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ABSTRACT

Systems-on-Chip (SoCs) typically implement complex appli-
cations, each consisting of multiple tasks. Several applica-
tions share the SoC cores, to reduce cost. Applications have
mixed time-criticality, i.e., real-time or not, and are typically
developed together with their schedulers, by different par-
ties. Composability, i.e., complete functional and temporal
isolation between applications, is an SoC property required
to enable fast integration and verification of applications.
To achieve composability, an Operating System (OS) allo-
cates processor time in quanta of constant duration. The
OS executes first the application scheduler, then the corre-
sponding task scheduler, to determine which task runs next.
As the OS should be a trusted code base, both inter- and
intra-application schedulers should be thoroughly analysed
and verified. This is required anyway for real-time intra-
application schedulers. But for non-real-time applications,
a costly effort is required to achieve the desired confidence
level in their intra-application schedulers. In this paper we
propose a light-weight, real-time OS implementation that
overcomes these limitations. It separates the two arbitra-
tion levels, and requires only the inter-application scheduler
to run in OS time. The intra-application scheduler runs in
user time, and is therefore not trusted code. This approach
allows each application to execute its own specialised task
scheduler. We evaluated the practical implications of our
proposal on an SoC modelled in FPGA, running an H264
and a JPEG decoder and we found that composability is
preserved and performance is improved with up to 37%.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.4.1 [Operating sys-

tems]: Process Management—Multitasking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOPES ’12, May 15-16, 2012, St. Goar, Germany
Copyright 2012 ACM 978-1-4503-1336-0/12/05 ...$10.00.

Keywords

Composability, SoC, RTOS

1. INTRODUCTION
State-of-the-art Systems on a Chip (SoC) often execute

complex embedded applications, many of them from the
signal-processing, streaming domain. Applications may have
diverse performance demands, e.g, high throughput for video,
low latency for the user interface. Furthermore, they have
various time constraints, i.e., some are real-time, e.g., audio
processing, while some are not, e.g, web browsing. Some
real-time requirements are firm, meaning that a deadline
miss results into an unacceptable output quality loss. Other
requirements are soft, which means that occasional dead-
line misses can be tolerated. Real-time applications require
temporal verification to ensure that deadlines are met when
running on the SoC. Furthermore, the applications may be
developed by different parties, such as different teams within
a company, or independent software vendors.

Applications consist of a set of tasks. To reduce the cost
of an SoC, the tasks of these applications share resources,
such as processors, memories, and interconnect. Hence,
multiple tasks, potentially belonging to different applica-
tions, may demand a processor at a given moment in time.
The processor arbitration is conventionally performed by a
Real-Time Operating System (RTOS), and it has two parts,
namely inter-application scheduling, henceforth called appli-
cation scheduling, and intra-application scheduling, called
task scheduling in the remainder. The RTOS’ code should
be trusted, to make sure that the stringent timing require-
ments of firm real-time applications are met. Hence the
RTOS should be thoroughly analysed and verified to make
sure it will always operate correctly, and cause no timing
violation.

The inter-application interference at shared resources is
a major hurdle for complex SoC design. The temporal be-
haviour of applications is inter-dependent, hence system ver-
ification and integration are circular processes that have to
be repeated whenever an application is slightly changed, re-
sulting in a large effort. Furthermore, resource sharing de-
creases system robustness, as a misbehaving application may
monopolise resources, potentially leading to timing violation
or erroneous behaviour of other applications.

Existing research proposes timing isolation, to reduce the
complexity of timing verification. Here two types of ap-



proaches exist: ones that isolate applications at the level
of timing bounds [1–3], and others that isolate applications
completely, at cycle-level [4, 5], The latter approaches are
called composable. In a composable system, the application
starting time (defined as the moment when it begins to pro-
cess its input data) and the application response time (de-
fined as the duration between starting to process the input
data and finishing to produce the output) are independent
of other applications. This increases robustness, and facili-
tates independent application debug, besides offering timing
isolation.

