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Abstract. Heterogeneous multicore architectures appear to be a promis-
ing solution to the ever-increasing computational demands of applications
in embedded as well as high-performance computing domains. Neverthe-
less, inefficient application partitioning for such systems may result in a
considerable reduction in the anticipated performance improvement. Con-
sequently, proper mechanisms are required to evaluate quality of different
partitions in an early phase of application mapping. This evaluation is es-
pecially important in the case of reconfigurable accelerators, as the syn-
thesis phase of their hardware blocks is quite time-consuming. Hence, an
early evaluation of application partitioning mechanisms for such architec-
tures can reduce time-to-market.

In this paper, we propose a data communication-aware methodology
for evaluating the quality of application partitions as well as partition-
ing algorithms. We also present an open source tool which implements
the proposed methodology. Moreover, we evaluate several heuristic algo-
rithms to further substantiate the applicability of the proposed method-
ology and the utilization of the developed tool. The applications are
used as test inputs for the sake of comparisons in terms of relative and
absolute quality measurements of the partitioning solutions.

Keywords: Application partitioning, Performance evaluation, Heuristic
algorithms, Data communication analysis.

1 Introduction

Heterogeneous multicore architectures are gaining popularity in embedded de-
vices as well as high-performance computers [1]. This new trend poses specific
challenges regarding the programmability of these architectures. One such chal-
lenge is application partitioning, in which an application is divided into smaller
parts to be mapped onto various Processing Elements (PEs). This is a critical
task because inefficient partitioning may reduce the anticipated performance im-
provement. It has also been discussed that the communication among various
parts of an application entails a major design challenge [2,3].

The criteria that drive application partitioning include, among others, the
nature of computations, execution times on PEs, memory requirements, area
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avaialble on PEs, etc. Due to the huge size of the search space, finding an op-
timal partition is an NP-hard problem [4]. Therefore, heuristic algorithms are
commonly utilized to find solutions in short time. Nevertheless, the partition
found by a heuristic may or may not be close to the optimal solution. Hence, it
is very important to be able to evaluate the quality of the solution(s) found by
a heuristic method and to make a robust comparison with the solutions found
by other existing or future partitioning algorithms.

Due to a large variety of architectures and the lack of proper benchmarks,
it is hard to reproduce experimental results, for fair comparison, on the tar-
get platforms [5]. Moreover, the complexity furthers in case of reconfigurable
architectures as the application development process involves building and syn-
thesizing hardware blocks. Hence, a proper methodology is required to quickly
evaluate the quality of the partitioning algorithms.

An interesting observation is that only a small number of functions primarily
contribute to the overall application execution time. Similarly, a limited number
of functions are responsible for the main inter-task data communication. By
considering these two observations, we can potentially reduce the huge design
space exploration effort. Thus, the comparison with optimal partitions found by
an exhaustive search becomes feasible, in spite of the general intractability of
the application partitioning problem.

In this work, we propose a methodology for evaluating partitions found by var-
ious application partitioning algorithms. Furthermore, we compare the outcome
of several partitioning algorithms based on the quality of the found solutions. We
define cost metrics based on the execution contribution of the functions and the
data communication. The execution contribution and data communication infor-
mation are obtained by profiling the application [6][7]. Our main contributions
are summarized as follows:

• formulation of the proposed data communication-aware application parti-
tioning evaluation methodology;

• design and implementation of an open source tool that implements this
methodology;

• evaluation of a multi-objective partitioning algorithm as a case study for
synthetic applications and real benchmarks.

The rest of the paper is structured as follows. Section 2 overviews the related
research work. Section 3 presents the proposed evaluation methodology. Section
4 describes the modular design of the partition evaluation tool. Subsequently,
Section 5 provides a detailed case study describing the evaluation of a multi-
objective partitioning algorithm to illustrate the methodology. Section 6 details
the experimental results. Finally, Section 7 provides the conclusions and future
research directions.

