A Low Cost Method to Tolerate Soft Errors in the
NoC Router Control Plane

Changlin Chen, Sorin D. Cotofana
Computer Engineering, Software and Computer Technology
Delft University of Technology, Delft, the Netherlands
Email: {c.chen-2, S.D.Cotofana} @tudelft.nl

Abstract—In this paper, we propose a low cost method to
tolerate soft errors in the main NoC router functional units,
i.e., routing units, Virtual Channel (VC) allocators, and switch
allocators. The idea behind our proposal is to utilize the idle
routing units at neighboring input ports to do redundant Routing
Computation (RC) for the local routing requests, and detect
errors in the VC Allocation (VA) and Switch Allocation (SA)
results by checking if they are consistent with RC results and are
in legal states. If required, soft errors are recovered by redoing
the failed procedures and retransmitting the flits. Experimental
results on an 8x8 2D NoC indicate that: (i) in the routing units,
the proposed method requires 38% more silicon real estate than
the > & Branch method when XY routing algorithm is used,
but it is more general and can be utilized in conjunction with
many more routing algorithms; and (ii) in the combined VA/SA
units, the proposed method is simpler and more effective than
the state of the art methods. When compared with the Triple
Modular Redundancy strategy, for similar error detection and
correction efficacy, the proposed method can reduce the area and
power overhead in routing units by 53% and 38%, respectively,
and in combined VA/SA units by 45% and 46%, respectively.
The average packet transmission latency increase is less than
5% even if the soft error rate is 0.1/cycle, when compared with
that of the baseline router architecture.

Keywords-Networks-on-Chip; Soft error tolerant; Router con-
trol plane;

I. INTRODUCTION

The aggressive technology scaling enables an increasing
number of cores to be integrated in one chip. Networks-on-
Chip (NoC) are the de facto on chip interconnect strategy,
which can meet the performance and power consumption
budgets of such designs [1]. However, the smaller transis-
tor dimensions also render the chips less reliable. Due to
miniaturization, permanent and soft errors occuring in cores
or NoCs are more frequent and in order to prevent application
misbehavior one should detect and correct them. In this line
of reasoning, in this paper, we focus on tolerating soft errors
in NoCs.

NoCs are composed of routers and links. As illustrated
in Fig. 1, the components of a router can be partitioned
into the datapath group, which mainly consists of memory
elements, and the control plane group, which mainly consists
of combinational logic circuits [2]. Previous research has
been focusing on tolerating soft errors in links [3] and router
datapath [4], which are supposed to be more susceptible to
soft errors than the router control plane. However, the Soft

Error Rate (SER) in nowadays combinational logic circuits
is already comparable with that encountered in unprotected
memory elements [5]. Consequently, we further concentrate
our attention on soft errors occurring in the router control
plane.

The main functional units in the router control plane are
Routing Units (RUs), Virtual Channel (VC) allocators, and
switch allocators. For each received packet, the RU computes
the output port, the eligible output VCs at that output port
when adaptive routing algorithms, e.g., [6], are used, and the
necessary misrouting information when fault tolerant routing
algorithms, e.g., [7], are used. The VC allocator chooses one
free eligible output VC and assigns it to the packet. Switch
allocators decide which flits can be transmitted in the next
clock cycle. We note that soft errors in these functional units
can lead to deadlock or flits loss during packets transmission.

A soft error occures only if a Single Event Transient
(SET) is propagated to an output and latched into a memory
element [8]. During the propagation, SETs can be dimin-
ished by logical masking, electrical masking, and tempo-
ral masking mechanisms [9]. Circuit design methods, e.g.,
gate resizing [10], circuit rewiring [5], and output multiple
sampling [11], have been proposed to exploit these masking
mechanisms. However, these methods have the drawbacks of
high physical level design effort and high chip area overhead.

In NoC routers, it is inherently required that one output
resource can only be assigned to at most one request at a
given time. This feature is exploited in [12]-[14] to detect
soft errors with low silicon overhead. However, such schemes
either have restricted application scope [12], or are still too
complicate to allow for practical implementations [13].

In this paper, we propose a low cost method to tolerate soft
errors in the main functional units in the router control plane.

