
Heterogeneous Hardware Accelerator Architecture
for Streaming Image Processing

Cuong Pham-Quoc, Zaid Al-Ars, Koen Bertels
Computer Engineering Lab, Delft University of Technology

Email: {P.PhamQuocCuong,Z.Al-Ars,K.L.M.Bertels}@tudelft.nl

Abstract—This paper proposes a heterogeneous hardware
accelerator architecture to support streaming image processing.
Each image in a data-set is pre-processed on a host processor and
sent to hardware kernels. The host processor and the hardware
kernels process a stream of images in parallel. The Convey hybrid
computing system is used to develop our proposed architecture.
We use the Canny edge detection algorithm as our case study.
The data-set used for our experiment contains 7200 images.
Experimental results show that the system with the proposed
architecture achieved a speed-up of the kernels by 2.13× and
of the whole application by 2.40× with respect to a software
implementation running on the host processor. Moreover, our
proposed system achieves 55% energy reduction compared to a
hardware accelerator system without streaming support.

I. INTRODUCTION

Stream processing is a new computing paradigm in which a
series of operations is applied to each element in a set of
data. Stream processing not only can address the memory
accessing bottlenecks by decouples computation and memory
accesses [1] but also can be used for applications in which data
is continuously generated during the computation. Streaming
image processing is one domain of stream processing. It is
widely used in many application domains such as digital
film processing [2], medical image diagnosis [3], real-time
detection of changes in environmental phenomena [4], autovi-
sion driver assistance [5]. The computation in these systems
is intensive especially when the resolution of data images
is increased. A pure software implementation usually does
not satisfy the real time performance requirement. Therefore,
hardware acceleration for such systems is a necessity.

Meanwhile, with the rapid development of technology, more
and more transistors can be integrated into one system. The
more transistors a system has, the more power the system
offers. Nowadays, it is possible to integrate more than 7
billion transistors [6] into one system. However, we need
to solve a couple of challenges such as power consumption,
thermal emission, etc., when more transistors are integrated.
Moreover, it is not easy and straightforward to develop all such
above systems by using only hardware technologies such as
FPGAs, ASICs, or integrated circuits. Hence, heterogeneous
hardware accelerator represents one approach to overcome the
challenges. A hardware accelerator system usually contains a
host processor to execute some software functions of the appli-
cation and some hardware fabric such as FPGA to accelerate
some computationally intensive functions of the application.
Another approach is homogeneous multicore systems. How-

ever, compared to homogeneous multicore systems, heteroge-
neous multicore systems offer more computation power and
efficient energy consumption [7].

In this work, we propose an architecture for a hardware
accelerator system to support streaming image processing.
In this architecture, streams are sequences of images which
are processed by some software functions on the host pro-
cessor and hardware kernels implemented on the hardware
fabric. Our proposed system contains a host processor (a
general purpose processor) and hardware kernels (accelerating
computationally-intensive functions of the application) with
controllers that support stream processing (in our experimental
implementation, we use FPGA as hardware accelerator fabric).
The host processor is responsible for receiving or sending the
input or output image from or to other devices such as camera
recorder or secondary hard disk, respectively. It also executes
some functions of the application which cannot be executed
on hardware. The hardware accelerator fabric consists of
different kernels that implement the computationally intensive
functions of the application. These kernels execute in parallel
with the input streams. A shared memory is used for data
communication of the host and the hardware kernels.

We implement our proposed architecture on the Convey
hybrid computing system [8] that contains an Intel Xeon 5408
CPU as the host processor and four Xilinx FPGAs as the
hardware accelerator fabric. We use the Canny edge detection
algorithm as our case study. A data-set contains 7200 images
is used to test the performance of the proposed system. The
experimental results show that our system achieve a speed-
up of the overall application by 2.40× compared to a pure
software implementation on the host processor and by 2.20×
compared to a hardware accelerator system without streaming
support.

The main contributions of the paper are as follows: (1) pro-
pose a hardware accelerator architecture for streaming image
processing; (2) present a speed-up estimation model for a
streaming image processing application using a hardware
accelerator system; (3) analyze the results of the synthesized
implementation of the Canny edge detection algorithm, a well-
known edge detection algorithm, in the proposed system.