2 Related Work

Efficient application partitioning for multicore platforms has been an active field
of research in the last decade. The problem has been approached in diverse
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Fig. 1. A partitioning algorithm takes an application as input and produces a partition
at the output. The depicted partition is composed of three clusters.

ways and at various granularity levels, ranging from fine-grained (basic blocks
or loops) to coarse-grained (functions), heuristic and evolutionary approaches,
as reviewed in [7]. The work presented in [6] utilizes a data communication
graph, annotated with area estimates to do partitioning in a semi-automatic
way. A generalized framework for automatic code partitioning is discussed in [8].
Some works regarding code partitioning for platforms containing reconfigurable
accelerators are reviewed in [7].

An empirical evaluation is provided in [9], where graphs are compared using
Chaco framework [10]. Communication costs among vertices in these graphs
are based on cut edges. The quality of a partition is found by the application
execution time on the target platform. However, finding the quality of partitions
by executing the application on reconfigurable platforms, if possible in all cases,
is a tedious and time-consuming task, as it involves synthesizing hardware blocks
for reconfigurable units. Our methodology is able to perform an early evaluation
without the need to run on the target platform.

Another evaluation is provided in [5], which presents a comparison of four parti-
tioning approaches.The authors associate costmetrics with partitions and provide
a comparison of these approaches.However, their focus is on the hardware/software
partitioning, which is a subset of the generalized partitioning problem. Our work
provides a generic evaluation methodology for any number of parts in a partition.

3 Evaluation Methodology

Figure 1 depicts the application partitioning process and the terminology used in
the proposed evaluation methodology, which is a 4-step process described below.
Step 1: Formulation of the cost function. Partitions can be evaluated by
calculating their costs using a cost function. A cost function takes a partition
as input and assesses its quality. Various factors can contribute to the qual-
ity of a partition, for instance, how well the clusters are balanced, inter-cluster
data communication, etc. In this step, the factors of interest are determined to
formulate the cost function.
Step 2: Implementation of the partitioning algorithm. The partitioning
algorithm to be evaluated is implemented in this step. The algorithm takes the
application as input and outputs a partition of the application.
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Step 3: Specification of the input set. In this step, the applications that are
input to the partitioning algorithm are specified. These applications are repre-
sented as graphs, where the values of graph vertices represent the characteristics
of applications, for instance, execution contribution, memory requirements, area
estimates, etc. The edges in these graphs represent the data communication be-
tween functions. The specification of an input application boils down to selecting
numbers for vertices and edges, which can be obtained randomly or by profiling
real applications.
Step 4: Evaluation and comparison. In this step, the cost of the partition
found by the partitioning algorithm is evaluated by the cost function. The eval-
uated cost can be used to perform comparisons and to rank the partition based
upon its quality. This ranking can be:

Absolute — where the comparison is performed with the optimal partition
found by an exact solution or an exhaustive search (only for applications with
small number of functions).

Relative — when optimal partitions cannot be found, thus the cost is com-
pared in relation to the costs of partitions found by other algorithms. In the
next section, we present the details of the tool that implements the proposed
methodology.

4 PET Implementation

We developed the Partition Evaluation Tool (PET1), to evaluate the quality of
partitions and compare various partitioning algorithms. This tool is implemented
in C++ in a flexible way to allow the partitioning strategies to be evaluated eas-
ily. We define the relevant concepts used in the PET discussion as follows.
Application class models the concept of the application which needs to be
partitioned by the partitioning algorithm. An application has two important
members, namely functions and edges.
Function represents the subroutine in an application, which performs a certain
task of the application. Each function has an execution contribution depending
upon the task assigned to it.
Edge is a directed link denoting the communication between a pair of functions
in an application. The amount of data that is communicated is represented by
the weight of the edge.
Cluster represents the collection of functions which can be mapped onto a single
core/PE of the target platform. The number of functions in a cluster is controlled
by the capacity of that cluster. As an example, in reconfigurable systems, this
capacity may represent the maximum number of slices reserved for a single PE.
When a cluster is full, its status is changed from UnFinished to Finished.
Partition refers to the union of clusters, where each cluster contains various
functions. A viable partition holds the semantics of the application with the
combination of functions in clusters that can be mapped onto various cores/PEs

