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Abstract—Low energy consumption is crucial for embedded
systems, including the ones that employ tiled Multiprocessor
Systems-on-Chip (MPSoC). Such systems often execute real-
time applications consisting of several tasks synchronized in
a data-flow manner and mapped over different MPSoC tiles.
Energy can be saved by lowering the processor voltage and
frequency, hence extending the application execution over
periods of time otherwise left idle, i.e., exploiting slack. In this
paper we propose a framework to distribute slack information
at run-time, intra- and inter-tile, to enable accurate and
conservative slack calculation within each tile. The slack is
transferred along with the existing inter-task synchronization
and as a result it is distributed across the MPSoC with low
overhead. In each tile, we add a hardware block that calculates
the slack received during inter-tile communication and a
software library to program this hardware. We integrate this
framework into an existing MPSoC platform and we prototype
an entire system with two tiles on an Xilinx ML605 FPGA
board. We demonstrate the effectiveness of our proposal with
a simple, conservative, DVFS management policy applied to an
H.264 decoder application. The experimental results suggest
that our framework reduces the total energy consumption of
tiles with 27%, when compared to a state-of-the-art intra-tile
approach that uses a similar management policy. Our proposal
introduces only a minor software overhead of up to 4% over
the application execution time and negligible additional FPGA
chip utilization of 0.002%.

Keywords-Inter-tile Slack Framework; Timestamps; MPSoC;
RTOS;

I. INTRODUCTION

Nowadays, many modern real-time embedded systems
execute computationally intensive, streamming applications.
To achieve the desired performance, application design-
ers exploit available concurrency by encapsulating each of
the computationally intensive kernels into tasks that may
communicate. Many such applications are mapped on a
tile-based MPSoC, where tiles are connected through a
Network-on-Chip (NoC). At run-time, in each tile, the
application tasks are scheduled by a Real-Time Operating
System (RTOS).
Real-time embedded systems have to be predictable and

often should operate within a limited energy budget. A

system is predictable if it is possible to accurately char-
acterize its performance. An important performance metric
for streamming applications is throughput, i.e., number of
output data items produced per unit of time. Typically
throughput is guaranteed by analysing, at design-time, the
critical execution paths of the application under worst-case
assumptions [1], [2]. At run-time, each task is invoked
repeatedly for an undetermined number of iterations. Such
systems may have two basic types of slack: static and
dynamic [3]. Static slack may be intrinsically present in an
application when not all tasks are on the critical paths that
limit the application throughput. Dynamic slack is present
when the actual case execution time of a task iteration is
shorter than its worst case execution time.
In this context, many approaches aim to reduce energy

consumption without affecting the application guarantees.
A way to save energy is to conservatively lower the pro-
cessor operating points, e.g., by dynamic voltage-frequency
scaling (DVFS) for each application task [4], [5], [3], [6].
However, existing methods cannot observe the entire static
and dynamic slack that is present in an application at run-
time, leading to energy waste.
In this paper, we address the problem of accurate slack

observation in real-time, data-flow applications mapped on
MPSoCs. We propose a framework for conservative slack
accounting and distribution between tiles. We perform slack
accounting with the help of timestamps. Furthermore, the
main features of our proposal are, as follows: (1) slack is
distributed between tasks, potentially mapped to different
tiles, along with the existing inter-task synchronization, (2)
slack can be distributed in two directions, i.e., from producer
tasks to consumer tasks and vice versa, and (3) static and
dynamic slack is addressed.
Our framework consists of a hardware coprocessor and a

software library to provide support for the newly introduced
coprocessor. Furthermore, we integrate the coprocessor and
the software library into an existing MPSoC platform and
we prototype the entire system on a Xilinx ML605 FPGA
board. We experiment with a data-flow implementation of an
H.264 decoder. We compare two variants of our technique
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to an existing intra-tile management technique [3]. The
two variants differ in that the first associates slack with a
task, as many existing methods, and the second associates
it with an application, increasing the potential for DVFS.
In each one of the aforementioned cases, we employ a
simple, greedy energy management policy that, conserva-
tively utilizes as much slack as possible. Our experiments
suggest that the total energy consumption reductions for
each one of our two techniques are 23.2% and 26.7%
when compared to the existing technique [3]. The software
overhead in terms of extra clock cycles varies from 1% to 4%
of the application execution time. The hardware overhead
is negligible, 0.002% chip utilization from the considered
FPGA board (xc6vlx240t).
The remainder of the paper is organized as follows.