The rest of the paper is organized as follows. Section II
introduces related work on hardware accelerator systems and
streaming image processing as well as shows a background
on Canny edge detection algorithm. Section III presents our
proposed architecture in detail. Section IV illustrates how

we implement the Canny edge detection algorithm on the
proposed system. Our experimental results are shown and
analyzed in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Heterogeneous hardware accelerator systems

Heterogeneous multicore design is one of two approaches
to utilize such a high volume of transistors integrated in one
system (another approach is homogeneous multicore design).
Many heterogeneous platforms are now commercially avail-
able such as the Sandy Bridge processor [9] and the Intel Atom
E6x5C processor [10]. Hardware accelerator systems represent
one of the main approaches to implement a heterogeneous
multicore design. In such systems, there is often one traditional
general purpose processor that functions as a host processor
and one or more hardware accelerators that function as co-
processors to speed-up the processing of special kernels of
applications running on the host processor.

Heterogeneous hardware accelerator systems can be imple-
mented in one chip where the host processor can be a hardwire
embedded processor such as PowerPC in Xilinx FPGA or
soft processor such as the MicroBlaze or the Nios processor.
The Molen architecture [11], the Warp processor [12] and the
LegUp architecture [13] are some examples for this kind of
hardware accelerator. Alternatively, different chips are used for
the host processor and the hardware accelerator fabric such
as P2012 [14] or the Convey hybrid computing system [8].
Our proposed architecture can be developed on both kinds of
implementations.

B. Streaming image processing with hardware acceleration

There are two approaches for streaming image processing.
The first approach uses sequences of image-pixels as the
streams while the second one uses sequences of images as
the streams. The first approach introduces some overhead for
segmenting the input image and combining the result after
the processing. However, this approach does not require a
large memory to store the image. The work in [15] proposed
an FPGA implementation of low latency 2-D wavelet trans-
forms for streaming image processing in which a stream is a
sequence of image-rows. The work in [16] implemented an
algorithm skeleton to support streaming image processing on
a heterogeneous platform containing an SIMD and an ILP
processor.

The second approach of streaming image processing does
not introduce the segmentation and combination overhead,
but it requires a large memory to contain the images. The
work in [17] proposed an Image-Set Processing streaming
framework that uses the power of a heterogeneous CPU/GPU
platform. In that work, the CPU is responsible for reading and
writing an image while all image processing steps are done by
the GPU. In contrast to that work, we use FPGA as accelerator
and the host processor is responsible not only for reading and
writing image but also for processing.

C. Canny edge detection algorithm

Canny edge detection [18] is a well-know and powerful
edge detection algorithm. In this work, we use the Canny edge
detection algorithm as our case study. The program flow can be
clearly partitioned into four main steps: (i) using the gaussian
filter to remove noises (gaussian function); (ii) determining the
edge strength (derrivative x y and magnitude x y functions);
(iii) applying non-maximal suppression (non max supp func-
tion); and (iv) applying hysteresis (hysteresis function). The
most computationally intensive function is gaussian. The size
of a filter matrix used by gaussian affects the execution time
of this function and the quality of the result. Figure 1 shows
the results of the Canny algorithm with different size of the
filter matrix.

II. BACKGROUND AND RELATED WORK

A. Heterogeneous hardware accelerators systems

Heterogeneous multicore design is one of two approaches
to manage such a high volume of transistor integrated in one
system (another approach is homogeneous multicore design).
Many heterogeneous platforms are now commercially avail-
able such as the Sandy Bridge processor [9] and the Intel Atom
E6x5C processor [10]. Hardware accelerator systems represent
one of the main approaches to implement heterogeneous
multicore design. In such systems, there is often one traditional
general purpose processor that functions as a host processor
and one or more hardware accelerators that function as co-
processors to speed up the processing of special kernels of
applications running on the host processor.