1 Sources available at http://imranashraf.github.com/PET

http://imranashraf.github.com/PET
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in a multicore platform. The cost of a partition can be evaluated by a call to the
Cost() method of this class.
PartitioningAlgorithm is an abstract class that can be used to implement
the algorithm(s) used to perform partitioning. This can be achieved by imple-
menting the Apply() virtual function of the PartitioningAlgorithm class for some
algorithm of interest.

5 Case Study

In this section, we present the evaluation of a multi-objective task clustering al-
gorithm [7], to illustrate our partition evaluation methodology and the utilization
of PET in this regard. This algorithm initiates task clustering at the function-
level based on dynamic profiling information. This includes the data commu-
nication among functions and the information about their execution time. The
overall goal of the heuristic algorithm is to get a well-balanced cluster containing
tightly inter-connected functions. The steps of the evaluation methodology are
described below:
Step 1: Formulation of the Cost Function. We assume an application con-
taining n functions to be partitioned into k clusters. These functions can be
specified as vertices vi, 1 ≤ i ≤ n in a graph. The execution cost ECvi of a
vertex vi, is the cost of executing this function on a PE when it is mapped as
a part of a cluster. The execution cost of a cluster Ci is defined as: ECCi =∑

vj∈Ci
ECvj , 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Vertices vi and vj have an edge eij connecting them, with the weight wij

representing the amount of the data that is communicated. The set of all the
edges in a graph makes an edge set E of the graph. The set of edges which
cross the boundary of a cluster Ci form the set of external edges EextCi of
this cluster with respect to the rest of the partition. This edge set represents
the communication cost of the cluster Ci with respect to the other clusters.
Furthermore, the set of edges internal to a cluster Ci form the internal edge set
EintCi, as it represents the communication among functions inside Ci. For this
case study, we consider the following two metrics to formulate the total cost of
a partition:

1. Balancing Penalty (BP) accounts for the load balancing among clusters
in a partition. It basically depends upon the distance between the execution
cost ECCi of cluster Ci and the average execution cost of all the clusters in

a partition BPCi =

∣
∣
∣
∣

∑k
j=1 ECCj

k − ECCi

∣
∣
∣
∣ , 1 ≤ i ≤ k. Balancing penalty BPP

of a partition P is defined as BPP =
∑k

i=1 BPCi .
2. Communication Cost (CC) is the cost associated with external com-

munication of a cluster with respect to the other clusters in the partition.
Communication cost CCCi of a cluster Ci is CCCi =

∑
eij∈EextCi

wij . The

communication cost CCP of a partition P is defined as CCP =
∑k

i=1 CCCi .
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The total cost TCP of a partition P is then defined as:

TC = αBPP + βCCP ; 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α+ β = 1, (1)

where α and β are relative weights associated with BP and CC metrics, respec-
tively. These weights can be selected by the designer based on the platform at
hand, to stress one metric relative to the other. For instance, if workload balanc-
ing is important then, one can select a higher value of α than β. On the other
hand,when communication is expensive, β can get a higher value than α.