By noticing that the RU is usually replicated at each input
ports, especially if it is logic based, and it is only used when
a head flit arrives at that port, we propose to utilize idle
neighboring RUs as well as the local RU to do redundant
Routing Computation (RC) for the local routing requests.
The proposed method requires 38% more area overhead than
the ¥ & Branch method proposed in [12] when XY routing
algorithm is used on a 2D mesh NoC, but it is applicable in
conjunction with many more routing algorithms. When com-
pared with the Triple Modular Redundancy (TMR) strategy,
for similar error detection and correction efficacy, our method

374

Routing Computation Switch/VC Allocation

Input port i

I
| output port j
F f each VC
e | — E———
®» @
o dl
RU |
|

2: routing
3: allocation
4: active

SA1

X SA1 result SA2 result

plane

Datapath

crosshar

I

Crossbar Transverse | Link Tranverse

|
|
|
|
Control ||
|
|
|

From upstream
router

[TTe[8]H]
H: head
B: body
T: tail I

To down-
stream router

Buffer Write |

Fig. 1. Typical VC based router architecture.

can reduce the area and power overhead in RU by 53% and
38%, respectively, when Opt_Y routing algorithm [6] is used.

One common requirement for the VC Allocation (VA) and
Switch Allocation (SA) results is that they should be consistent
with the RC results. Moreover, they must correspond to legal
states, i.e., one output resource can maximally be assigned to
one request. In view of these, we propose to detect the illegal
VA results at the output port side by checking if multiple
head flits were transmitted to the same output VC. We expand
the method to detect illegal arbiteration results proposed in
[12] to detect erroneous SA results and we implement it with
simple logic. When compared with the Allocation Comparator
(AC) unit in [13], our method is less expensive in terms of
area and more reliable. If utilized in the realization of the
combined VA/SA units, which are embedding matrix arbiters,
the proposed method can reduce the TMR area and power
overhead strategy by 40% and 46%, respectively.

The rest of the paper is organized as follows. Section II
presents a brief survey of related work. Section III introduces
the proposed soft error tolerant method. Section IV evaluates
our approach and compares it with tightly related work.
Section V concludes the presentation.

II. RELATED WORK

The most intuitive way to tolerate soft errors in the func-
tional units is TMR, with the obvious drawback of high area
and power consumption overhead.

A ¥ & Branch method is proposed in [12] to detect soft
errors in RC results by examining the appearance of forbidden
signal patterns in RUs. This method is proved to be efficient
to detect erroneous output ports, because each packet can
only be transmitted to one output port unless multicast is
needed. However, it cannot detect errors in other routing
results, e.g., eligible output VCs, which can include multiple
existing output VCs.

[13] proposed an Allocation Comparator (AC) unit to detect
errors in VA results. The output VC of each input VC is
compared with the routing results to check if it is an eligible
one, and with that of other input VCs to check if the output
VC is occupied already. Considering that an output VC can
be assigned to any input VC, such a comparison cannot be
implemented with trivial effort.

To detect erroneous SA results, [14] proposed to add a
message ID to each flit and check if the flits received by one
input VC have the same ID. The drawback of this method
is that the link width is increased and the errors are detected
in downstream routers. Differently, [13] and [12] check if the
SA results are consistent with the RC results and have legal
states after they are registered. In this paper, we apply this
checking principle to VC based NoC routers and implement
it with simple logic.

III. TOLERATE SOFT ERRORS IN THE CONTROL PLANE

As illustrated in Fig. 1, the transmission of a head flit in the
router must sequentially go through 3 stages: Routing Compu-
tation (RC), VC Allocation (VA) and Switch Allocation (SA),
and Crossbar Transverse (CT). An extra Link Transverse (LT)
stage is usually required between two neighboring routers. In
this paper, we assume that SA and VA are implemented in
the same stage, speculatively or combined together, to reduce
the pipeline stage number. Body and tail flits just need to go
through the SA and CT stages. Each input VC has four states:
idle, routing, VC allocation, and active. An input VC waits
for routing results in the routing state and VA results in the
VC allocation state. After that, it stays in the active state until
the entire packet is successfully transmitted.

In this section, we assume that the requests to do relative
computations, i.e., RC, VA, and SA, are asserted correctly and
are well protected against soft errors.

A. Errors in Routing Units

RUs decide how packets should be transmitted according
to the employed routing algorithm. Erroneous RC results can
misdirect packets and lead to deadlock or packet loss. Correct
RC results are the precondition of correct VA and SA results.