The composable approaches employ a processor sharing
model in which a number of constant duration time quanta,
called ticks or slots, are allocated to tasks. In these ap-
proaches, as well as in conventional RTOSes, the RTOS
kernel typically performs both the application and the task
scheduling, hence two main problems remain. Firstly, all
task schedulers have to be thoroughly verified together with
the RTOS, to gain the confidence that they behave accord-
ing to the specification. Whereas this is not an issue for
firm real-time schedulers, it represents a limitation for the
soft and non real-time ones, which are typically designed
to optimise the application performance and not necessarily
to have tight temporal bounds. Hence application develop-
ers should simply not use some schedulers, or invest effort
in thoroughly verifying and certifying them. The latter re-
quires design procedures, methods, and tools specific to firm
real-time and may incur investments that many application
developers may not afford to make. Secondly, if all schedul-
ing decisions are taken exclusively by the RTOS, between
each consecutive quantum, if a task finishes early in a quan-
tum, the left time, called internal slack, is wasted.

In this paper we propose a light-weight RTOS implemen-
tation that solves the abovementioned two problems by
scheduling the applications in a composable manner, fol-
lowing a Time Division Multiplexing (TDM) policy, and al-
lowing each application to schedule their tasks according to
a policy that the application designer sees most fit. The
system has all the benefits of composability, and our scheme
allows designers to choose from a larger variety of task sched-
ulers, and potentially achieve higher processor utilisation by
not wasting the internal slack. Moreover, the RTOS designer
is relieved from the burden of integration, strict verification,
and characterisation of code from other parties. When an
application, or its scheduler, malfunctions, other parts of
the system are left unaffected. Furthermore, in case parts
exhibit anomalous behaviour, the functional and temporal
isolation makes it easy to determine the source of errors,
facilitating debug.

The current limitation to our method is that the sched-
ulers in application-time have no access to timers and inter-
rupts, hence they cannot preempt tasks. The interrupt ac-
cess must be reserved exclusively to the RTOS to implement
the inter-application TDM using timers, such that system
remains composable and robust. Notice that our method
does not rule out the preemptive task scheduling in OS-time.
A subset of the applications may defer task scheduling to
the RTOS, and another subset executes it in the application
time.

We investigate the composability and the performance of
our proposal on a dual-processor SoC, implemented on an
FPGA, using a workload consisting of two applications, an
H264 decoder and a JPEG decoder. The experiments in-

dicate that OS-time and application-time schedulers may
be utilised simultaneously by different applications, and the
platform remains composable. Moreover, up to 37% increase
in performance is achieved when the task scheduler is exe-
cuted in application-time as opposed to OS-time.

The paper is organised as follows: Section 2 discusses re-
lated work and Section 3 introduces the background for the
rest of this paper. Section 4 presents the details of the pro-
posed approach and it is followed by a presentation of our
experiments in Section 5. Section 6 concludes the paper.

2. RELATED WORK
The problem of meeting timing constraints and ensur-

ing robustness of mixed time-criticality applications that
share the resources of an SoC is recognised as being com-
plex [4, 6–8]. All existing approaches to reduce this com-
plexity employ some form of isolation between applications.
We identify four types of inter-application isolation, as fol-
lows. The first type of isolation is at the level of memory,
I/O, and access privileges. This type of isolation ensures
that applications do not, intentionally or otherwise, corrupt
each-others data, or monopolise the resources. The second
type of isolation is at the level of resource management. Re-
source management optimises platform utilisation, such that
a required level of performance is achieved, potentially at a
low energy consumption. The resource management pol-
icy suitable to an application depends on the performance
and timing constraints of that application. We denote re-
source management as decoupled when each application is
dealt with internally by its own management policy and the
inter- and intra-application management decisions are taken
at independent points in time. Decoupled resource manage-
ment has the potential to achieve high platform utilisation,
because it is able to immediately respond to the needs of
each application. The third type of isolation is at the level
of temporal bounds. This type of isolation ensures that,
when the temporal bounds of an application are calculated
in isolation, the results of this calculation hold true when
the application shares a platform with other applications.
The fourth type of isolation is at the level of cycles. We de-
note a system in which applications are completely isolated
and cannot affect each other’s temporal behaviour, at cycle
level, as composable. Composability can be achieved if ap-
plications are not sharing resources [4], however we do not
consider this approach due to its high costs and hence we do
not discuss it further. To ensure composability we employ
the techniques introduced in [5].

Research in application isolation takes place in several do-
mains, namely, virtualisation for general purpose platforms,
virtualisation for embedded systems, real-time scheduling
and real-time OSes. Existing approaches achieve various
levels of isolation, as briefly discussed in what follows.