Heterogeneous hardware accelerators systems can be im-
plemented in one chip where the host processor can be a
hardware wire embedded processor such as PowerPC in Xilinx
FPGA or soft processor such Microblaze, NiOS processor.
The Molen architecture [11], the Warp processor [12] or the
LegUp architecture [13] are some examples for this kind
of hardware accelerator. An alternative implementation of
hardware accelerator system uses two different chips for the
host processor and the hardware accelerators fabric such as
P2012 [14] or Convey hybrid computing system [8]. Our
proposed architecture can be developed using both the two
kind of implementations.

B. Streaming image processing with hardware acceleration

There are two approach for streaming image processing.
The first approach uses sequence image pixels (or column
or rows) as the stream while the second one use sequence
of images as the stream. The first approach introduces some
overhead for segmenting image and combining the result
after processing. However, this approach does not require
a sufficient memory to store the image. The work in [15]
proposed an FPGA implementation of low latency 2-D wavelet
transforms for streaming image processing in which stream is
a sequence of image rows. The work in [16] implemented
an algorithm skeleton to support streaming image processing
on a heterogeneous platform containing an SIMD and an ILP
processor.

The second approach of streaming image processing does
not introduce segmentation and combination overhead but
it require a sufficient memory to contain the images. The
work in [17] proposed an Image-Set Processing streaming
framework that uses the power of a heterogeneous CPU/GPU
platform. In this work, the CPU is responsible for read and
write image while all image processing steps are done by the
GPU.

C. Canny edge detection

Canny edge detection [18] is a well-know and powerful
edge detection algorithm. In this work, we use the Canny edge
detection algorithm as our case study. The program flow can be
clearly partitioned into four main steps: (i) using the gaussian
filter to remove noises (gaussian function); (ii) determining the

edge strength (derrivative x y and magnitude x y functions);
(iii) applying non-maximal suppression (non max supp func-
tion); and (iv) applying hysteresis. The most computationally
intensive function is the gaussian. The size of the filter matrix
effects to the execution time of the gaussian function and the
quality of the result.

(a) (b) (c)

Fig. 1: Profiling graph for Canny application

III. ARCHITECTURE

This section presents the execution scenario of the software
and hardware kernels, our proposed architecture, and our
proposed multiple clocks domain.

A. Hardware-Software streaming model

Figure 2 illustrate the hardware-software model for a image
processing application using three hardware kernels named
kernel 1, kernel 2, and kernel 3. In the rest of the paper, we
use the following terminologies for our explanation:
- A step is a processing phase of the algorithm, e.g., a image

processed by algorithm in Figure 2 requires five steps:
initialize by the software, three following steps by kernel 1,
kernel 2, kernel 3 and finalize step by the software;

- A stage is a streaming stage in which each kernel processes
different input data, e.g., stage 0, stage 1 in Figure 2.

software

kernel_1

kernel_2

kernel_3

...

...

...

...
Stage 0 Stage 1 Stage 2 Stage 3 Stage n Stage n+1 Stage n+1

Fig. 2: The streaming model

Assume that we need to process n images. As illustrated in
Figure 2, host processor processes the first image in the initial
stage. Then, it calls the execution of the hardware kernels.
The host sends data addresses of shared buffers (including the
buffers for the communication between hardware and software
part and the buffers for the communication between kernels) as
well as the number of image needed to be processed. Please
note that we use double buffer scheme for each communi-
cation, i.e., the buffer is double the size of data transfer. It
is divided into two segments: k1 i1 and k1 i2. At stage 1,
the software processes the next image and writes the output
into k1 i2 while kernel 1 executes on k1 i1 and writes its

Fig. 1. (a) Original; (b) 6× 6 filter matrix; (c) 3× 3 filter matrix

III. ARCHITECTURE

This section presents the execution model of the host
processor and hardware kernels, our proposed architecture, and
our proposed multiple clock domains.

