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Abstract—The increased complexity of programming heteroge-
neous reconfigurable platforms requires a thorough understand-
ing of application behavior, for which developers need sophis-
ticated analysis tools. One particular problem, which severely
limits the performance gain of running applications on these
platforms, is the inappropriateness of the kernels mapped onto
the reconfigurable fabrics. Efficient porting of legacy applications
to these emerging heterogeneous platforms demands code tuning
considering several critical points, such as, proper kernel size
and small memory communication overhead. Detailed profiling
information is thus vital for an efficient HW/SW co-design. To
facilitate addressing these issues, we developed the Q2 profiling
framework. It consists of two parts: an advanced memory
access profiling toolset that provides detailed information on
the run-time memory access patterns of an application and
a statistical modeling framework that makes predictions for
resources, early in the design phase, based on software met-
rics. The code optimizations triggered by careful analysis of
the profiling information is used to tailor existing applications
for heterogeneous reconfigurable platforms. In this paper, we
examine a real application in detail to show the potential of the
proposed profiling framework. Experimental results show that a
speedup of 1.3× is achieved by accelerating a merged kernel of
four critical functions in the application.

I. INTRODUCTION

As computer manufacturers incline towards multi-processor
platforms, application developers are confronted with an in-
creasing number of complex architectures. The current re-
search trend is to combine different types of processing
elements, such as General Purpose Processors (GPPs), Field
Programmable Gate Arrays (FPGAs), or Graphics Processing
Units (GPUs), in a single platform. Developing applications
for such platforms not only requires dedicated toolchains and
programming paradigms, but also demands comprehensive
insight into the behavior of legacy applications, in order to tune
them for performance gain on these heterogeneous systems. In
particular, tools to thoroughly investigate the memory access
behavior of applications become crucial, due to the widening
gap between memory bandwidth and processing performance.
Furthermore, in the case of systems utilizing reconfigurable
devices, such as FPGAs, HW/SW partitioning is one of the
critical stages that has a tremendous impact on the overall
performance gain of these systems. The problem arises from
selecting function candidates, or kernels, to map onto the
reconfigurable fabrics. On systems where, due to technical
restrictions, such as data dependencies and synchronization,

there is no possibility to have more than one main kernel
running in hardware, we usually end up with rather small
candidates which have no capacity to compensate for the
extra overhead imposed to the system. As a result, speedup
is hardly seen or, even worse, one may encounter system
performance degradation. A straight forward solution for this
problem can be obtained by merging kernels, when possible,
to come up with larger kernel candidates, which have the
potential to improve the overall performance when mapped
onto the hardware. The merging process should be carried out
with care. The process has to consider the data communication
between the kernels, while respecting the hardware resource
limitations of the reconfigurable devices.

Additionally, hardware area estimation involves building
and synthesizing hardware blocks, which is quite time-
consuming. As a consequence, there is a need for fast and
early predictions of the hardware costs depending on the
different merging policies employed. These challenges are the
main concern of our Q2 profiling framework. The framework
consists of two parts: a static part, which provides fast and
accurate estimates of kernels’ hardware area requirements,
and a dynamic part, which provides precise measurements of
memory access related metrics. In this paper, we show the
need for and the usage of the proposed profiling framework
by analyzing and porting a well-known standard speech coding
application to the Molen reconfigurable architecture [1].

The main contributions of this paper can be summarized as
follows:

• the introduction of the concept of nontrivial merging of
coupled functions based on detailed data communication
information and hardware area prediction;

• the investigation of application partitioning based on a
coarse granularity level beyond just a single function;

• the presentation of a detailed case study, which shows
an application speedup of 1.3× when mapped onto the
reconfigurable platform at hand.

The rest of this paper is structured as follows. Section II
briefly describes the related work regarding the HW/SW parti-
tioning approaches in systems utilizing reconfigurable units. In
Section III, the research context of the profiling framework is
presented. A description of the components in the Q2 profiling
framework is presented in Section IV. After that, in Section V,



we present a case study. Finally, Section VI concludes the
paper.