In a typical NoC router design, the RU is replicated at each
input port to increase throughput. Each RU deals with local
routing requests only, and is solely used when head flits arrive
at that port. Assuming that the packet length is [, the average
RU utilization rate is less than 1/1, because flits do not arrive in
every cycle. This means that RUs are most of the time idle and
we propose to utilize idle neighboring RUs, when available, to
do redundant routing computation for local routing requests.

The proposed RU Sharing (RUS) method is illustrated in
Fig. 2. When a head flit is received at an input port, the
routing request is sent to the local RU as well as RUs at
two neighboring ports. At each port, the highest priority to
utilize the RU is given to the local routing request. When the
local routing request is not asserted, the priority is given to a
neighboring port, e.g., port ¢ — 1 in Fig. 2. RC results from
two neighboring RUs are compared. The comparison result
along with a valid signal are sent back to the routing request
initiator input port. The valid signal indicates whether the RC
results are computed for that port.

To save silicon cost and limit the critical path length increase
in the RC stage, the RC results from neighboring ports are
only used to check the correctness of local results. When
erroneous RC results are detected, the RC is re-executed for

375

Percentage of protected head flit by RUS

e RELTE
®

*agtoo Ba8
0.995- B opoHooeda8 |

percentage

0.99

—O—bc_opt_y_p8
—%—rand_opt_y_p8
—A— bc_xy_p8
—0- rand_xy_p8
—6&— bc_opt_y_p4
—#— rand_opt_y_p4
—&— be_xy_p4
—&— rand_xy_p4

0.985

0.1 02 03 04 05
injection rate (flits/cycle/node)

(a) Percentage of protected packets in synthetic traffics;

Percentage of packet be protected

0.9995 -

0.999 4

Percentage

0.9985 Hxy

Hopt_y
0.998 -

0.9975 -
robot

satell

sample sparse foppp

Applications

(c) Percentage of protected packets in real applications.

Fig. 3.

Percentage of TMR protected head flit by RUS

w R aRREQasasn
N a-p-RAA -3
N Bas tgEETI L e
N R 4

§§/‘g a8z &F0oO-0-010

0.9

0.85

percentage

“o—
0.8 —*—
A

bc_opt_y_p8
rand_opt_y_p8
bc_xy_p8
—o— - rand_xy_p8
—o—bc_opt_y_p4
—#— rand_opt_y_p4
—&— be_xy_p4
—=&— rand_xy_p4

07 L L L
0 0.1 0.2 0.3 0.4 0.5

injection rate (fits/cycle/node)

(b) Percentage of TMR protected packets in synthetic

traffics;
percentage of packet be TMR protected

1

0.98 1

@ 0.96 -
g
0.94 4
§)y
8 092 = ont
opt_y

0.9

0.88

robot

sample satell sparse fpppp

Applications
(d) Percentage of TMR protected packets in real appli-
cations.

Percentage of packets protected by RUS in synthetic traffics and real applications. Bit compliment (bc) and random (rand) traffic patterns, XY and

Opt_y routing algorithms, packets with 8 flits (p8) and 4 flits (p4) are evaluated.

routing_reqC—>——routing_result C=>— ———> valid porti-1
i destinationc—— valid C>— —C= match |
routing_reqc— D" :‘,jDo~

D,_D—Derror
RU —
_DJ routing_result

destination .=

:ﬁ
——h

valid &=—
routing_resultC—=>—

porti

=D

L—— match
valid

Routing unit sharing among neighboring input ports.

i destination
i routing_req—>—

port i+1

Fig. 2.

the packet. We note here that with the overhead of a voter at
each port, the correct RC result can be determined when two
idle neighboring RUs are available for a routing request.

In practice, depending on the executed application and
traffic, situations may occur when both neighboring RUs are
occupied and only the local RC results are available at an
input port. In this case, the packet has to wait until at least
one neighboring RU is available to make sure that the RC
results can be checked for correctness.

However, a deadlock situation can happen in this case.
When head flits are received at every input port simultane-
ously, every RU is occupied by the local routing request. In the
next cycle, the local routing request at every port is asserted
again by these head flits or newly received ones. Thus the
deadlock lasts and eventually all the input VCs are occupied
and no packet can go further.

The deadlock can be solved by temporarily prohibiting the

routing request of one input port, such that one input port has
an idle neighboring RU to utilize. Most probably the routing
results from the two RUs match with each other and the port
will not assert routing request until a new head flit arrives. In
this way after several cycles, every packet gets the correct RC
results and enter the next stage.