Virtualisation solutions, such as Xen [9], VMWare [10],
and VirtualBox [11], enable robust coexistence of several
OSes on the same hardware platform. These solutions are
natively designed to ensure memory, I/O, and privilege sep-
aration and to decouple scheduling, and are not concerned
with timing. Recently real-time extensions, such as
RTXen [12], are proposed. Such extensions rely exclusively
on priorities to offer timing guarantees. In this case, the
temporal bounds of applications are not truly independent,
as the temporal bounds of lower priority applications depend
on the behaviour of higher priority applications [13].



The examples above come from general purpose proces-
sors domain, and are prohibitively expensive for embedded
systems. Nevertheless, light-weighted forms of virtualisa-
tion [6, 8, 14, 15] emerge also in embedded systems. Lower
cost is achieved by sacrificing some of the virtualisation fea-
tures. Similarly with the general purpose virtualisation so-
lutions which target real-time, the embedded ones also rely
mostly on priorities. A popular example is RT Linux [16]
with uses priorities to orchestrate the simultaneous execu-
tion of real-time and average-case optimised tasks. Similarly,
µC/OS-II [17] relies on preemptive, priority-based schedul-
ing. These may offer temporal guarantees to some applica-
tions, however does not ensure temporal isolation. Excep-
tion makes the L4 real-time kernel [7] that relies on reserva-
tions.

Real-time schedulers [1–3,18,19] and real-time OSes [20–
22] that offer temporal isolation utilise various forms of re-
source reservation. The temporal bounds of the application
depend only on the parameters of the reservation (e.g., bud-
gets) and not on other applications. The real-time sched-
ulers do not implement memory, I/O, and privilege separa-
tion, and perform coupled application and task scheduling,
even if the schedulers are hierarchical. The work in [23]
and [24] goes one step further, and demonstrate cycle-level
isolation, i.e., composability. Also in these approaches, inter-
and intra- application scheduling is coupled.

While all these approaches bring interesting ideas on how
to meet timing constraints and ensure robustness, we ad-
dress application isolation from a different angle. Instead
of simplifying existing virtualisation techniques to offer real-
time guarantees, or extending real-time schedulers with tim-
ing isolation, we start from a baseline platform that is com-
posable by construction. On this platform we add features
(isolation mechanisms) one by one, making sure that the
SoC remains composable. In this paper we present a light-
weight RTOS that decouples application and task schedul-
ing. In the future we will address memory and I/O isolation.

3. BACKGROUND
In this section we present the software applications, the

architecture template, and finally we highlight the existing
processor composability mechanisms relevant to application
execution. In Section 4 we build up upon these mechanisms
and present the proposed light-weight RTOS.

3.1 Software application model
In this section we introduce the real-time and non real-

time application models.
The model considered for firm and soft real-time appli-

cations is a streaming one, as many such applications in
the embedded domain are dedicated to signal-processing.
A streaming application consists of a set of tasks which
communicate data tokens through first-in first-out (FIFO)
buffers, for instance following the C-HEAP protocol [25].
Such applications can be modelled using data-flow. The
literature offers many variants of data-flow models, e.g.,
single-rate data-flow, cyclo-static data-flow, and variable-
rate data-flow. Some of these models are amenable to for-
mal performance analysis [26], e.g., single-rate data-flow and
cyclo-static data-flow, and hence can be used for real-time
applications. Nevertheless, our RTOS offers native support
to execute applications modelled in any data-flow variant.
Each application task corresponds to a data-flow actor, and

a FIFO is modelled as a pair of opposing edges. Such a task
iterates infinitely, in each iteration consuming, i.e., reading,
its input tokens, executing what we denote as the task func-
tion, then producing, i.e., writing, its output tokens, which
in turn may be processed by other tasks. Each FIFO is at-
tached to one producer task and one consumer task, which
block if the FIFO is full, or empty, respectively. A firing rule
defines the number of tokens produced and consumed in a
task iteration. A task is scheduled only if eligible, meaning
that the firing rule of the task is met. If a task needs to
carry data values from one iteration to another, this should
be implemented explicitly with a self FIFO, because data-
flow actors are state-less. Note that state here refers to
values of variables, and not to the task state, as defined in
Section 4.3. Furthermore, we assume tasks communicate
only with tasks of the same application and that the task to
processor binding is static.