II. RELATED WORK

The widespread utilization of heterogeneous reconfigurable
systems relies on the availability of appropriate tools to assist
developers in mapping existing applications onto these systems
by reducing the time effort and efficiently exploiting the
provided flexibility. The focus of this work is on application
partitioning to determine which part(s) of the code should
be mapped onto reconfigurable fabrics (hardware tasks) and
which part(s) should be retained for execution on the GPP
(software tasks). Generally, the HW/SW partitioning process
can be performed based on different levels of granularity, such
as, loops or functions. Profiling, the process of monitoring an
application to spotlight specific code regions that intensely use
up resources, is an essential step within the design process for
many software and hardware systems. HW/SW partitioning
has been an active field of research in the last decades. Many
different results have been proposed during these years. For
this reason, in the following, we limit the analysis of the re-
lated work only to those that consider application partitioning
based on some profiling data.

In [2], a HW/SW partitioning approach is proposed for
dynamically reconfigurable architectures consisting of a GPP
and an FPGA. The main focus of the presented approach is
on the temporal aspect of an application not on the spatial
one. The partitioning is carried out at a fine-grained level, i.e.,
at loop and basic block levels, with the goal of optimizing
the total application execution time. In the compilation flow,
C source code of an application is preprocessed to extract
loops as hardware candidates. Furthermore, multiple optimized
versions of the loops are created by compiler transformations.
Each extracted loop candidate is profiled to estimate the
total software time, execution frequency, memory bandwidth
requirement and the trace behavior. A quick synthesis is also
performed to estimate the delay and the area needed for the
hardware implementations. The loop entry trace profiling is
used to find out the exact runtime sequence of all hardware
candidate loops. The details of the various profiling processes
are not presented. In the end, the extracted information are fed
to the HW/SW partitioner to decide which loops should go to
the hardware, and which versions of the loops should be used.

A HW/SW partitioning and code generation flow for re-
configurable platforms is presented in [3]. Given the C code
of a target application, the user has to manually identify and
tag computation blocks in the source code to be extracted for
implementation on FPGA. Since in their target architecture,
the reconfigurable array is part of the GPP’s data path, there
is a severe restriction of candidates that can be moved to
the hardware. Candidates can only contain small computation
blocks with few inputs and outputs. After that, a simulator
evaluates the code using the cycle counts specified by the
user for the tagged blocks. A profiler returns the number
of cycles used to execute each line of code. To estimate
the cycle count of the FPGA code blocks, the authors use

heuristics to have a quick performance evaluation. As a result,
the estimation may not be accurate enough. The partitioning
problem is addressed by exploring different HW/SW trade-
offs based on the performance profiles, with the objective of
maximizing the overall performance, while satisfying FPGA
mapping size constraints. This objective is formulated as a
boolean programming problem.

Santambrogio et al. [4] proposed a methodology based
on the adaptive programming technique to evaluate and
subsequently perform HW/SW partitioning for a SoC that
employs dynamically reconfigurable hardware and software
programmable cores. They developed quantitative evaluation
metrics to evaluate the reconfigurable system performance and
to represent the performance of software in a SoC from an
application-specific, input-oriented point of view. A perfor-
mance model is built with the associated evaluation metric to
identify application-specific input behavior of software mod-
ules. This general performance model is then embedded along
with hardware performance models to yield a flexible mean
to evaluate the performance impact of different partitioning
and allocation decisions. A profiler enhanced by implementing
adaptive metrics is used to reveal the potential in functions for
performance improvement as a result of transformation into
the adaptive form.

Apart from the traditional partitioning methods, different
heuristic and evolutionary methods are also investigated to
solve this problem. In [5], a heuristic searching approach
is presented based on the Ant Colony Optimization (ACO)
algorithm. Both global and local heuristics are combined in a
stochastic decision making process to effectively explore the
search space. As authors state, profiling information can also
be utilized in the decision strategies to assign tasks to different
resources. However, no reported study exists for such a work.