A. Hardware-software streaming model

Figure 2 illustrates the hardware-software streaming model
for a streaming image processing application using three
hardware kernels named kernel 1, kernel 2, and kernel 3. In
the rest of the paper, we use the following terminologies for
our explanation:
- A step is a processing phase of the algorithm, e.g., the

image processing algorithm in Figure 2 has five steps: an
initializing step done by the host, three following steps done
by kernel 1, kernel 2, and kernel 3 and a finalizing step
done by the host;

- A stage is an execution phase in which one or more steps
are executed in parallel on different input data, e.g., at stage
0 in Figure 2, kernel 1 processes image 1 while the rest of
kernels are idle; at stage 1, kernel 1 processes image 2 and
kernel 2 processes image 1 while kernel 3 is still idle.

Host

kernel_1

kernel_2

kernel_3

...

...

...

...
Stage 0 Stage 1 Stage 2 Stage 3 Stage n Stage n+1 Stage n+2In

iti
al

 s
ta

ge

Fig. 2. The streaming model

In this work, a shared double buffer mechanism is used
for data communication between the host processor and the
hardware kernels as well as among the hardware kernels.
Assume that the data dependency between the host processor
and hardware kernels follows the arrows in Figure 2 where
the kernel at the top of an arrow consumes data produced
by the kernel at the root of the arrow. We need two buffers
(named k1 i1 and k1 i2 meaning that the input buffer 1
and 2 for kernel 1) for data communication between the
host processor and kernel 1. During the initial stage, the
host processor transfers the pre-processed image 1 to k1 i1.
During stage 0, while kernel 1 processes data located on
k1 i1, the host processor pre-processes and transfers image
2 to buffer k1 i2. During stage 1, while kernel 1 processes
data located on k1 i2, the host processor pre-processes and
transfers image 3 to buffer k1 i1. The same procedure is
applied for the next stages. Similarly, we also need two buffers
for each data communication between two hardware kernels
such as k2 i1 and k2 i2 for data communication between
kernel 1 and kernel 2. Two buffers named k3 o1 and k3 o2
are used for data communication between kernel 3 and the
host processor. At stage 2, kernel 3 processes image 1 and
writes its output to k3 o1. During the next stage, kernel 3
writes the result of image 2 to k3 o2 while the host processor
does the post-processing for image 1 located in k3 o1. When
the first hardware kernel is started by a function call in the host
processor (stage 0), the host processor sends the addresses of
all the buffers to the corresponding kernels.

Due to the fact that we accelerate the most computationally
intensive functions in hardware, the execution time of func-
tions on the host is usually not longer than of the kernels.
Assume that the execution time of kernel i for each image is
tki (∀i ∈ {1, 2, 3} - in the case presented in Figure 2) and of
functions on the host for each image is ts (we also assume that
ts < min(tki

∣∣
i=1..3

)), the total execution time for the data-set
in the case when stream processing is not applied (Tnostr) is
as follows:

Tnostr = n× (ts +

3∑
i=1

tki) (1)

where n is the number of image in the data-set.
In the case when stream processing is applied (Tstr) as

described above, the total execution time for the data-set is as
follows:

Tstr = n×max(tki
∣∣
i=1..3

) +max(tki
∣∣
i=2,3

) + tk3 + ts (2)

Hence, the performance speed-up of stream processing
compared to non-stream processing, Sp, is as follows:

Sp =
Tnostr

Tstr
=

n× (ts +
3∑

i=1

tki)

n×max(tki
∣∣
i=1..3

) +max(tki
∣∣
i=2,3

) + tk3 + ts

(3)

The speed-up (Sp) can be transformed as follows:

Sp <

n× (ts +
3∑

i=1

tki)

n×max(tki
∣∣
i=1..3

)
<

ts + 3×max(tki
∣∣
i=1,3

)

max(tki
∣∣
i=1..3

)
(4)

<
ts

max(tki
∣∣
i=1..3

)
+ 3 (5)

In general, the speed-up of a stream processing algorithm
where m steps are accelerated by hardware compared to
non-stream processing is lower than (ts

max(tki |i=1..m
)
+ m).

Therefore, to improve the speed-up, we should reduce the
execution time of the longest kernel and increase the number
of accelerated steps.