In Section II, we compare our proposal with the related
state-of-the-art. In Section III, we introduce the applica-
tion and platform models. In Section IV, we present the
concepts behind our solution. In Section V, we provide
the implementation details. In Section VI, we present an
experimental proof of concept of the proposed solution. The
paper concludes with Section VII.

II. RELATED WORK

In this section, we discuss approaches in (1) slack man-
agement, distribution, and power-aware scheduling for data-
flow applications, and (2) timestamps.
Nelson et al. [7] propose to reduce the energy consump-

tion using static slack, when an application is mapped on
multiple tiles. The analysis employs a custom design-time
tool calculating the Maximum Cycle Mean (MCM) [1]
(intuitively, the length of the critical path) of the application
graph. The tool finds lower clock frequencies for the tasks
that do not belong to the MCM. One of the limitations of
this approach is that compile-time tools may not observe
all available slack. Furthermore, other compile-time (static)
tasks mapping and DVFS schemes for MPSoCs based on
the application data-flow graph exist [5], [6], [8]. Compared
to these approaches, we propose a run-time technique that
has the potential to improve on design-time solutions.
Other approaches [3], [9] propose run-time methods to

observe the dynamic slack locally in each MPSoC tile. If
a task finishes early, DVFS is conservatively performed for
the next executed task of the application. The techniques
accurately observe all dynamic slack within a tile, however
early completion in one tile may also result in early start in
other tiles. This slack cannot be observed here. Compared
to these approaches, we distribute the slack information
between the tiles which overcomes this limitation. Moreover,
we address the static slack as well.
Carta et al. propose to minimize energy consumption in a

pipelined MPSoC architecture [4] by using linear and non-
linear feedback control schemes. The considered pipeline

architecture resembles the execution of a streamming ap-
plication. Furthermore, Zamora et al. [10] utilize stochas-
tic automata networks for system-level performance/power
analysis and trade-offs in designing of multimedia, streaming
applications. However these approaches target the soft real-
time domain, hence the throughput guarantees are not hard.
Several examples of systems that utilize timestamps to

share timing information exists [11]. The first proposes
a fully synchronous MPSoC. Timestamps are utilized to
synchronize heterogeneous IP blocks which might be oper-
ating at various frequencies. In this way real-time guarantees
are offered to applications. We use the timestamps in a
different context, to compute the slack information that
is sent from one tile to another. The approach in [11]
assigns timestamps to the arrival of external events in a
hard real-time system. This information is used to schedule
ready tasks. Similarly, we register the arrival time of the
synchronization information. However, unlike existing work,
we utilize this information for slack calculation to enable
energy management.
In summary, to the best of our knowledge, our proposal

to distribute information among tiles together with synchro-
nization, for the purpose of enabling accurate, conserva-
tive slack observation in data-flow applications is novel.
Moreover, it can augment existing state-of-the-art policies
to further save energy.

III. PREREQUISITES

This section introduces the application and the platform
models that are useful to understand the rest of this paper.

A. Application model

A data-flow application, A, consists of a set of tasks
that communicate via tokens through first-in-first-out (FIFO)
channels of bounded-size. Task execute indefinitely, itera-
tively, processing tokens from input FIFOs and producing
tokens into output FIFOs. As we target the real-time domain,
we consider that each task Ta has a worst case execution
time, wceta, known design-time. Each task iteration i, also
denoted as Ta,i, has an actual execution time, aceta,i, un-
known at design-time. If a task Ta produces tokens that a
task Tb consumes, Ta is denoted as the predecessor of Tb
and Tb the successor of Ta. A tasks is eligible for execution,
or ready, if it has sufficient tokens in the input FIFOs and
space in the output FIFOs. The eligibility of a task Ta is
given by its state, referred to as statea.
The maximum throughput of an application is given by