A design methodology for the application partitioning of
reconfigurable MPSoCs is presented in [6]. The methodology
supports the partitioning of an application between several pro-
cessing elements (SW/SW partitioning) at the function level,
as well as, HW/SW partitioning. A combination of a dynamic
profiler (AMD CodeAnalyst) and a developed tracing tool, is
utilized together with manual code analysis to analyze data
communication between functions. The parameters used for
the partitioning decision are extracted from the results obtained
in the code analysis step, such as, the execution contribution
of each function, the call graph, and the communication
graph. For the SW/SW partitioning, hierarchical clustering
is utilized, which is based on heuristics and, thus, it is
faster than ILP. The partitioning algorithm can consider some
critical issues, such as, workload balancing and minimal inter-
processor communication. A tool is also developed to analyze
the output of detailed CodeAnalyst profile to automatically
calculate block and loop nesting, the timing of loops and
functions, the function affiliation of loops and the calculation
of the threshold, which defines hotspots in code fragments.
This information can be used for HW/SW partitioning in
systems incorporating reconfigurable fabrics.

The approach taken in [6] is similar to our work with regard



to addressing application partitioning on the coarse function
level. However, in our approach we utilize a different set of
input data. Instead of the common call graph, utilized by [6],
we employ the Quantitative Data Usage (QDU) graph [7]
as the primary reference for partitioning the application. The
information about the data communication between functions,
represented by this graph, is automatically determined by our
advanced profiling toolset. In contrast, other prominent works
perform this task manually. Although this may be feasible for
small examples, more complex applications, such as the case
study presented in this paper, pose serious problems in man-
ually determining the data communication among functions.
In addition, call-graph-driven application partitioning may not
result in an efficient clustering of the application. This may
happen because of tight bindings between functions that do
not directly call one another. This phenomenon is investigated
in detail in Section V.

As FPGAs contain increasing amounts of reconfigurable
area, there is an increasing incentive to map larger code
segments onto the reconfigurable fabric. This implies that the
focus of the reconfigurable computing research will shift from
fine-grained HW/SW partitioning to coarser-grained partition-
ing approaches, enabling the mapping of complete functions or
clusters of functions. To the best of our knowledge, there is no
other work that proposes to merge functions based on accurate
data communication information and resource estimates. The
merging of tightly communicating functions into one provides a
simplified and coherent view of application tasks and enables
powerful optimizations with regard to memory requirements
and area consumption.

III. RESEARCH CONTEXT

The work presented in this paper, although not restricted to
any specific architecture, has been developed in the context of
the Delft Workbench (DWB). The DWB is a semi-automatic
tool platform for integrated HW/SW co-design, targeting
heterogeneous computing systems containing reconfigurable
components. It addresses the entire design cycle from profiling
and partitioning to synthesis and compilation of an application.
It focuses on four main steps within the entire heterogeneous
system design. The first step is related to application profiling
[7], [8], [9] and coarse-grained task partitioning [10], [11],
which is also the focus of this work. In the second step, fine-
grained hardware code segmentation is investigated along with
possible parallelization of the code segments [12]. Following
the decision to map particular code segments onto the hard-
ware, a retargetable compiler [13] generates new object code,
which contains calls to reconfigurable hardware blocks for
selected segments of the code. Finally, in the last step, VHDL
generation [14], the identified code segments are translated
into hardware blocks.

IV. Q2 PROFILING FRAMEWORK

Fig. 1 depicts the two profiling parts in the Q2 profiling
framework. The static profiling part extracts code characteris-
tics from the application source code. These characteristics are
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Fig. 1. The Q2 Profiling framework within the DWB platform.