B. System architecture

Figure 3 depicts our proposed architecture with three hard-
ware kernels representing for three kernel types: input kernel
(kernel 1), intermediate kernel (kernel 2), and output kernel
(kernel 3). The input kernel receives data from the host and
processes the first accelerated step while the output kernel
processes the final accelerated step and transfers the results of
the kernels to the host. The intermediate kernel is responsible
for the intermediate accelerated step. An image processing
algorithm may require one or more intermediate accelerated
steps corresponded to one or more intermediate kernels.

The shared buffers in the shared memory such as k1 i1,
k2 i1 are explained in the previous section. Due to the shared
memory, data is not need to be transferred from buffer to
buffer. At each kernel, the control unit selects the right buffer
for the current stage based on the number of images the kernel
processed. Based on the number of images of the data-set,
the control unit also determines if the kernel should continue
executing. The host sends the addresses of the shared buffers
and the number of images of the data-set to the kernels. This
information is transferred through the dispatch interface unit.

The core unit in each kernel is responsible for the main
task of the kernel. The core units process data stored in
their local buffers, usually the on-chip memory. The load/store
unit in each kernel is responsible for loading data from the
corresponding shared buffer (the shared memory) to the local
buffer when the kernel is started. The load/store unit writes
the result from the local buffer to the corresponding shared
buffer when the core finishes (end op signal is asserted). The
core unit is started (start op signal is asserted) when input
data is ready.

The kernel is launched whenever its start signal is asserted.
The starting of the kernels is synchronous with each other.
A kernel is going to be started if other kernels which are
responsible for the previous steps, are executed before. In
other words, the kernel can be started if and only if all the
done signals (the signal used for synchronization) of all the
kernels are active and input data for the kernel is ready. The
done signal is active if no workload needs to be done by the
corresponding kernel. For example, in the first stage, kernel 1
(in Figure 3) is invoked by the start signal from the dispatch

k1_i1 k1_i2

load/store

k2_i1 k2_i2
mutex_1

core

co
nt

ro
l

co
nt

in
ue

D
is

pa
tc

h
in

te
rf

ac
e

load/store
done

buffer

kernel_1 kernel_2

k3_i1 k3_i2

kernel_3

k3_o1 k3_o2

buffer buffer

Reconfigurable Area

Shared memory

H
os

t p
ro

ce
ss

or
mutex_2

start

st
ar

t_
op

st
ar

t_
op

da
ta

 a
dd

re
ss

load/store

st
ar

t_
op

en
d_

op

core

co
nt

ro
l

en
d_

op

done

co
nt

in
ue

core

co
nt

ro
l

co
nt

in
ue

done

en
d_

op

start start

next next

Fig. 3. The system architecture supporting pipeline for streaming applications

interface (function call from the host) while the other kernels
are idle because their input data is not yet ready (their done
signals are active). When kernel 1 finishes, its done signal and
next signal are asserted to notify kernel 2 that input data is
ready. During the next stage, kernel 1 and kernel 2 process
the next image and the output of kernel 1, respectively, while
kernel 3 is not executed due to the de-asserted next signal of
kernel 2.

C. Multiple clock domains

Because we separate the shared memory access operation
and the computational operation, we can use different clock
domains for the system. The load/store unit, control unit and
dispatch interface use a default system clock frequency, which
is usually at a moderate level. Meanwhile, the core can execute
with a higher clock frequency to improve the performance.
Assume that the system clock frequency is fsys and the clock
frequency for the core is fcore. The speed-up estimation in
Equation 3 is modified as follow:

S′
p =

n× (ts +
3∑

i=1

tki)

[n×max(tki
∣∣
i=1,3

) +max(tki
∣∣
i=2,3

) + tk3]×
fsys

fcore
+ ts

(6)
Due to the assumption fcore > fsys, we have S′

p > Sp.

IV. CASE STUDY: CANNY EDGE DETECTION

This section presents the implementation of the Canny
edge detection algorithm (presented in Section II-C) using our
proposed architecture. We use the ANSI C implementation
version provided by the University of South Florida [19] in
our experiment.