the Maximum Cycle Mean (MCM) [1], [2] Intuitively, this
is the length of the critical path in the task graph. Static
throughput analysis utilizes the worst-case execution time
of tasks. For simplicity, hereafter the explanations consider
single-rate data-flow applications.
In Figure 1.a, we consider a data-flow application with

two tasks, a producer and a consumer. In the example
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Figure 1. Producer-consumer example: a) considered application; b) static
and dynamic slack;

two basic types of slack are distinguished upon: static and
dynamic, as graphically presented in Figure 1.b. Intuitively,
the static slack occurs because not all task are on the critical
path. Static slack is also denoted as the maximum deadline
extension in the literature [1], [12]. When the two tasks
are executed on different tiles, their iterations may overlap.
Consider that wceta > wcetb and there is enough space in
the FIFO. We can delay the finish of iteration j of Tb until
the finish of iteration i+1 of Ta and the throughput of the
application will remain the same. Or in other words, in
this example Tb has wceta − wcetb static slack. Dynamic
slack occurs when the actual case execution time of a task
iteration is shorter than its worst case execution time, e.g.,
wceta − aceta,i for Ta in the example in Figure 1.

B. Platform model

The targeted MPSoC consists of a number of processor
tiles, hereafter shortly denoted as tiles, communicating via
a network-on-chip (NoC). A tile typically comprises of a
processor core, a set of memory blocks, and Direct Memory
Access (DMA) modules. As we address real-time systems,
we assume that the NoC offers guaranteed service, e.g.,
maximum throughput and minimum latency. We assume that
each tile can be scaled independently, i.e., the tiles and the
NoC are each in its own clock domain, and a time translation
between different clock domains is possible (the clocks are
mesochronous or there is a slower, reference clock).
Application tasks may be mapped to different tiles. One

tile may be shared between several applications. An RTOS
executes on each processor core. Processor scheduling is at
two levels, as follows. At the first level, the RTOS allocates
fixed time quanta denoted as slots to each application, in a
time-division multiplexing (TDM) fashion. Hence the inter-
application level scheduler is preemptive. As applications
are completely isolated, an application perceives its time
as continuous, although in practice it may be preempted.
We can consider that each application has a virtual-time
consisting of the set of slots allocated to it. By knowing the
TDM allocation, one can translate the application virtual-
time in the physical-time of the tile and vice versa.
The two time-line translation functions are as follows:

timephy = fv p(timevir,A, tile),

timevir = fp v(timephy,A, tile).
(1)

where timephy is the number of cycles in the tile-physical
time, timevir is the number of cycles in task-virtual time,
(both measured at the maximum MPSoC frequency level), A
and tile are the considered application and tile, respectively.
At the second level, task are scheduled within an ap-

plication. Typically, for data-flow applications the intra-
application scheduler is non-preemptive, in the sense that
the task scheduler is called only after a task iteration has
finished. Tasks are scheduled only if they are eligible. Hence,
once a task iteration starts it is guaranteed that it finishes
without blocking. This means that idle time can occur only
between iterations.
Inter-task communication is implemented by memory

mapped software FIFOs employing the C-HEAP proto-
col [13], where each FIFO stores a limited number of data
elements (tokens). The number of the available tokens is
determined by the values of the read counter (rc) and write
counter (wc) of the FIFO. For each FIFO, the consumer
and the producer side are responsible for updating the write
counter and the read counter, respectively.
When two communicating tasks are mapped on different

tiles, for each token, the NoC travel time is bounded by a
worst-case traveling time wctt. This time depends on, e.g.,
the parameters of the NoC, the token size, and it is known
at design-time, for each FIFO. As the focus of this paper is
tile slack, to simplify the notation, in the rest of this paper
we will use wctt to denote the worst-case traveling time
in general. This notation can be detailed per FIFO and per
connection.