In Fig. 3, we illustrate the probability that RC results are
checked for correctness in various situations in an 8 X 8
2D mesh NoC. We can observe in Fig. 3(a) that for all the
evaluated synthetic traffic patterns, more than 98% of the
RC results are protected in each router, even if the NoC is
saturated. When the traffic load is low, almost every head
flit can ‘borrow’ RUs from neighboring ports. For 5 real
applications from [15], our evaluations indicate (see Fig. 3(c))
that more than 99.8% of their packets are protected. Moreover,
more than 72% of the packets in synthetic traffics (Fig. 3(b))
and more than 92% of the packets in the applications’ traffics
(Fig. 3(d)) are TMR alike protected. The statistic results
also reveal that the longer the packet length, the higher the
probability that the RC results are protected.

Routing results are stored in registers and must be main-
tained unchanged until the entire packet is successfully trans-
mitted. Otherwise, the next flits will deviate from the path
reserved by the head flit. We assume that these registers are
protected against soft errors with proper technology, e.g., [16].

B. Errors in VC Allocators

After the output port of a packet is derived, the VC allocator
assigns a free output VC at that output port to the packet. The

376

VCID_match

output VC
head_flit SET
eligible VCs %—D’% VC_idleC—>—]ctr B
(a) [_IVAD; (b) O_DVAD;
Fig. 4.

error

Detect soft errors in VA result.

VC’s index (VCID) can be changed when errors happen in the
VA unit. Then the output VC may become: (1) a wrong output
VC, which does not exist or is not an eligible VC according to
the RC results; or (2) an eligible output VC which is already
assigned to another packet.

Errors of the first case can be easily detected by checking if
the granted output VC is consistent with the RC results [13].
Assuming that eligible output VCs are indicated by setting the
relative bits to ‘1’ in the RC results, the error can be detected
by the logic in Fig. 4(a). We name this method as Input Side
Invalid VC Allocation Detection (I-IVAD).

In a router which has p physical ports and v VCs at each
port, an output VC can be assigned to any of the pv input VCs.
It is expensive to check if any two input VCs are granted with
the same output VC by doing pairwise comparisons [13]. As it
is guaranteed by I-IVAD that each input VC is assigned with
an eligible output VC, we propose an Output Side Duplicated
VC Allocation Detection (O-DVAD) method (see Fig. 4(b)) to
detect type (2) errors.

In O-DVAD, a 1-bit latch is added to each output VC with
the initial state ‘0’. Once a head flit is transmitted to the
downstream router, the latch of the relative output VC turns to
‘1’ to indicate that the output VC is occupied. The latch stays
in ‘1’ until the output VC returns to the idle state. If another
head flit is transmitted to the same output VC when the latch
is ‘1’, it means that an attempt is made to assign the output
VC to multiple packets and the error is detected. The input
VC that is related with the error can be determined based on
the SA results. The output VC remains under the utilization
of the first packet it was assigned to.

I-IVAD and D-DVAD are implemented in the CT stage. The
strategy to recover VA errors is presented in detail in Section
IV. Similar with the RC results, we assume that VA results are
stored in registers protected against soft errors.

C. Errors in Switch Allocators

Switch allocation is usually divided into the local stage
(SA1) at the input side and the global stage (SA2) at the
output side (see Fig. 1). An input VC can transmit flits only
when it wins both SA stages. The main components in switch
allocators are arbiters.

The 4 symptoms of soft errors in SA results are explicitly
discussed in [13]: (1) no asserted request is granted in SA1 or
SA2, (2) an input VC is allocated with a wrong output port,
(3) in the same cycle, multiple input VCs at one input port are
granted in SA1, or multiple input ports are granted by SA2 at
one output port, or an input port is granted by multiple output
ports, and (4) an input VC which does not assert request wins
both SA1 and SA2.

I: idle

R: routing

V: VC allocation
A: active

RC_error

Fig. 5.

Changes of input VC states.

An efficient method to detect erroneous results of arbiters is
presented in [12]. We apply this method in VC based routers
to detect erroneous SA results. Note that the error detection
procedure has to be applied to SA1 results, SA2 results, and
SA2 grants of each input port.

The SA results correctness is checked in the CT stage after
they are registered. Thus soft errors in the registers can also
be detected. In case the errors are caused by flipped priority
registers in arbiters, the relative arbiters are reset whenever
an SA error is detected [12] such that correct results can be
obtained by redoing the allocation.