The gprof profiling tool [20] is used to identify the most
computationally intensive functions. We accelerate four func-
tions of the Canny application by hardware kernels. Those are

gaussian, derrivative x y, magnitude x y and non max supp.
The DWARV compiler [21] is used to generate a VHDL
description for those functions (the core units in our architec-
ture). We simulate those kernels to estimate their execution
time by ModelSim. The simulation result shows that the
most computationally intensive function, gaussian, takes about
2.2× longer than the total execution time of the three other
kernels, derrivative x y, magnitude x y, and non max supp.
Therefore, we decide to implement two hardware kernels for
the gaussian function, i.e., two images are processed by the
gaussian kernels at each stage. Moreover, the kernels of the
magnitude x y and non max supp functions can be started
right after the finishing of derrivative x y kernel because
their input data is ready right after the derrivative x y ker-
nel finishes. Therefore, we modify the proposed architecture
such that the three kernels derrivative x y, magnitude x y
and non max supp can be started asynchronously with the
gaussian kernel as depicted in Figure 4. During a stage (except
Stage 0, Stage n and Stage n+1), while two gaussian kernels
process two images (k and k + 1 where 2 < k < 2n− 1; 2n
is the number of images of the data-set), the rest three kernels
are executed two times to process the results of the gaussian
kernels in the previous stage (the image k − 2 and k − 1).

Host

gaussian_1

derrivative_x_y
magnitude_x_y

...

...

...

...
Stage 0 Stage 1 Stage 2 Stage 3 Stage n Stage n+1In

iti
al

 s
ta

ge

gaussian_2

non_max_supp

Fig. 4. The execution model and data dependency between kernels for the
Canny algorithm

We use the Convey hybrid computing system [8] as a

hardware accelerator platform to develop our architecture. The
Convey system consists of one Intel Xeon 5408 CPU, working
at 2.14GHz, as host processor and four Xilinx Virtex 5
LX330 FPGA as the hardware accelerator fabric (so-called co-
processor). Figure 5 depicts the Convey system architecture.
The communication between the host and the co-processors is
done by the HCMI bus. The shared memory consists of 128GB
for the host processor and 64GB for the co-processors.

H
o

st
 p

ro
ce

ss
o

r
In

te
l

54
08

 (
2

.1
4G

H
z)

Hybrid-core Globally Shared Memory
(128 GB + 64 GB)

Memory controller

HCMI

Co-processor

Fig. 5. The Convey hybrid computing system

In this case study, we configure each FPGA device with
two gaussian kernels, one derrivative x y kernel, one mag-
nitude x y kernel and one non max supp kernel. Therefore,
we can process 8 images at one stage following the execution
model in Figure 4. FPGA devices run independent from each
other. The kernels in Device 0 process image i and (i + 1)
in data set where i is multiple of 8. Consequently, the kernels
in Device 1 process image (i+ 2) and (i+ 3); the kernels in
Device 2 process image i + 4 and i + 5; and the kernels in
Device 3 process image i+ 6 and i+ 7.

V. EXPERIMENTAL RESULT

This section presents our experimental results with the
Canny application using a data-set containing 7200 images
extracted from a 5 minutes video. The image size is 152×114
pixels. We set the standard deviation gaussian, low and high
thresholds to 2.0, 0.5 and 0.5, respectively (i.e., we use an
11 × 11 filter matrix for the guassian function). Beside the
system presented in the previous section, we develop two
other accelerator systems for a comparison. Firstly, we run the
software version on the host processor (Intel Xeon 5408 Quad-
core working at 2.14GHz). Secondly, we develop a hardware
accelerator system for the application without streaming but
with multiple clock domains, i.e., following the non-streaming
model presented in Section III-A and using fcore for the cores
while fsys for the rest units in the kernels. We, then, build
another hardware accelerator system with streaming model
but all units use the system clock frequency (fsys). Finally,
we implement the system with streaming model and multiple
clock domains (the proposed architecture). All the systems
have two hardware kernels for the gaussian function and one
hardware kernel for each another function. In the multiple
clock domains systems, the cores of the kernels are executed
225MHz (fcore) while other units run at 150MHz (fsys).

Table I shows the execution time of the application with
different systems and the speed-up compared to the pure
software execution. The streaming system with multiple clock
domains achieves a speed-up of the overall application by

2.40× compared to the software execution and by 2.20× com-
pared to the non-streaming system (system 2). Moreover, the
proposed system achieves a speed-up of the overall application
by 1.47× compared to the streaming system without multiple
clock domains (system 3).