IV. PROPOSED SOLUTION

As mentioned, we distinguish two types of slack, static
and dynamic. Although complex, the problem of accurately
computing the static slack and saving energy by allocating
static frequencies to tasks can be solved at design-time [6].
Nevertheless, it is desirable to have run-time support for the
static slack calculation because of several reasons including:
(1) the design-time tools may not always observe all static
slack and (2) in practice the processor operating points
are discrete, hence static scaling may leave a fraction of
the slack un-utilized; this slack may accumulate during the
application execution and could be used for further scaling
and energy saving, if it could be observed. In case of the
dynamic slack, early completion of a task may cause an
early start other tasks. However current methods do not
observe that early start as slack if tasks are mapped on
different tiles, hence potential for energy saving is lost.
These facts motivate us to address the problem of accurate
slack observation.
In the rest of the section, we first outline the concept of

our framework for inter-tile slack distribution and second we
introduce the equations behind.
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Figure 2. A conceptual model for slack information distribution by:
a) Intra-tile technique [3]; b) Our inter-tile technique with dynamic slack;

A. Conceptual solution

In Figure 2, we compare the conceptual models for slack
information distribution employing intra-tile technique [3]
and our inter-tile technique. We consider the application
from Figure 1. In FIFOs, data is transferred from Ta to Tb,
while the synchronization information is transferred in both
directions. In Figure 2.a, we present a case in when the slack
is computed locally, within the tile, e.g., [3]. In Figure 2.b,
we present a case when synchronization is augmented with
slack information for each one of the communicating tasks.
As a result, we can distribute slack in both directions - from
producer to consumer task and vice versa.
The distributed slack among the tiles can be static and

dynamic. We model static slack as a time reference until
which a task has to finish its next iteration. Note, this
reference is not the static slack, but rather the information
required to calculate it. Furthermore, we model dynamic
slack as the duration of time that the current iteration has
ran ahead. At run-time, we transfer these two values. If a
static slack reference is transferred, the calculation of this
type of slack has to be finalized at the recipient tile.
Two ways to represent the slack are possible – either a

relative or an absolute value. We choose a relative value
representation because we target distributed systems where
the global notion of time is often missing. Furthermore,
a relative time value can be measured in different time-
domains. In the first one, the relative time is measured
in the time-domain of the application (application virtual-
time). In the second one, the relative value is measured in
the time-domain of the tile, taking into account the RTOS
overheads and the time when other applications might be
running (tile physical-time). Therefore, slack measured in
application virtual time-domain in one tile and transferred
to another tile can be interpreted wrongly. To avoid this, we
transform the slack from the virtual to physical time-domain.
We extend the slack classification, namely, we introduce

two new types of slack, tile (Stile) and remote (Sremote),
depending on the location of the slack in the system from
the perspective of the tile. The Stile is shared among all
tasks of an application in a tile. Once it is distributed to
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Figure 3. Slack computation, allocation, and distribution for: a) intra-tile
task communication; b) inter-tile task communication;

another tile, we refer to it as remote on the tile that receives
it. Eventually, in the remote tile, Stile is updated with the
received Sremote. The Stile and Sremote contain static and/or
dynamic slack. If multiple applications are running on the
tile, then each application will have its own Stile and Sremote.
Slack values are updated at each task iteration start and
finish; nevertheless, for brevity and readability we omit the
indexes of each iteration.

B. Inter-tile slack distribution

For simplicity, we explain our framework by means of the
two examples presented in Figure 3. Figure 3 illustrates the
moments that are relevant to slack computation, allocation,
and distribution during two consecutive task iterations, Ta,i
and Ta,i+1. The application is the same as in Figure 1. In
Figure 3.a, we present a case when both tasks are mapped on
the same tile, while in Figure 3.b, each task is mapped on a
different tile. Next, we detail the transmission and reception
of Sremote.
Transmission of Sremote:
The first event that we consider (Figure 3.a and Fig-

ure 3.b), is the start of Ta,i, at instance 1 . Note that at this
point slack may already exist on the tile and a management
policy may have allocated a part of it to Ta,i. We refer to
the allocated slack as Sallocated.
Second, the Ta,i finishes earlier than at worst case, at

instance 2 . Therefore, the dynamic slack for Ta,i, in ap-
plication virtual-time, is computed as:

Sdynamicvir = wceta − aceta,i (2)

As a result, at instance 2 , the tile slack is updated with
the newly computed dynamic slack:

Stilevir = Stilevir + Sdynamicvir (3)
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In case that the tasks are mapped on the same tile
(Figure 3.a) the execution continues, the consumer task Tb,j
starts (at instance 6 ) and finishes. Next iteration of the pro-
ducer task Ta,i+1 starts and finishes at instances 7 and 8 ,
respectively. For intra-tile communication, application tasks
share the Stile based on dynamic slack only, while remote
slack is equal to zero. For example, in Figure 3.a, the Tb,j
allocates slack based on the dynamic slack of Ta,i.
In case that tasks are mapped on different tiles, in Fig-

ure 3.b, at instance 2 , we compute the Sstatic as follows:

Sstatic = stdelaya,i+1 +

{
wceta if statea = Ready,

0 otherwise.
(4)

where stdelaya,i+1 is the starting delay, i.e., the duration
between the current moment and the earliest starting time
of the next iteration, i+1, of Ta. A starting delay may
exists, because, in general, the processor may be shared
among multiple tasks of the application, hence several other
tasks may be scheduled before Ta,i+1. Sstatic is the latest
moment in time (relative to instance 2 ) until when the
predecessors and successors of Ta have to finish their next
iterations in order to respect the throughput constraint. If the
starting delay cannot be calculated (for example, because the
scheduling policy is dynamic) it is conservatively set to zero.
If the next candidate for execution is the currently finishing
task, then the starting delay is also zero. In case iteration
i+1 of Ta is already eligible for execution (statea = Ready)
at the time when the current iteration completes, then if
the execution of the Tb,j finishes by wceta the application
throughput is met. If Tb is on the critical path, then the
transferred wceta to Tb results in zero cycles slack (see
Equation 11).
Furthermore, at instance 2 , we compute the remote slack

as the sum of application slack and static slack, as follows:

Sremotevir = Stilevir + Sstaticvir (5)

As introduced in Section IV-A, we distinguish two types of
remote slack:

Styperemote =

{
Dyn if Sstaticvir = 0,

StaDyn otherwise.
(6)

where Dyn models that remote slack includes only dynamic
slack and StaDyn models that remote slack includes static
and dynamic.
As a last step, we translate the remote slack value from

task-virtual to tile-physical time-domain:

Sremotephy =< fv p(Sremotevir ,A, tile), S
type
remote >, (7)

where A and tile are the target application and tile, respec-
tively. Note that the Sremotephy also contains Styperemote.
Reception of Sremote:
After the remote slack is calculated, it is sent to the

predecessors and successors of Ta, along with the synchro-
nization information, over the NoC. Because at run-time

the actual NoC latency might be smaller that the worst-
case, the NoC can generate a type of dynamic slack, which
we refer as communication slack (Scomm). For example, at
instance 4 , the data arrives to the destination tile earlier
that the worst-case which is illustrated by 5 . We compute
the communication slack as follows:

Scommphy = wctt− (tNoCout − tNoCin), (8)

where tNoCout is the timestamp when Sremotephy arrives on the
destination tile. The tNoCin is the timestamp when Sremotephy
initially enters the NoC. tNoCout and tNoCin are measured in
the NoC time-domain.
After the data has arrived, the consumer task (Tb,j) is

started, at instance 6 . We define the time between in-
stances 4 and 6 as wasted slack, as follows:

Swastedphy = stb,j − tNoCout, (9)

where stb,j is the tile physical starting time of iteration j of
Tb. For applications with more tasks running on a tile, we
may employ the starting time of any of the application tasks
(stA) instead of stb,j, if we associate the slack information
with application and not with a task. In Section VI, we
conduct experimental study for the two cases, i.e., remote
slack associated with a task and with an application, that
trade accuracy of the computed slack for computation over-
head. If the NoC does not share a common source for
clock frequency with the tiles, then tNoCout in Equation 9
should be transferred from the NoC physical time-domain
to the tile physical time-domain.
In Figure 3.b, at instance 6 , we calculate, what has left

from the remote and communication slacks after the wasted
slack is subtracted, i.e., X , as follows:

X = Sremotephy + Scommphy − Swastedphy ,

Y =

{
X if X > 0,

0 otherwise.

(10)

Furthermore, based on the Styperemote value, the received
remote slack is calculated as follows:

Z =

{
fp v(Y− 2 ∗ wctt,A, tile)− wcetb if Styperemote =StaDyn,

fp v(Y,A, tile) otherwise.