used by a linear model to make fast and early prediction of the
FPGA area requirement for the functions in the application.
The dynamic profiling part focuses on examining the runtime
behavior of the application. In the dynamic part, we utilize
the common general profiler, gprof [15] only to produce the
call graph of the application. The execution timing provided
by gprof is sample-based and, thus, it is imprecise. For this
purpose, we use our own profiler, MAIP, which provides very
accurate measurements of the execution time percentage for
each function with respect to the whole execution time of the
application. Furthermore, MAIP distinguishes between mem-
ory access and computational operations, as well as, local and
non-local memory accesses. Therefore, a number of valuable
parameters, such as the ratio of memory access instructions
to the total instructions, can be measured. The outputs of the
different tools are stored in flat profiles as well as in an XML
description file for portability. This information is utilized
in the clustering framework for application partitioning and
subsequently mapping/scheduling on the target architecture.
Furthermore, a parallelization unit examines the profiling data
to discover potential concurrencies within and between the
tasks of the application.

A. Quipu Modeling Approach

Static profiling consists of the Quipu modeling approach,
which is presented in [9]. The approach is generic and not
limited to any particular platform or toolchain by allowing
the generated models to be recalibrated for different tools
and platforms, contrary to the majority of existing techniques.
Furthermore, a major strength of Quipu models is their linear
nature. Although the statistical techniques used to create the
models may be very time-consuming, the resulting prediction
model requires only a few multiplications in addition to
parsing the source code. This allows for the integration of
Quipu models in highly iterative design processes, where
estimates are recalculated many times in a short period of
time. Additionally, as Quipu models are based on measure-
ments from C code, very early predictions become possible.
Although such early predictions introduce a relatively large
error of 10% to 20%, they allow designers to make important
decisions on hardware mapping at an earlier stage.

In [16], we have introduced Software Complexity Metrics
(SCMs) to quantify the characteristic aspects of software code.
Examples of SCMs include the number of operators/loops,
the cyclomatic complexity, or more complex metrics involving



data-flow analysis. Currently, we use 58 SCMs as a base for
our model. Quipu extracts SCMs and hardware characteristics
from a kernel library of 247 kernels spanning a wide variety
of application domains, contrary to many existing techniques,
which use libraries of tens of kernels at most. This allows
building general as well as domain-specific models. In the
context of this paper, we have extended the kernel library
with 65 floating point kernels. This greatly improves the
applicability of Quipu models by allowing more accurate
predictions for many compute-intensive applications from the
multimedia, scientific, and other domains.

B. QUAD Dynamic Memory Profiling Toolset

The QUAD toolset consists of several tools developed to
provide a complete overview of the memory access behavior
of an application, as well as, to provide fine-grained detailed
memory access related statistics. The QUAD [7] core module
primarily detects the actual data dependencies at the function-
level. The tracing module implemented in the QUAD core is
subsequently utilized in CQUAD to reveal the data communi-
cation patterns of pairs of cooperating functions. XQUAD [17]
augments the memory access profiling data with extra informa-
tion regarding individual data objects defined in the application
source code. TQUAD [8] reveals the memory bandwidth usage
of each function in terms of relative execution timings. All the
tools in the QUAD toolset are implemented utilizing the Pin
[18] Dynamic Binary Instrumentation (DBI) framework.

V. CASE STUDY

In this section, we present concise analyses of a real
application from the speech processing domain, namely the
MELP vocoder, to show the efficiency and applicability of
the developed tools in the Q2 profiling framework. The main
goal of the case study is to have an early, yet comprehensive,
understanding of the application behavior concerning memory
and required area. The extracted profiling information is
subsequently utilized to merge critical functions and to map
the application onto the Molen reconfigurable architecture.

A. MELP Overview

The MELP (Mixed Excitation Linear Prediction) vocoder is
a standard [19] low rate speech coder selected by USDoD and
used mainly in military/satellite communications, and secure
voice/radio devices. The initial MELP algorithm was invented
by Alan McCree in the mid 90s at the CSIP in Georgia
Institute of Technology. Later, the coder was developed by
a team from Texas Instruments Corporate Research and
Atlanta Signal Processors. MELP is particularly robust in
difficult background noise environments and very efficient in
its computational requirements. As a result, it has low power
consumption, which is a crucial consideration in embedded
and dedicated hardware systems.