In System 3 and System 4, the speed-up of the kernels are
lower than the speed-up of the whole application (1.45× com-
pared to 1.63× and 2.13× compared to 2.40×, respectively)
due to the fact that we execute software hardware streaming
model. In order words, the software task for n − 1 image is
done in parallel with the hardware tasks (the kernels). The
execution time of the whole application is the sum of the
execution time of hardware kernels, software initializing step
for image 1 and finalizing step for image n. Therefore, the
execution time for the whole application is slightly longer than
the kernels. Figure 6 shows the speed-up of both kernels and
the whole application of the three last systems with respect to
the first system - the software implementation only.

TABLE I
APPLICATION EXECUTION TIME AND SPEED-UP OF DIFFERENT SYSTEMS

System Kernel
time

Application
time

Kernel
speed-up

Application
speed-up

System 1 46.88s 52.85s 1.0× 1.0×
System 2 40.46s 48.43s 1.16× 1.09×
System 3 32.44s 32.46s 1.45× 1.63×
System 4 21.97s 21.99s 2.13× 2.40×
System 1: Software only
System 2: Non-streaming model with multiple clock domains
System 3: Streaming with the same clock frequency for all units
System 4: Streaming with multiple clock domains (the proposed architecture)

0

0.5

1

1.5

2

2.5

3

System 4 System 3 System 2

Kernel Speed-Up
Application Speed-up
Energy Consumption

System 1

Fig. 6. The speed-up and energy consumption comparison between the
systems

Table II shows the resource usage of the kernels in the
streaming system with multiple clock domains (the proposed
architecture) in term of the number of LUTs, the number of
registers, and the number of DSP for each kernel (including the
core, the load/store unit and the control unit). It also presents
the total resource usage for the whole system (including other
module used by the Convey system such as the memory
controller and the dispatch interface). Each kernel has 132KB
buffer implemented by block RAM (11.45% FPGA BRAM).
The number of block RAMs used for the whole system is
904KB (78%).

We use Xilinx XPower Analyzer to estimate the power
consumption for each FPGA device. The total power con-
sumption of the hardware fabric in the three systems is almost

TABLE II
THE RESOURCE USAGE FOR EACH KERNEL AND THE WHOLE SYSTEM

Kernel #LUTs #Registers #DSP
gaussian 10,231 (5%) 13,438 (6.3%) 7 (3.6%)
derrivative x y 2,907 (1%) 2,246 (1%) 0
magnitude x y 4,058 (1%) 3650 (1%) 5 (2%)
non max supp 8,571 (4.1%) 10,020 (4.9%) 5 (2%)
total 96,231 (46%) 113,781 (54%) 24 (12%)

Xilinx Virtex 5 LX330 contains 207,360 LUTs, 207,360 Register,
192 DSP and 1152 KB block RAM

identical. Table III shows the power consumption distribution
of one FPGA device as well as the amount of resource usage
(LUTs and FFs) for each system. The amount of resource
usage for all three systems is almost identical. However, the
power consumption of each resource type (clock, logic and
BRAM) of System 3 is smallest because System 3 uses clock
frequency at 150MHz for all component while the two other
systems use a 225MHz clock frequency for some components.
The power consumption of System 4 is larger than of System
2 because System 4 uses more logic elements (LUTs and FFs)
than System 2. These logic elements are used for the streaming
controllers.

We compute the energy consumption of the hardware fabric
(without energy consumed by the host processor) by the
product of power consumption and the execution time. Due
to the short execution time, the system using streaming model
with multiple clock domains (System 4) uses less energy than
the non-streaming model system (System 2) and the streaming
model system without multiple clock domains (System 3).
Figure 6 shows the energy consumption normalized to energy
consumption of the system with non-streaming and multiple
clock domains. As shown in the figure, system 4 achieves 55%
energy reduction compared to System 2.