It is worth mentioning here that this is just one way of specifying the cost
function as the weighted sum of the objectives of interest. Our approach is sim-
ilar to the one discussed in [11], where the difference of values of each objective
is explained in detail. On the same lines, we have assigned the values to each
objective as their percentage contribution in the total execution and communi-
cation cost for BP and CC, respectively, instead of using their actual values.
Step 2: Implementation of the Partitioning Algorithm. We implemented
the clustering algorithm as a derived class of the abstract PartitioningAlgorithm
class of PET. The Apply() function implements the functionality of this heuristic
algorithm on an input application. The result is a partition of the input appli-
cation containing the clusters with various functions.
Step 3: Specification of the Input Set. We generated a number of synthetic
application graphs to be used as test inputs. Due to space limitation, we will
only discuss the real applications. We used applications from Standford Parallel
Applications for Shared Memory Architectures (SPLASH-2) Benchmark Suite
[12]. We used the Maip and Quad tools from Q2 profiling toolset [6] to extract
the percentage contribution of functions and to get the communication graphs.
It should be noted that getting the profiling data by using any other profilers
will not change the methodology or the evaluation process.
Step 4: Evaluation and Comparison. We performed the absolute ranking by
finding the optimal partition determined by the exhaustive search. We compared
the cost of partition found by the heuristic algorithm against the best possible
partition, using bruteforce() class to generate all the possible partitions for the
generated applications. The cost of each partition is evaluated by the Cost()
method of the Partition class. Apart from the absolute ranking, we also per-
formed relative ranking of the partitioning algorithm against the best solutions
found by simulated annealing, evolutionary and tabu search. The detailed results
of these evaluations and comparisons are provided in the following section.

6 Experimental Results

In this section, we provide the results of the experiments performed to evaluate
the cost of heuristic algorithm and the cost of partitions found by the exhaustive
search. We performed these experiments on a 2.66 GHz Intel(R) Core(TM)2
Quad CPU, with 4 GB RAM. We used the value of 0.5 for α and β to give equal
weights to both cost metrics. Values given to these relative weights should be
based on the target platform and care must be taken while revising them.
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In order to present the evaluation for real benchmark applications, we selected
three applications from SPLASH-2 benchmark suite, namely Barnes, Fmm and
Raytrace. We also selected Clustalw [13] sequence alignment application and
KLT [14] feature tracking application for the evaluation. Figure 2 presents the
comparison of the cost of the partition found by Heuristic Search (HS) with the
costs of the solutions found by Simulated Annealing (SA), Tabu Search (TS)
and Evolutionary Search (ES). It can be seen that HS performs close to other
algorithms. For Barnes and Fmm, which are relatively smaller applications, SA
performs better, but for the remaining three bigger applications, TS outperforms
all the other algorithms.
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Fig. 2. Comparison of cost of partition
found by HS against the cost of partition
found by SA, TS and ES for the real ap-
plications
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Fig. 3. Absolute ranking of the cost of the
partition found by HS, SA, TS and ES
from the real applications

An important point worth mentioning is that HS performs comparable to SA,
TS and ES in terms of cost.However, HS takes very less time to find the solution
compared to other algorithms. To give an idea, for the KLT application, HS
took 815μs to find the solution, whereas, TS took 18m.

In the above experiments, we performed evaluations relative to other algo-
rithms. Absolute ranking can also be performed by comparing the costs against
the cost of the optimal solution found by Brute Force (BF). Performing this ex-
haustive search to find the optimal partition of four clusters will require about 8
years on the computer used in these experiments for an application with 25 func-
tions. The considered applications contain 38 to 103 functions, hence, performing
the exhaustive search for the optimal partition is not practical. Thus, we limited
the number of functions to a threshold value of 18, picking the top functions
according to the execution time and data communication contribution. This fea-
ture is also supported by the tool, where we can specify this threshold value in
terms of the number of functions for execution contribution and communication
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Table 1. Specifications of the Real Benchmark Applications used in the Evaluation