IV. ERROR RECOVERY

To recover from errors in the control plane, the failed
procedures must be repeated to generate correct results, and
flits have to be retransmitted when necessary. During the
recovery, the states of input VCs change as illustrated in Fig. 5.

Errors in RC results (RC_error) are detected in the RC
stage. When an RC_error occurs, the input VC stays in the
routing state instead of entering the VC allocation state. The
routing request is reasserted when no new head flit arrives at
the input port. Most probably the correct routing results will
be derived with one clock cycle overhead. The head flit is not
transmitted yet in this stage. So there is no need to do any
retransmission.

Both errors in VA results and SA results are detected in the
cycle after they are registered, i.e., in the CT stage, such that
the critical path in the VA/SA stage is not changed. If an error
is detected in the VA result, the input VC returns to the VC
allocation state from the active state. Both VA request and
SA request have to be reasserted to compete for a new output
VC and flit transmission. The mistakenly allocated output VC
needs to be released by the input VC. If an error is detected
in SA results, only the SA requests need to be reasserted for
flit retransmission. When a VA or SA error is detected, the
VA/SA results derived in the same cycle are abandoned. Thus
at least two extra clock cycles will be introduced.

In the CT stage, flits are read out from input buffers and are
sent to output ports. If a VA or SA error is detected, the relative
flit is ignored by the link registers at the output port, and then
retransmitted when correct VA and SA results are derived.
Because the original flit is still kept in the input buffers at this
stage, retransmission buffers are not required.

It is also possible that there is no soft error in the control
plane but an error signal is asserted by the error detection logic.
Then the error recovery mechanism is triggered, which does
not introduce new errors but only increase the flit transmission
latency with several cycles.

377

TABLE I

AREA AND POWER OF SOFT ERROR TOLERANT METHODS FOR RU

Area (,umz) Dyn. Power (uW) Leak. Power (uW)
Routing Algorithm XY Opt_Y XY Opt_Y XY Opt_Y
baseline 219.6 / 100% 638.3 / 100% 18.0 / 100% 47.4 1 100% 0.758 / 100% | 2.174 / 100%
RUS 465.8 /1 212% | 1018.4/160% | 52.8 / 294% 95.6 / 200% 1.768 /1 233% | 4.027 / 185%
TMR 774.0 / 352% | 2157.5/338% | 60.1/335% | 153.1/321% | 3.004 / 396% | 8.191 / 376%
>, & Branch 336.6 / 153% -/ - 25.6 /1 143% -/ - 1.290 / 170% -/ -
TABLE 1T

AREA AND POWER OF SOFT ERROR TOLERANT METHODS FOR VA/SA

Area (um?) Dyn. Power (mW) Leak. Power (uW)
Arbiter type Matrix Round-Robin Matrix Round-Robin Matrix Round-Robin
baseline 10010 / 100% | 6794 /100% | 2.1/ 100% 1.5/ 100% 62.1 / 100% 44.3 / 100%
proposed 12828 / 128% | 10127 / 149% | 2.5/ 119% 1.8 / 120% 81.0 / 130% 66.7 / 151%
TMR 23351 /233% | 13824 /203% | 4.6/219% 2.4/ 160% 147.7 1 238% | 95.5/216%
V. EVALUATION VC at any output port, the AC unit is quite complicate to

The proposed soft error tolerant approach and the tight
related ones are evaluated in the context of a wormhole
switched 8x8 2D mesh NoC system [17]. The routers are
VC based and implemented according to the architecture in
Fig. 1. Each router has 5 physical ports (PC), and each PC
has 4 VCs. Note that the proposed method is also applicable
in 3D symmetric NoC systems, as the only difference is that
the routers have 7 PCs in such a system.

As soft errors happen only when SETs propagate to an
output and are captured by registers [8], instead of injecting
soft errors into the gates in the functional units, we simulate
the symptoms of soft errors by injecting soft errors into the
final results, i.e., the RC, VA, and SA results. We assume that:
(i) only one error can happen in one router in a cycle, and (ii)
the router datapath is error free.

A. Reliability

Simulations with different soft error rates illustrate that the
proposed method can detect and recover all kinds of errors in
RC, VA, and SA results, when assumption (i) is satisfied. Thus
the NoC system can operate normally unless errors happen
in both the functional units under protection and the error
detection logic circuits.