Non real-time applications may also be implemented un-
der the same programming model as real-time applications.
However, non real-time applications do not have to be
analysable, thus any other model implementable over a shared
memory multi-processor is also suitable, within the plat-
form limits, as presented below. Thus application can be
expressed using sequential C code, Message Passing Inter-
face, etc. Our software stack offers a basic Application Pro-
grammer Interface (API), for inter-task and inter-processor
communication. These primitives can be utilised to imple-
ment higher level programming libraries.

3.2 SoC architecture model
We consider a composable, tiled MPSoC built along the

principles presented in [5]. The MPSoC consists of a set
of processor tiles and a set of memory tiles, that communi-
cate via a connection-oriented Network on Chip (NoC). A
processor tile comprises of a processor, local memory blocks
(lcl mem), and Direct Memory Access (DMA) engines. A
DMA engine transfers data from/into a local shared mem-
ory (Sh mem) block to/from a remote memory via the global
NoC, as shown in Figure 1, hence it improves performance
by overlapping communication and computation.

To achieve a composable system, each shared resource of
the SoC should be composable [24]. The limitation of com-
posability is that no shared resource can be locked by an
application for an indefinite duration. The arbiters in the
platform ensure that. Hence any programming library that
does not rely on locking resources indefinitely can be imple-
mented on this architecture.

Sh mem

timer
lcl mem

. . .
ProcTileN

mem block

mem cntrlr

TileMemory

interconnect (NoC)

Proc

Proc Tile0

DMA

Figure 1: Tiled architecture template

We assume that the instructions and data of each task
executing on a processor tile reside in local memory of that
tile, otherwise explicit DMA calls should be included in the
task code. The FIFO buffers may be mapped in the pro-
ducer’s or the consumer’s local memory, or in a memory tile.



In the following section we discuss the composable proces-
sor particularities relevant for inter- and intra- application
scheduling.

3.3 Composable processor tile
Processor composability is achieved by strict TDM allo-

cation of constant duration (application) slots [23] that have
periodical, fixed start times. The time in which an applica-
tion executes, i.e., within a slot, is called application-time.
The constant-duration slots are implemented with timer in-
terrupts and preemptive scheduling. The time it takes to
give the control to the interrupt service routine is depen-
dent on the application instructions present the processor
pipeline when the interrupt arrives. Thus all tasks should
be interruptible in bounded time. For some processors, e.g.,
the MicroBlaze, the instructions that potentially have an
unbounded interrupt delay are remote blocking memory ac-
cesses, hence these processors should not execute such ac-
cesses. Instead, the processor programs a DMA to perform
remote accesses, and then it polls on a local memory location
in case it needs to determine if a read access has completed.

To ensure independent application starting times, the time
in between two application slots, in which the interrupt
is served and the RTOS executes, should be application-
independent. This time between two consecutive applica-
tion slots is called OS-time. Here two operations may take
an application-dependent time. The first is the jump to the
interrupt service routine just before the RTOS is invoked.
The second is the application scheduling and, potentially
also the task scheduling. To guarantee composability, the
OS time is forced to appear as these operations always take
their worst case execution time. This is implemented by
halting or keeping the processor busy up to its worst case
execution time [23].

As the application timing have to be independent, if a
task finishes earlier within an slot, the left time cannot be
used to execute another application. To use this left time
for another task of the same application, the task scheduling
has to be triggered within the application slot, as proposed
in the next section.

4. COMPOSABLE RTOS WITH

DECOUPLED SCHEDULING
In this section we present our RTOS that implements ap-

plication scheduling in OS-time and task scheduling in either
application- or OS-time.

Each processor tile executes its own, independent, RTOS
instance. We implement the application-time task schedul-
ing starting with the baseline processor tile introduced in
Section 3.3. The main components of the proposed RTOS
are presented in Figure 2. The RTOS main responsibili-
ties are to schedule applications and to offer scheduling and
communication interfaces. Note that the RTOS can also
schedule tasks using a set of native, verified task schedulers.
Moreover, each scheduler takes tile-local decisions, and it is
not synchronised with schedulers on other tiles, which en-
sures complete decoupling from other processors and memo-
ries. Furthermore, the RTOS maintains the data structures
necessary to implement applications, tasks, and FIFOs.