Algorithm Description. The MELP Vocoder is based on
the traditional Linear Predictive Coding (LPC) parametric
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Fig. 2. The MELP vocoder block diagram.

model, but also includes some extra features, namely, mixed-
excitation, aperiodic pulses, pulse dispersion, and adaptive
spectral enhancement. These additional features mainly im-
prove the excitation structure of LPC along with an accurate
simulation of the natural speech. The mixed-excitation is
implemented using a multi-band mixing model to reduce the
buzz usually associated with LPC vocoders. Then, a linear
prediction analysis is performed on the input speech using
a hamming window. The LPC residual signal is calculated
by filtering the input speech signal with the prediction filter,
whose coefficients were determined by the linear prediction
analysis. At this point, the final pitch estimate is calculated us-
ing the low-pass filtered residual signal. The gain is estimated
afterwards. To put the speech data (LPC coefficients, pitch,
gain, and bandpass voicing) into a smaller representation,
Vector Quantization (VQ) is used. The encoded data, which are
formed into packets, along with the VQ codebook, constitute
the MELP bitstream. Channel coupling will also be generated
subsequently. The decoding phase is less complex than the en-
coding. The packets are decomposed out of the bitstream and
are processed for factors extraction and channel decoupling.
Initially, the speech signal in each frequency band is recovered,
and then the output speech signal is created by applying the
voicing filter and adaptive spectral enhancement post filter.
MELP can synthesize speech using either periodic or aperiodic
pulses. Aperiodic pulses are most often used during transition
regions between voiced and unvoiced segments of the speech
signal. A pulse dispersion filter, based on a spectrally flattened
triangle pulse, is used in the final stage to spread the excitation
energy with a pitch period. This, in turn, reduces the harsh
quality of the synthetic speech. A block diagram of the MELP
vocoder is shown in Fig. 2.

B. Experimental Setup

All experiments were performed on two different platforms.
We used the QUAD toolset on an Intel 32-bit Core2 Duo E8500
@3.16 GHz, running Linux kernel v2.6.34. The application
was also executed on the embedded PPC 440 @400 MHz,
which is integrated in a Xilinx ML510, Virtex 5 FX 130T
with 1.3 MB BRAM FPGA board. On this platform, we
instrumented the functions, counting the number of cycles
for each function call using the PPC Time Base register
which is incremented each clock cycle. The MELP application



TABLE I
RESULTS OF THE PRELIMINARY ANALYSIS OF THE MELP APPLICATION

CONTAINING THE TOP 10 KERNELS.

Kernel Exec. timea Calls Areab hMARc Speedupd

vq ms4 23.28 2268 36337 18.99 1.30
zerflt 19.56 22303 540 19.40 1.24
find pitch 14.88 9072 2202 31.21 1.17
polflt 11.53 18144 610 26.20 1.13
frac pch 10.18 32097 4760 22.42 1.11
fft 8.15 1891 2903 23.35 1.09
lsp g 2.16 687115 1053 7.59 1.02
vq enc 2.09 2268 557 22.47 1.02
envelope 1.77 9072 810 26.59 1.02
autocorr 1.19 2268 560 32.95 1.01

aPercentage of the execution time contribution reported by MAIP.
bNumber of slices predicted by Quipu model generated for Virtex5 and Delft Workbench.
cheap Memory Access Ratio (hMAR), reported by MAIP.
dTheoretical application speedup calculated with Amdahl’s Law.

source code was compiled with gcc v4.1.1, with -O2 compiler
optimizations on both platforms. The MELP implementation
consists of 25 source files with, in total, 70 functions. For
the experiments, we encoded a sample voice recording of
male voice fragments in 8000 sample/s raw PCM format. The
Quipu model that we utilize in this paper was generated for
a combination of the DWARV C-to-VHDL compiler [14] and
Xilinx ISE 13.2 for the Virtex 5 FX 130T FPGA.