Sremotevir =

{
Z if Z > 0,

0 otherwise.
(11)

If the Styperemote is StaDyn, then remote slack contains a non-
zero reference for static slack calculation. This means that, to
be conservative, the current task iteration should finish until
this reference in time. At worst case, finishing would take the
communication overhead and wcetb for the current task itera-
tion. The communication overhead equals to 2*wctt, because
we need to count the overhead of two synchronizations, the
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one after Ta,i finished and the one after Tb,j finishes. Once
we obtain the remote slack, we perform the time-domain
translation. If the remote slack is equal to zero, it means
that all of it is lost.
Next, the available slack for Tb,j (Staskvir) is computed as

a max of the remote slack and tile slack:

Staskvir =
N tasks
max
tid=1

(S tid
remotevir , Stilevir), (12)

where S tid
remotevir is the remote slack for each remote predeces-

sor or successor task (tid). The Stilevir is the slack generated
by the tasks executed on the local tile. In Equation 12, we
achieve accurate and conservative calculation of the slack,
even when we apply max instead of min function. To
explain such a choice, we consider a case, which multiple
tasks are mapped on the same tile and and all of them
receive remote slack values. Lets assume, we do not employ
Equation 12 while we schedule the task with the highest
value of remote slack. Therefore, even if the task iteration
finishes with wcet, the remote slack of the task is distributed
to the other tasks on the tile. As a result, max function in
Equation 12 preserves the conservative calculation of the
slack.
Existing work typically computes and allocates slack per

task, and not per application. However, we differentiate two
implementations of Equation 12, depending on the value
of N, i.e., either the number of remote tasks for Tb,j or
the total number of remote tasks in the application. In
Section VI we investigate the quantitative difference between
these two approaches.
Finally, a slack policy (fslack), may be applied to allocate

slack for Tb,j, and potentially scale its operating point:

Sallocatedvir = fslack(Staskvir) (13)

If not all slack is allocated, the remained tile slack before
starting the scheduled task should be updated, as follows:

Stilevir = Stilevir − Sallocatedvir (14)

Summarizing, we propose a run-time framework that: (1)
accurately computes and distributes static and dynamic slack
between tasks mapped on different tiles of an MPSoC, and
(2) enables the utilization of any management policy that
can allocate slack and scale the tile operating point to reduce
energy consumption.

V. SYSTEM IMPLEMENTATION

In this section we describe the new software and hardware
components added to an existing RTOS and MPSoC.
The tiled CompSoC platform [14] is the template for our

implementation. Each tile execute the CompOSe RTOS [15].
To implement slack distribution, we augment the Comp-
SoC tile with a Custom Computing Unit (CCU) using
Molen-style processor–coprocessor design [16], more specif-
ically, the coprocessor microarchitecture from [17]. We
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Figure 4. CompSoC processor tile augmented with Molen-style
Rem Slack CCU

Figure 5. Rem Slack library and Rem Slack CCU integration to the
CompOSe RTOS

refer to the software part of our framework as Remote
Slack (Rem Slack) library. Respectively, we call our CCU
- Rem Slack CCU.
In Figure 4, we present the architecture of a CompSoC

tile augmented with Molen-style coprocessor. This CCU
accesses the NoC and data memory buses. The Rem Slack
CCU receives the remote slack from the NoC bus and it
registers the time of its arrival in tNoCin. The Rem Slack
CCU stores the remote slack, the tNoCout, and the commu-
nication slack for each FIFO in its internal memory, which
is part of the data memory organization of the tile, hence it
is accessible by the tile processor through the data memory
bus.
In Figure 5, we present the integration of the the