To ensure robustness we prohibit, by construction, that
applications freely access RTOS’s data structures, hence the
RTOS provides an application wrapper and an API described

task scheduler
(verified/native)

Tasks

HW platfrom

A
p
p
l

communication API

appl/task
data structure

OS native
communication
libraries

scheduling API

appl scheduler

task scheduler
(user)

R
T

O
S

Figure 2: Hardware and software stack

in the next sections. Note that calling an API function
does not require a context switch, as conventional system
calls in many existing OSes. Inside these functions the in-
terrupts are disabled during the actual updates of RTOS
data-structures to ensure mutually exclusive access to these
shared data and thus preserve their coherent state. To re-
duce the worst case time to jump to the interrupt service
routine, and to limit the application switching penalty, the
API functions are optimised to keep the interval with inter-
rupts disabled to the bare minimum. Moreover, for robust-
ness, the RTOS does not offer an API to disable interrupts.
If a task scheduler is faulty and, for example, never returns,
the current application blocks, however the timer interrupts
occur regularly, and the RTOS schedules other applications.

In the following we start by presenting the RTOS and ap-
plication initialisation procedure, and continue by describing
the RTOS functionality.

4.1 Initialisation
The initialisation of the RTOS data structures that sup-

port the execution of application is performed at system
start-up and it follows the steps presented in Figure 3.

create and init. 

RTOS

Initialisation 

flow-chart

create and init. 

applications

create and init.

tasks

create,link, and init.

FIFOs

init. task scheduling 

parameters

program timer 

interrupt

interrupt

busy wait for 

interrupt

Figure 3: Initialisation steps.

As mentioned before, one RTOS instance executes on each



processor tile. In the first initialisation step, the OS control
block (OCB) data structure, which corresponds to the RTOS
instance, is created and initialised. The OCB stores, among
others, the parameters of the TDM application scheduler
and the parameters, e.g., the address, of each DMA. In the
next step, the data structures corresponding to applications
and tasks, i.e. application control block (ACB) and task con-
trol block (TCB), respectively, are created and initialised.
Among others, the ACB specifies whether an application is
real-time or not, and whether the task scheduling is per-
formed in application- or OS-time. The TCB is linked to
two user-defined functions that specify the task computa-
tion and its firing rules. After initialisation, tasks are in an
idle state. The FIFOs are created by FIFO control blocks
(FCBs) with static space allocation in local or remote mem-
ories. Every FCB is linked to a producer and a consumer
TCB. The FIFOs are initialised by injecting a number of
initial tokens that are provided by the user application.

The task scheduling arguments are created and initialised
with values provided by the user application. These argu-
ments may include any information necessary to the user-
defined task scheduler, e.g., a list of previously executed
tasks and the tasks order. The address of this memory space
is passed to the user defined task scheduler that can read and
update these arguments during its execution.

Finally, the interrupt timer is programmed and the sys-
tem waits for the first interrupt signal to start the RTOS
and application execution, which is explained in the next
subsection.

4.2 Decoupled application and task scheduling
Applications are executed following a functional loop that

involves the main steps presented in Figure 4. Each of these
steps belongs to the RTOS kernel, the application wrapper,
or the user application itself, as indicated in this figure. The
RTOS kernel executes in OS-time. The application wrapper
runs in application-time, and it is a sequence of instructions
that enables the execution of the user application. The user
application comprises the computation function and the fir-
ing rule update function of each of the application tasks, and
the task scheduler. The kernel and the application wrapper
are trusted code, provided, verified, and analysed by the
RTOS developers, whereas the user code does not need to
be thoroughly verified. Moreover, Figure 4 explicitly marks
the steps that can be interrupted, i.e., in which a task can
be preempted, and the potential states of a task during each
step. The latter are detailed in the next section. As a proof
of concept, we implement a Round-Robin (RR) task schedul-
ing policy, both on OS- and application-time and an TDM
task scheduling policy in OS-time, using the templates de-
scribed below. In what follows we discuss the execution steps
corresponding to the RTOS kernel and the two application
classes we address, namely real-time and non real-time.

4.2.1 RTOS kernel

In the OS-time, the RTOS kernel starts by saving the
context of the currently running task on the stack of this
task. After that, the next application to be executed is de-
termined. If the task scheduling is performed in OS-time
one of the native RTOS task schedulers are called, to de-
termine the next tasks to run. Otherwise, the next task to
run is the one that was preempted when the application was
previously interrupted. The next step is to re-program the
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Figure 4: RTOS and application steps.

timer interrupt. This is followed by a processor halt up to
the worst case execution time of the kernel, to ensure com-
posability, as mentioned in Section 3.3. Finally the context
of the next running task is restored.