# Applic. No. of % Exec. % Comm.
Functions Covered Covered

1 Barnes 38 99.19 99.45
2 Fmm 70 91.86 84.12
3 Raytrace 85 75.32 77.55
4 Clustalw 89 96.06 86.17
5 KLT 103 99.85 98.73

weights for filtering the top kernel functions in the application. Table 1 provides
detailed specifications of the five applications. Column 3 provides the number of
functions in each application. As it can be seen in Column 4 and 5, considering
a subset of the top contributing functions covers most of the heavily executing
and heavily communicating functions in these applications. The results of the
absolute ranking are provided in Figure 3. The vertical lines show the range of
the cost of solutions found by BF for each application. It can be seen that HS is
able to find close-to-optimal solutions. The costs of solutions found by SA, TS
and ES are also marked for comparison. Overall, SA outperforms all the other
algorithms, as it is able to find close to optimal solutions.
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Fig. 4. Effect of variation of α and No.
of PEs on cost of the partitions found by
tabu search for the Raytrace application
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Fig. 5. Variation of execution and com-
munication cost of Clustalw application.
Minimum cost values correspond to the op-
timal number of PEs (at PEs = 6) for the
given α and β.

In the above experiments, we have kept α and β fixed. Figure 4 presents the
variation of the costs of partitions found by Tabu Search algorithm for Raytrace
application from SPLASH-2 benchmark suite. It can be seen in this figure that
for lower values of α (higher values of β) increasing more PEs, increases cost
because of the increased communication among PEs. Higher values of α (lower
values of β) implies that the communication is not expensive on the platform
at hand and adding more PEs will decrease the total cost of partition. Similar
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analysis can also be performed for various values of α and β and the number of
PEs for other applications.

Another important result which can be obtained from this evaluation is the
optimal number of PEs required for a given application for a given platform
(values of α and β). Adding more PEs may reduce the execution time of an
application by performing the job in parallel, however, the disadvantage is the
increase in data communication among the PEs, which may kill the anticipated
speedup. This analysis can especially be important for platforms where number
of PEs can be reconfigured. For instance, in Molen architecture [15], the number
of cores can vary from 2-5 with an upper limit imposed by the resources on
FPGA. Even for non-reconfigurable platforms, where number of cores cannot be
altered, the additional PEs can be switched-off to save the energy consumption.

In order to perform the analysis for optimal number of PEs, we have modified
the equation to calculate the total cost of the partition to consider the effect of
the addition of PEs as follows:

TC = α(ECs + ECp/N) + βCC ; 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and α+ β = 1, (2)

where ECs is the execution cost of the serial region of the application, ECp is the
execution cost of the parallel region of the application andN is the number of PEs.
In this simple equation, we have assumed that the cost of the parallel region of the
application scales with the number of the available PEs. Furthermore, we did not
consider the overhead of parallelization, etc, in this analysis, as the main objective
here is to show the effect of increasing the number of PEs on the execution and
the communication costs of a partition for an application for certain values of α
and β. Figure 5 provides a plot of the execution and the communication cost of the
Clustalw application for a number of values of PEs. For this graph, we have given
equal weights toα andβ. It can be observed from this plot that increasing the num-
ber of PEs reduces the execution cost, but the interaction among PEs in the form of
data communication increases resulting in an increase in the communication cost.
The optimal number of PEs corresponds to the minimal cost values, which in this
case happens when the number of PEs is equal to 6.

7 Conclusions

A key factor that substantially affects the performance of heterogeneous multi-
core architectures is the scheme used to partition an application. Hence, a proper
mechanism to evaluate various partitioning schemes is important. In this work,
we presented a methodology to evaluate application partitions for multicore ar-
chitectures. Functions are assumed as vertices in a graph and the communication
among functions is represented by the weights of the edges connecting them. We
presented PET— a flexible and modular partition evaluation tool— implement-
ing the proposed methodology.

We provided the detailed relative and absolute evaluations of a heuristic task
clustering algorithm, as a case study to prove the effectiveness of our methodol-
ogy. From the evaluation, it was concluded that the heuristic algorithm is able to
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find close to optimal solutions in very short time compared to other algorithms
selected in this comparison. In our future work, we plan to add the profiles of
applications from various domains in our tool. Furthermore, benchmark suites
can be added to broaden the choices for input set specifications. Utilization
of Pareto based multi-objective application partitioning evaluation can also be
investigated to provide the whole Pareto-front.
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