instructions set , followed by the exe of the 2nd set.

 Figure 20 : Approach 2 overview

TU Delft & Continental Engineering Services
Master Thesis

48

 Figure 21: Approach 2 state space

Approach 3

In this approach the if of the first two instructions will synchronize, followed by id of the first
2 instructions. Along with the similar actions of the 2nd instruction set.

 Figure 22 : Approach 3 overview

 Figure 23 : Approach 3 state space

TU Delft & Continental Engineering Services
Master Thesis

49

 Figure 24: Population, throughput & passage time CDF comparison

0

0.2

0.4

0.6

0.8

I0 I1 I2 I3

%
 P

o
p

u
la

tio
n

Processes

Population

Approach 1

Approach 2

Approach 3

0

0.1

0.2

0.3

0.4

0.5

bl3 cm cm2 if mr0 mr2 stmw1 cm1

%
 T

h
ro

u
g
h

p
u

t

Actions

Throughput

Approach 1

Approach 2

Approach 3

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0 5 10 15 20

P
ro

b
a

b
ili

ty

Time

Passage Time CDF

Approach 1

Approach 2

Approach 3

TU Delft & Continental Engineering Services
Master Thesis

50

The average response time of models in three different approaches is as shown in the

following table. We use if as the source action and the set of all the exeΩǎ as the target action

to evaluate ART.

Type Average Response Time

Approach 1 3.28

Approach 2 3.18

Approach 3 2.47

 Table 4 : Comparison

In order to choose the best approach, we compare the traditional performance measure i.e

Cycle per instruction (CPI) with ART of the corresponding PEPA model. The cycle per

instruction is given by the formula

 CPI =
 В ᶻ

Where ICi : Number of Instructions of type i

 Ci : Number of cycles consumed by instruction of type i

 IC : Total instruction count

In the below table I0,I1,I2,I3 in sequence are the number of execution cycles (EXE) of the
instructions. For 4 instructions the value of CPI for a single fetch 5 stage pipeline can be
calculated using the formula , CPI = (Total Cycles taken for I0 + I1 + I2 + I3) / 4
Total cycle taken by an Instruction = cycle for IF+ cycle for ID + Cycle for EXE . In case of a
dual fetch CPU the CPI is 0.5 times the CPI of a single fetch CPU.

TU Delft & Continental Engineering Services
Master Thesis

51

 Table 5 : CPI vs ART comparison

TU Delft & Continental Engineering Services
Master Thesis

52

The following graph shows the variation of the CPI and ART with different combination of

the instruction cycles.

 Figure 25 : CPI vs ART comparison

We take different combination of the instruction types with number of instructions being 4

and compare the variation of the CPI in case of the single fetch & dual fetch pipeline

execution model, against the corresponding average response time. Only for Approach 1 in

case of single fetch , and approach 3 in case of dual fetch pipeline, the CPI is in proportion to

the average response time as shown in the figure 25. Along with this reason, those two

models also avoid the bounded rate capacity drawback of the PEPA. Hence we choose

approach 1 of single fetch and approach 3 of dual fetch for final modeling. Since the plots of

CPI and ART are proportional, this could be the closest possible model of program execution

by the processor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0

1

2

3

4

5

6

7

Instruction combination

C
P

I
&

 A
R

T

Comparison of ART & CPI

Single Fetch CPI

Single Fetch ART

Dual Fetch CPI

Dual Fetch ART

TU Delft & Continental Engineering Services
Master Thesis

53

7.3 Single fetch Cache Memory Access Modeling

A typical single fetch -5 stage pipeline instruction execution, along with cache and memory

action sequence is as shown in the figure 26. For the sake of PEPA modeling we consider

each instruction is made to undergo the following actions.

1) Cache access : ca

2) Memory Access :ma

3) Fetch : if

4) Decode :id

5) Execution : exe

In case of a single fetch pipeline, single instruction is fetched. The synchronization of actions
as described in 1-pipeline modeling is followed. The algorithm for finding if the instruction is
available in cache or in memory as shown in the figure 36 is used. If the instruction is
available in the cache, then ca action appears in the equation else ma action appears in the
equation. For showing the modeling example, we assume a scenario that 1st and 3rd
instructions are available in cache and 2nd and 4th instructions are available in memory. We
also assume to a show a distinctive rates of execution of the instruction blocks , that cache
access takes 4 cycles and memory access takes 10 cycles.

 Figure 26 : Overview

TU Delft & Continental Engineering Services
Master Thesis

54

Average response time = 6.43

 Figure 27: Population, throughput & passage time CDF

0

0.1

0.2

0.3

0.4

0.5

0.6

I0 I1 I2 I3

%
p

o
p

u
la

tio
n

Processes

Population

single fetch

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

%
th

ro
u

g
h

p
u

t

Actions

Throughput

Throughput

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

P
ro

b
a

b
ili

ty

Time

Passage Time CDF

single fetch

TU Delft & Continental Engineering Services
Master Thesis

55

7.4 Dual fetch Cache Memory Access Modeling

A typical dual fetch -5 stage pipeline instruction execution, along with cache and memory

action sequence is as shown in the figure 28. For the sake of PEPA modeling we consider

each instruction is made to undergo three actions.

1) Cache access : ca

2) Memory Access :ma

3) Fetch : if

4) Decode :id

5) Execution : exe

In case of a dual fetch pipeline, two instructions are fetched simultaneously and are
executed in parallel. The synchronization of actions as described in dual fetch 1-pipeline
modeling is followed. The algorithm for finding if the instruction is available in cache or in
memory as shown in the figure 36 is used. If the instruction is available in the cache, then ca
action appears in the equation else ma action appears in the equation. For showing the
modeling example, we assume a scenario that 1st and 2nd instructions are available in cache
and 3rd and 4th instructions are available in memory. We also assume to a show a distinctive
rates of execution of the instruction blocks, that cache access takes 4 cycles and memory
access takes 10 cycles.

 Figure 28 : Overview

TU Delft & Continental Engineering Services
Master Thesis

56

 Figure 29 : State space

0

0.2

0.4

0.6

I0 I1 I2 I3

%
P

o
p

u
la

tio
n

Processes

Population

dual fetch

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

bl3 ca cm cm2 if ma mr0 mr2 stmw1

%
 T

h
ro

u
g
h

p
u

t

Actions

Throughput

dual fetch