4.2.2 Real-time applications

The execution of a real-time application follows the data-
flow model, hence the corresponding functional loop matches
this model. Our RTOS provides a wrapper to implement
data-flow applications, thus such applications can be eas-
ily developed and executed on the platform. Similar to a
data-flow actor, a task is fired, i.e., scheduled, only if it is
eligible, meaning that it has all its input data and output
space available. Once a data-flow actor fires, it should end
its iteration without blocking for other resources like DMAs.
To ensure this, the wrapper makes sure that the input data
of a task is stored locally, in the memory of the processor
tile that runs that task. Thus, the first step in executing a
streaming task is to claim tokens. This step copies the in-
put data from a remote memory, to the local communication
memory, if these data were not already there, i.e., they were
stored at the consumer processor tile, as described in Sec-
tion 3.1. Following that, in the run task computation step,
the user-provided task function is called. This function has
the following interface:



rt_task_func(input_data, output_data, fr_param)

where the input_data and output_data are the local mem-
ory addresses of the input data and output storage space,
and the fr_param is explained below. After the task compu-
tation is finished, the tokens produced are released, mean-
ing that, if necessary, the output data is sent to a remote
memory location, either at the processor tile that runs the
consumer task, or in a separate memory tile.

The next step is to update the firing rule for the next task
iteration. This is performed via a user-defined function with
the following interface:

update_firing_rule(fr_param)

where the fr_param points to a user-defined data structure
that stores all the information necessary to update the firing
rules for the next task iteration. This function is used to im-
plement, for example, the cyclo-static data-flow model which
has cyclically changing firing rules. Furthermore, these pa-
rameters can be set during the task computation, such that
data dependent firing rules are supported, to implement the
variable-rate data-flow model.

After updating the firing rules, the task is reset to its orig-
inal starting point. In this manner the application wrapper
implements infinite, iterative task execution, i.e., next time
when the task is scheduled it starts with claiming tokens,
etc. This implies resetting all the task registers.

If the task scheduler is executed in the OS-time, the rest
of the application slot is left idle, while busy waiting for a
timer interrupt. Otherwise, the user-provided task scheduler
is called. This scheduler has the following interface:

int task_scheduler(scheduler_param).

where the scheduler_param points to a user-defined data
structure that stores all the information necessary to sched-
ule tasks. The scheduler function returns the identifier of the
next task, or, if no eligible task is found, the one of the idle
task. To determine task eligibility the RTOS offers the func-
tion check_firing_rules(task_id), as a part of scheduling
API. Another function provided by the scheduling API, to
facilitate the implementation of simple task schedulers, is
get_task_id(). The last step is to restore the context of
the next scheduled task. Hierarchical context switches are
not supported, hence restoring the context of a task is exe-
cuted with the interrupts disabled, as visible in Figure 4.

4.2.3 Non real-time applications

The execution of a non real-time application is simpler
and consist of two steps, namely the task function call, and,
when appropriate, the task scheduler call. The non real-time
task scheduler has the same interface as the one in real-time
applications. In case of non real-time applications the task
function has as arguments its input and output FIFOs and
the DMA engines that the task may use, as follows:

nrt_task_func(in_fifo_ids, out_fifo_ids, dma_ids)

Note that preemptive scheduling is not currently supported
in application-time, hence, in non real-time applications, a
task that is once started will run to completion before any
other task may execute on the processor. To avoid deadlock
situations in which one task cannot progress because it is
waiting for data from other tasks that can never be swapped
in the processor, whenever a task is blocked in communica-
tion, the task scheduler is called. This means that each of
the communication APIs checks for data and space avail-

ability, and in case the communication cannot proceed the
user-provided task scheduler is invoked.

4.3 Task states
In this section we present the task states and transitions

between states, first for real-time application and then for
non real-time ones.

The states of tasks of a real-time application are tailored
to match the data-flow iterative execution. The correspond-
ing states and transitions are presented in Figure 5. A
task starts by being IDLE, and, when it is scheduled, it goes
through the CLAIM, COMPUTE, and RELEASE states, in this order.
After the task finishes releasing its tokens, its iteration is in
fact completed. However its firing rules have to be updated
and the task has to be reset before it can start its next itera-
tion. The firing rule update and task reset are performed in
the RESET state. Each of the states above have their PREEMPT_
counterpart, for the case when the task is interrupted. In
application-time scheduling, after updating the firing rules
the task becomes IDLE and task scheduler is executed. A
timer interrupt may occur during the execution of the task
scheduler, hence, the IDLE state has also a PREEMPT_IDLE pair.