TABLE III
POWER CONSUMPTION (W) AND RESOURCE USAGE OF THE SYSTEMS

Resource System 2 System 3 System 4

Power

Clock 0.501 0.383 0.502
Logic 0.695 0.798 0.827
BRAM 1.721 1.456 1.721
Total 18.334 18.038 18.481

Amount FF 112,384 113,781
LUT 102,836 104,534

The systems are explained in Table I

VI. CONCLUSION

This paper presented a heterogeneous hardware accelerators
architecture with multiple clock domains for a streaming im-
age processing application. The work also introduced a model
to estimate the speed-up of a streaming image processing
system compared to a non-streaming one. The Canny edge
detection algorithm was used as a case study. Experimental
results show that the streaming system achieved a speed-up
of the overall system by 2.40× and of the kernels only by
2.13× compared to the software implementation executed on
Intel Xeon 5408 CPU. The experiment also compared the
proposed system to the streaming system without multiple

clock domains. The streaming system with multiple clock
domains consumes less energy than the stream system without
multiple clock domains although the system without multiple
clock domains has a lower power consumption.

ACKNOWLEDGMENT

This work has been funded by the projects Smecy 100230, iFEST
100203, REFLECT 248976, and Vietnam Ministry of Education and
Training.

REFERENCES

[1] M. Benjamin and D. Kaeli, “Stream image processing on a dual-
core embedded system,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation, 2007, pp. 149–158.

[2] V. Bove and J. Watlington, “Cheops: a reconfigurable data-flow system
for video processing,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 5, no. 2, pp. 140–149, 1995.

[3] B. Davis, P. Fletcher, E. Bullitt, and S. Joshi, “Population shape
regression from random design data,” in Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, 2007, pp. 1–7.

[4] C. A. Rueda-Velasquez, “Geospatial image stream processing: Models,
techniques, and applications in remote sensing change detection,” PhD
Thesis, University of California Davis, 2007.

[5] C. Claus and W. Stechele, “AutoVisionreconfigurable hardware acceler-
ation for video-based driver assistance,” in Dynamically Reconfigurable
Systems. Springer Netherlands, 2010, pp. 375–394.

[6] NVIDIA, “NVIDIA Kepler GK110 Architecture Whitepaper,” 2012.
[7] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous

chip multiprocessors,” Computer, 2005.
[8] Convey Computer, “Convey reference manual,” 2012.
[9] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated

multi-CPU, GPU and memory controller 32nm processor,” in ISSCC,
2011.

[10] “Intel R© atomTM processor E6x5C series-based platform for embedded
computing,” 2010.

[11] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. Panainte, “The MOLEN polymorphic processor,” Computer, pp.
1363–1375, 2004.

[12] R. Lysecky and F. Vahid, “Design and implementation of a MicroBlaze-
based warp processor,” ACM Trans. Embed. Comput. Syst., pp. 1–22,
2009.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-
based processor/accelerator systems,” in FPGA, 2011, pp. 33–36.

[14] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in DATE, 2012, pp. 983–987.

[15] O. Benderli, Y. Tekmen, and N. Ismailoglu, “A real-time, low latency,
FPGA implementation of the 2-D discrete wavelet transformation for
streaming image applications,” in Digital System Design, 2003. Pro-
ceedings. Euromicro Symposium on, 2003, pp. 384–389.

[16] W. Caarls, P. Jonker, and H. Corporaal, “Algorithmic skeletons for
stream programming in embedded heterogeneous parallel image process-
ing applications,” in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, 2006, p. 9.

[17] L. Ha, J. Kruger, J. Comba, C. Silva, and S. Joshi, “ISP: An optimal
out-of-core image-set processing streaming architecture for parallel
heterogeneous systems,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 18, no. 6, pp. 838–851, 2012.

[18] J. Canny, “A computational approach to edge detection,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, vol. PAMI-8, no. 6,
pp. 679 –698, nov. 1986.

[19] U. S. Florida, “Canny edge detector,” 1999.
[20] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “gprof: A call graph

execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, Jun.
1982.

[21] R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
“DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler,” in Field
Programmable Logic and Applications (FPL), 2012 22nd International
Conference on, 2012, pp. 619–622.