C. Experimental Analysis

In Table I, we list the top 10 kernels according to our
MAIP profiling tool. The second column lists the execution
time percentage of each kernel reported by MAIP. The top
kernel vq ms4, the main part of the vector quantization
stage, accounts for 23.28% of the total execution time. The
subsequent four kernels in the top 5 are part of the linear
prediction analysis and together account for 56.15% of the
total execution time. Then, there is fft accounting for 8.15%
and some remaining smaller kernels accounting for 7.21%. In
the third column, the number of calls to each function is listed.

The Quipu area estimates for each kernel are listed in the
fourth column. Given that the Virtex5 FPGA on the ML510
board has 20480 slices available, notice that all kernels except
vq ms4 are predicted to fit. The reason why vq ms4 exceeds
the size of the FPGA is the corresponding large size of the
function itself. It consists of 210 lines of code, contains 12
loops, and has a nesting depth of 9. Although this function
cannot be mapped to hardware, ample room remains for
speedup in the remaining kernels.

From the fifth column, the hMAR, we can see that all but
one kernel spend roughly 20% to 30% of their execution times
in accessing the heap. One exception is the lsp g kernel,
which contains one loop that performs one heap load but
executes several other operations per iteration. A high hMAR
ratio indicates that the increased performance of hardware
implementation is counteracted by latencies in accessing the
heap, if we assume that such accesses cannot be further
reduced. In the case of these top 10 kernels, the hMAR is
low enough to allow for reasonable speedups.

In addition to the area predictions, the theoretical application

speedups are also reported in the last column. These speedups
are calculated using Amdahl’s law, assuming an unlimited
speedup for the kernel(s) in question, as follows:

lim
p→∞

p

1− f(p− 1)
=

1

f
=

1

1− s
, (1)

where p is the speedup factor of the accelerated part, f is
the percentual execution contribution of the sequential part,
and s is the original percentual execution contribution of
the accelerated part. We can see that without merging some
kernels together the maximum possible theoretical speedup
would be 1.30×. As this speedup is bound to be much lower,
it is desirable to find a combination of kernels that has a
larger computational contribution and, therefore, allows for a
larger speedup.

QUAD Profiling. We utilized QUAD to reveal the data com-
munications between different functions of the MELP appli-
cation. Due to space limitations, only a part of the resulting
QDU graph is shown in Fig. 3.

Not every heavy data communication leads to a potential
memory bottleneck. A more detailed investigation is required
to pinpoint problems related to memory accesses. Special
attention has to be given to the size of the accessed memory
blocks, to the locality, to the reusability, and, most signifi-
cantly, to the placement of data (on-/off-chip data allocation),
where applicable. For our experimental setup, there was no
off-chip data allocation due to Molen restrictions, however,
this property must be considered in general.

In the top part of Table II, we see an overview of the
different candidates for merging. The candidates were selected
by examining functions that would fit on the FPGA and
had intense communication. As expected, by inspecting the
source code, we noticed that these functions were almost
always called together and in similar sequences. In the analysis
phase, Q2 provides the computational intensity, hardware area
estimates, and insight to the communication intensity. As the
QDU graph suggests, an obvious merging option would be to
combine polflt and zerflt. It should be noted that examining the
call graph for the application displays no calling link between
these two function, although they are tightly coupled. These
two functions together contribute 31.09% to the execution
time. They are intensively communicating, and after inspecting
the code, they appear to be called in sequence in almost all
cases. Row o1 lists the tentative data for this merging option.
Note that the merged kernel has a larger theoretical speedup
than the individual kernels.

The QDU graph also reveals that two other functions, from
the top 10, are intensely communicating with polflt and zerflt,
namely find pitch and frac pch. Again, the Q2 framework
helps us identify these kernels, as the predicted area for each
of them is relatively small, and the communication with other
functions is quite intense. However, when we investigate the
code, we find that these four functions are not called in a
consistent order throughout the code. Sometimes only the
filters are executed, sometimes find pitch is also included,
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Fig. 3. The QDU graph of the MELP application before merging.