Rem Slack library and the Rem Slack CCU to the Comp-
SoC platform. The shaded blocks represent our contribution
to the existing platform. The two large arrows illustrate
the transmission and reception of FIFO tokens. If a task
consumes tokens from a FIFO, then it receives the data
and the wc, and it is responsible with updating the rc. If
a task produces tokens into a FIFO, then it receives the
rc and it sends data, and updates the wc. We augment the
synchronization information, namely rc and wc, with two
extra fields: remote slack and tNoCin. In this way, remote
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Figure 6. Rem Slack library and Rem Slack CCU integration to the
CompOSe RTOS: detailed view

slack is distributed in both directions: from the producer
task to the consumer task and vice versa.
Figure 6 details the sequence of steps involved in slack

distribution. First, after a task iteration finishes the RTOS
invokes the Rem Slack library to update the Sremotevir , as rep-
resented with 1 . Internally, the Rem Slack library calls the
fv p function that uses the application scheduling information
(at RTOS level) to calculate Sremotephy . This is represented
with 2 in Figure 6. After that, at instance 3 , the RTOS
invokes the FIFO communication library to transfer the
tokens (if the task is a producer), the synchronization, and
the slack to remote tiles. Hence first, at instance 4 , the
FIFO communication library transfers, via the DMA, to
the remote tile, either the DATA+wc (producer task), or
rc (consumer task). At instance 5 , Sremotevir and tNoCin are
transferred via the DMA.
On a remote tile, for a given FIFO, at instance 1 ,

synchronization and slack information is received. The
Rem Slack CCU stores the Sremotephy , registers its arrival
time, tNoCout, and computes the Scomm. Later, whenever a
task finishes, a new one should be scheduled, for example
at instance 2 . At this moment, independently whether
instance 1 occurred, the RTOS invokes the Rem Slack
library to calculate the Stask by employing Equation 12 At
instance 3 , the Rem Slack library invokes fp v. Internally,
as labeled with 4 , the fp v employs the received remote
slack and the scheduling policy information to translate the
remote slack from the tile physical-time to the application
virtual-time. At instances 5 and 6 , the translated remote
slack value is returned back to the Rem Slack library and
the RTOS, respectively. The instances from 3 to 5 are
repeated N-times, as in Equation 12.

VI. EXPERIMENTAL RESULTS

In this section, we first briefly describe the platform and
the tools. Then, we present the target application, namely
H264, and the experimental setup. In the end of this section
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Figure 7. H.264 tasks: mapped on CompSoC processor and wcet (clock
cycles)

we present the observed clock frequencies of the tiles,
consumed energy and overheads in software and hardware.
For our experiments, we employ a dual-tile CompSoC

platform. Each tile embeds a Xilinx Microblaze core. The
design is synthesized with Xilinx Platform Studio 12.3 and
verified on Xilinx Virtex ML605 (xc6vlx240t) evaluation
board. Moreover, we consider that each processor can oper-
ate in 15 equidistant frequency levels, varying from 50MHz
downto 3.1MHz. We consider the same energy model as [7].
We exercise a streaming data-flow H.264/AVC de-

coder [18], to evaluate our slack distribution technique. In
Figure 7, we present the H.264 tasks to tiles mapping and
we list the worst-case execution times of tasks. The H.264
application has static slack, due to the difference in the wcet
of the tasks, and dynamic slack, caused by the variations of
the acets of tasks.
We compare our inter-tile slack distribution with intra-tile

slack management (Intra-tile slack mngm) [3]. Furthermore,
we investigate two variants of our proposal, depending on the
computation of Stask, i.e., the value of N in Equation 12. In
the first case, the remote slack is the maximum value among
the remote slack values from the FIFOs linked/connected
with the task that is schedule to start next (Inter-tile slack
mngm (MAXtask)). In the second case, the remote slack is
the maximum value among the remote slack values from
the FIFOs of all tasks mapped on the tile (Inter-tile slack
mngm (MAXtile)). In both cases, we utilize a simple, greedy
slack policy that always allocates all the available slack to
the next scheduled task.
In Figure 8 and Figure 9, we present the clock frequency

of Tile 1 and Tile 2 for 150 task iterations. In case when no
slack management is applied the core operates all the time
at the maximum frequency (fmax). For Tile 1, the proposed
inter-tile slack technique does not always achieve lower
frequencies than the intra-tile technique. Compared to the
existing intra-tile technique [3], the total frequency level
reduction of the tasks for MAXtask is 5.7% and for MAXtile
is −0.3%, respectively. There are two main reasons for it:
(1) our slack policy employs more slack in a given task
iteration and there is not enough slack for the policy to scale
down the frequency in the following task iterations; (2) the
transferred remote slack value is lower than the Rem Slack
library overhead, therefore, Rem Slack library introduces
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Figure 8. Frequency levels for the H.264 tasks running in Tile 1
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Figure 9. Frequency levels for the H.264 tasks running in Tile 2