Routing Unit Sharing provides TMR alike protection of
the RC results in most of the time (see Fig. 3). Thus the
RUS reliability for each packet is similar with that of TMR.
Although the ¥ & Branch method [12] is claimed to be more
reliable than TMR in the detection of erroneous output ports,
it cannot detect errors in other RC results, e.g., eligible output
VCs, which are required in sophisticated routing algorithms,
e.g., Opt_Y, thus RUS has much larger application scope than
> & Branch.

To detect the erroneous VA results when one output VC is
assigned to multiple input VCs simultaneously, the proposed
method requires one D-latch and one AND gate for each
output VC. In contrast, the AC unit in [13] compares the output
VC of each input VC at the input side. Given that in a VC
based router, an input VC can be assigned with any output

implement. In the evaluated router architecture, at least 950
XOR gates are required to do the comparison in the AC unit.
Assuming that the SER of a D-latch is 10 times higher than
that of a gate [2], the SER ratio of O-DVAD to AC unit is
220/(950+ X)), where X is the number of other gates besides
XOR gates in an AC unit. Thus the O-DVAD logic is more
reliable than the AC unit.

B. Area and Power Overhead

Silicon area is an important issue that affects the chip
reliability as large area overhead implies a higher chance to
be hit by high energy particles, hence a higher SER [8].

RUs and combined VC/switch allocators, equipped with
different soft error tolerant methods, are implemented at
RTL level by using Verilog HDL, and synthesized using the
Synopsys Design Compiler with TSMC 65-nm standard cell
technology. The area costs and power consumption of different
methods are illustrated in Table I and Table II, respectively.

We note that RUS does not increase the number of RUs
in the baseline router, and only requires half of the number
of the comparators required by the TMR strategy. Thus the
RUS implementation cost is much lower than that of TMR,
especially when complicated routing algorithms are used. To
be specific, the RUS area overhead is 53% less than that
of TMR when Opt_Y routing algorithm is used, while the
reduction is 40% when XY routing algorithm is used. The
RUS power consumption exhibits the same trend. Although
the RUS area and power costs are all higher than those of
the > & Branch method [12], it is more general and can be
applied in conjunction with many more routing algorithms.

The cost to tolerate soft errors in VC and switch allocators in
our method is proportional with the numbers of output ports
and VCs in a router, regardless of the allocators implemen-
tation details. Table II suggests that the proposed methods
reduce the TMR area overhead by 45% and 27% when matrix
arbiters and round-robin arbiters are used, respectively. The
power consumption of the proposed method is also lower than
that of TMR.

378

Average packet latency at different SERs
100

—=—SER=0.1
—6—SER=005
90| ——SER=0.01
—&— SER =0.001
—+— SER =0.0001

807| —— fault free

70

60

Latency (cycles)

40

7}
ol gem

0 0.05

o1 0.15 02 025 03
Injection rate (flits/cycle/node)

Fig. 6. Average latency at different SERs and FIRs.

Detected errors

=&=ru_error
=H=sa_error
va_error

error number (x10°)
ok v ow A o0 oo

0 ————————
0.0001 0.001 0.01 0.05 0.1
soft error rate

Fig. 7. Detected error numbers at different SERs.

TABLE III
PERFORMANCE OF RUS AT DIFFERENT SERS

SERs 0.0001 | 0.001 | 0.01 0.05 0.1
Injected errors 31 432 4458 | 21966 | 43275
Idle RUs available 30 425 4380 | 21659 | 42626

unprotected 1 7 78 307 649

C. System Performance

The average packet transmission latencies at different SERs
and different Flit Injection Rates (FIRs) are illustrated in Fig.
6. The error recovery mechanism is triggered when an soft
error is detected in RC, VA, or SA results, and is completed
in one or two clock cycles. The experimental results indicate
that even if the SER is as high as 0.1/cycle in each router, the
average packet delivery latency increase is less than 5% when
compared with the error free case.

The numbers of detected errors in different functional units
are illustrated in Fig. 7. As both RUs and VC allocators work
at packet rate, they are supposed to have similar number of
errors. However, in the proposed method, the situation that a
packet has no available idle neighboring RU is treated in the
same way as when an RC_errors happen. As a consequence,
the error number in RC results is much higher than that in
VA results, but they still have the same increasing trend as the
SER increases, because the percentage of packets that cannot
be protected by RUS depends on the traffic pattern. SA works
at flit rate, thus the number of SA_errors is the biggest.