TABLE II
RESULTS OF THE ANALYSIS OF THE MERGING CANDIDATES AND FINAL MERGED KERNELS AND THE ACTUAL SYNTHESIS RESULTS.

id Kernel Area (slices) Exec. timea tsw(s)b thw(s)c Speedup
Predicted Actual Kernel Application

Theoretical Actual

k1 zerflt 522 401 19.56 381 181 1.24 2.10 1.11
k2 find pitch 1900 2205 14.88 3370 1824 1.17 1.85 1.07
k3 polflt 661 421 11.53 513 152 1.13 3.38 1.09
k4 frac pch 4760 n.a. 10.18 n.a. n.a. 1.11 n.a. n.a.

o1 k1 + k3 1183 n.a. 31.09 894 333 1.45 2.68 1.24
o2 o1 + k2 + k4 8112 n.a. 56.15 n.a. n.a. 2.28 n.a. n.a.

m1 pol vequ zerflt 869 706 26.81 894 365 1.38 2.44 1.19
m2 filters plus pitch 7111 6722 51.80 n.a. n.a. 2.07 1.80 1.30
m2a ” ” ” 14.84 4259 2505 2.07 1.70 1.07
m2b ” ” ” 1.54 349 181 2.07 1.92 1.01
m2c ” ” ” 28.33 1094 575 2.07 1.90 1.15
m2d ” ” ” 7.09 547 336 2.07 1.63 1.03

aPercentage of the execution time contribution as reported by the MAIP profiler.
bTime measured on PPC on the ML510.
cTime measured with Modelsim 6.5 simulator targeting ML510 Virtex5 FPGA.

or frac pch, other times the filters are omitted. In total, we
identified four scenarios. We merged the four kernels and
added corresponding if -statements to switch on the correct
code regions. The combined predictions for this second option
are listed in row o2.

After we identified the merging candidates using the Q2

framework, we merged the kernels and performed a new
analysis iteration. The results are presented in row m1 and
m2 of Table II. As mentioned before, we identified four
scenarios of ordering the individual kernels merged in m2.
For each scenario, we list detailed information in rows m2a-
m2d. Observe that the predicted area consumption has been

reduced. The reason for this is the additional opportunities
for the compiler to optimize the code. We have also included
parts of the new QDU graphs in Figures 4 and 5. Clearly,
the communication channels between the kernels have been
internalized by the merging process.

We synthesized the kernels and merged kernels in order
to validate our predictions and to determine the kernel and
application speedups. The results are also listed in Table II.
The table includes the execution times in % and in s for
the PPC and for the FPGA. The FPGA execution times
were determined using the Modelsim 6.5 simulator using the
same input as on the PPC. Furthermore, we also include the
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Fig. 4. The QDU graph after the first merging step.
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Fig. 5. The QDU graph after the second merging step

actual area for each of the kernels. In case of the frac pch
function no actual area is reported, as this kernel contains a
function call, which DWARV does not support. Apart from the
theoretical speedup, we also included the kernel speedup and
the corresponding application speedup.

It can be seen that the Quipu estimates exhibited an error of
5.8% to 57%. This is an acceptable error rate for early analysis
of hardware resource consumption. It should be noted that the
potential for speedup has been increased to 2.07×. The actual
speedup that we were able to obtain by merging was 1.3×.

VI. CONCLUSIONS

Running existing applications on heterogeneous reconfig-
urable systems is a challenging task. Apart from the required
system development tools to enable porting of the applications,
several critical issues need to be addressed as well to fully
unleash the performance gain of these systems. Among them
is the HW/SW partitioning. Efficient application partitioning
is only possible with careful inspection of the application
behavior to make a proper separation between tasks to be
mapped on various processing elements. We have shown in
this paper that the advanced profiling tools developed in
our Q2 profiling framework allow effective handling of the
HW/SW co-design. The valuable information extracted by the
tools can be used to direct a coarse-grained partitioning of the
application. In the presented case study, the result of porting
a real application to the Molen reconfigurable architecture
guided by the Q2 profiling information was a speedup of 30
percent.
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