slow-down, instead of speed-up in the application.
For Tile 2, as the results suggest, the MAXtile case

finds lower clock frequency than MAXtask. This difference
is because of the amount of the Swasted and the task that
employs Sremote. For example, if the Swasted is equal to zero,
then the ratio between the acetT6 and the received remote
slack is more than 15 times. In such a way, the task clock
frequency can be set to the lowest possible. Compared to [3],
the total frequency level reduction for MAXtask is 48.3%
and for MAXtile is 56.8%.
In Figure 10 and Figure 11 we present the consumed

energy for each one of the previously introduced cases,
for Tile 1 and Tile 2, respectively. We run the system
for 150 application slots. In Figure 10, the consumed
energy for our proposals are almost equal to the intra-tile
technique, as it was suggested by the clock frequency of
Tile 1 in Figure 8. The total reduction of the consumed
energy for MAXtask and MAXtile, compared to [3] is equal
to −0.03% and 0.17%, respectively. In Figure 11, we
observe that the consumed energy of each of MAXtask and
MAXtile is lower than the intra-tile slack management, as
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Figure 10. Consumed Energy for the H.264 tasks running in Tile 1
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Figure 11. Consumed Energy for the H.264 tasks running in Tile 2

also suggested by the frequency levels in Tile 2. During
the first few application slots, the consumed energy is equal
for the two implementations of our proposal. The reason
is that it takes time for the inter-tile communication to be
established. In Tile 2, compared to the intra-tile technique,
MAXtask and MAXtile reduce energy consumption with
46.5% and 53.3%, respectively. Based on the measured
energy reduction, we computed the total reduction over both
tiles.
In what follows, we present the software and hardware

overhead of the Rem Slack library and Rem Slack CCU.
The software overhead is in terms of extra clock cycles. The
hardware overhead is in terms of chip utilization, i.e., the
number of occupied FPGA slices. Depending on the number
of remote FIFOs, the software overhead of the REM Slack
library is as follows: for the transmitting of the remote slack
varies from 1.5k up to 3.2k clock cycles. As illustrated in
Figure 7, the number of remote FIFOs varies between one
and two. The software overhead of the slack policy varies
from 2.0k up to 2.5k clock cycles. Since, the Rem Slack
library is invoked at the beginning and at the end of a
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task iteration, the introduced overhead varies between 1%
and 4% compared to the execution time of the H.264 task
iterations directly involved in the remote slack transmission
and reception.
The chip utilization of the Molen wrapper with a dedi-

cated memory bank of 64 bytes is 585 slices. The overhead
of the Rem Slack CCU is 84 slices. As we expected the chip
utilization of the Rem Slack CCU is negligible, less than
0.002% of the total number of slices in the considered FPGA
chip. Furthermore, the hardware overhead of the Rem Slack
CCU does not dependent on the number of applications,
tasks, and FIFOs. The only resource which scales with the
number of remote FIFOs is the data memory that stores
remote slack and timestamps. Although, the Rem Slack
CCU runs continuously, due to its small footprint, we
expected its energy consumption to be low as well.

VII. CONCLUSIONS

In this paper, we proposed a framework for slack compu-
tation, allocation, and distribution that transfers the static and
dynamic slack information among the tiles in an MPSoC,
executing dataflow applications. We send slack informa-
tion altogether with the existing inter-task synchronization.
Moreover, we transferred the slack in both directions - from
the producer to the consumer task and vice versa. We exper-
imented with H.264 decoder and we studied four scenarios:
a no-slack management, an inter-tile slack management,
and two variants of our inter-tile slack management. As
evaluation criteria of our technique, we employed the clock
frequency, the consumed energy, and the introduced over-
head in software and hardware. The results suggested that
our inter-tile technique reduces the total energy consumption
of 27% at the cost of minor software overhead of up to 4%
and negligible additional FPGA chip utilization of 0.002%.
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