Table III demonstrates that when a head flit has no idle
neighboring RUs available, it is necessary to treat such a
situation as an RC_error. Otherwise, the absolute number
of misdirected packets increases linearly with SER and the
execution time increases too. This strategy induces marginal
latency overhead as suggested by the results in Fig. 6.

379

VI. CONCLUSIONS

In this paper, a low cost method is proposed to tolerate soft
errors in the NoC router control plane. Idle routing units are
utilized by neighboring input ports to provide redundant rout-
ing computation results for each packet. Soft errors in virtual
channel and switch allocation results are detected by checking
if the results are in legal states. Error recovery mechanism is
explicitly discussed. Simulations with different soft error rates
on a wormhole switched 2D mesh NoC demonstrate that our
method can efficiently detect and recover soft errors in RC,
VA, and SA results. In the routing units, the proposed method
requires 53% less silicon cost than the TMR method when
Opt_Y routing algorithm is used, and it is applicable to many
more routing algorithms than the > & Branch method; in the
combined VA/SA units, the proposed method is simpler and
more reliable than the state of the art methods. The average
packet delivery latency increase is marginal when compared
with the error free case.

REFERENCES

[1] T. Bjerregaard, and S. Mahadevan, “A survey of research and practices
of Network-on-Chip,” DAC, pp. 684-689, 2001.

[2] W. Dally, and B. Towles, “Principles and Practices of Interconnection
Networks,” Morgan Kaufmann Publisher Inc., San Francisco, CA, 2003.

[3] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A Dynamically Adjusting
Gracefully Degrading Link-Level Fault-Tolerant Mechanism for NoCs,”
IEEE Trans. CAD-ICS, pp.1235-1248, Aug. 2012.

[4] S.Murali, L. Benini, T. Theocharides, N. Vijaykrishnan, M. Irwin, and G.
Micheli, “Analysis of Error Recovery Schemes for Networks on Chips,”
IEEE Design & Test of Computers, pp. 434-442, 2005.

[5] K. Wu, and D. Marculescu, “A Low-Cost, Systematic Methodology for
Soft Error Robustness of Logic Circuits,” IEEE Trans. VLSI Systems,
vol. 21, no. 2, pp. 367-379, Feb. 2013.

[6] L. Schwiebert, and D. Jayasimha, “Optimal Fully Adaptive Wormhole
Routing for Meshes,” Supercomputing, pp. 782-791, Nov. 1993.

[7] C. Chen, and G. Chiu, “A Fault-Tolerant Routing Scheme for Meshes
with Nonconvex Faults,” IEEE Trans. PDS, vol. 12, no. 5, May 2001.

[8] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft Errors
Caused by Single Event Upsets in CMOS Processes,” IEEE Trans. DSC,
vol. 1, no. 2, pp. 128-143, Apr.-Jun. 2004.

[9] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Mod-
eling the Effect to Technology Trends on the Soft Error Rate of Combi-
national Logic,” DSN, pp. 1-10, 2002.

[10] Y. Dhillon, A. Diril, A. Chatterjee, A. Singh, “Analysis and optimization
of nanometer CMOS circuits for soft-error tolerance,” IEEE Trans. VLSI
Systems, vol. 14, no. 5, pp. 514-524, May 2006.

[11] N. Avirneni, and A. Somani, “Low overhead soft error mitigation
techniques for high-performance and aggressive designs,” DSN, pp. 185-
194, Jun. 2009.

[12] Q. Yu, M. Zhang, and P. Ampadu, “Exploiting Inherent Information
Redundancy to Manage Transient Errors in NoC Routing Arbitration,”
NOCS, pp. 105-112, May 2011.

[13] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das, “Explor-
ing Fault-Tolerant Network-on-Chip Architectures,” DSN, 2006.

[14] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. Das, “Design
and Analysis of an NoC Architecture from Performance, Reliability and
Energy Perspective,” ANCS, pp. 173-182, Oct. 2005.

[15] W. Liu et al., “A NoC Traffic Suite Based on Real Applications,” VLSI
(ISVLSI), IEEE Computer Society Annual Symposium on, Jul. 2011.

[16] S. Shirinzadeh, and R.Asli, “A Novel Soft Error Hardened Latch Design
in 90nm CMOS,” CADS, pp. 60-63, 2010.

[17] Y. Lu, J. McCanny, and S. Sezer, “Exploring virtual-channel architecture
in FPGA based Networks-on-Chip,” SOCC, pp. 302-307, Sep. 2011.