In OS-time scheduling, when a task is preempted in one
of the PREEMPT_CLAIM, PREEMPT_COMPUTE, PREEMPT_RELEASE, and
PREEMPT_RESET states, it can be re-scheduled immediately, as
it is eligible for execution. If a task is in the PREEMPT_IDLE

state it means that the task is between two iterations, hence
its firing rules should be checked before scheduling.
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Figure 5: Task states for a real-time application.

The states of tasks of non real-time applications are pre-
sented in Figure 6. Initially, a task is in the IDLE state, then
it is scheduled for execution and switches to RUN, and finally
it becomes FINISHED when its execution ends. A task in the
RUN state can be preempted when a timer interrupt occurs,
and it changes to the PREEMPT_RUN state.

RUNIDLE FINISHED

task 

scheduled

task 

computation

finished

PREEMPT_

RUN

swap in
interrupt

Figure 6: Task states for a non real-time application.



4.4 Communication API
The RTOS provides two categories of communication API,

namely, FIFO communication API, and general, remote com-
munication API, to prevent applications from stealing each-
other’s communication resources, namely the DMAs. The
light-weight FIFO APIs offer native support for streaming
applications and the general communication APIs offer sup-
port for various programming models and libraries.

The first API set consists of the following functions:

readFIFO(infifo_id, buffer, ntokens).

writeFIFO(outfifo_id, buffer, ntokens).

The later API set consists of the following functions:

readSHM(buff_local, buff_remote, size, dma_id).

writeSHM(buff_remote, buff_local, size, dma_id).

The arguments of these functions are self-explanatory.
The readFIFO and writeFIFO calls may initiate DMA

transfers, depending on the location of the FIFO buffer, e.g.,
no DMA transfer occurs if the the producer and consumer
tasks are on the same processor tile and the FIFO is hence
local, and a DMA transfer occurs at writeFIFO if the the
producer and consumer tasks are on different processor tiles
and the FIFO buffer is mapped in the local memory of the
consumer’s tile. When required, the DMA transfers are ini-
tiated in the FIFO API calls, transparently to the tasks of
the application.

The readSHM and writeSHM calls are self explanatory. They
initiate a memory copy from, or to, a remote memory, lo-
cated in another processor tile or in a dedicated memory tile,
utilising one of the DMA identifiers that the task received
as argument. We would like to underline that all RTOS
APIs, hence also the communication ones, are interruptible
in bounded time, so scheduling other application cannot be
delayed indefinitely.

5. EXPERIMENTAL RESULTS
We experiment with the proposed RTOS on a composable

platform comprising two processor tiles, each equipped with
a MicroBlaze core, and one memory tile, connected via a
network on chip, implemented on a Virtex 6 Xilinx FPGA.
Each of the MicroBlazes cores executes an instance of the
RTOS. We would like to emphasise that the RTOS overhead
is small. Its execution time is smaller that 800 cycles, and
its memory footprint is 13 KBytes, out of which 4 KBytes
represent the FIFO APIs. This footprint is not far from
what other light-weighted RTOSes, e.g, TinyOS have.

In the experiments we use two applications: a H264 video
decoder and a JPEG decoder. Each of these applications
consists of a set of communicating tasks. To provide a proof
of concept, we execute the H264 and JPEG decoder con-
currently, and both processor tiles are shared by both ap-
plications. As mentioned, the inter-application scheduling
policy is TDM, and we implement a Round-Robin (RR)
task scheduling policy, both on OS- and application-time.
In OS-time a TDM task scheduler is also available, hence
in total we have three task schedulers. In this section we
verify whether the composability is ensured on the imple-
mented platform, and we investigate the performance of the
application-time task scheduler.
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5.1 Composability
We tested and validated the RTOS functionality in many

scenarios. Here we present two scenarios when an applica-
tion changes its task scheduling from OS-time to application-
time, while the other application’s task scheduling policy is
unchanged. If the system is composable, the starting and
response time of the unchanged application should be iden-
tical in the two scenarios.

In each scenario, we performed two executions. In the
first scenario, the H264 is scheduled in the OS-time while the
JPEG task scheduler is changed from OS-time to application-
time in the two executions. Likewise, in the second scenario
the JPEG is scheduled in the application time and H264 task
scheduler is changed. Figures 7 and 8 presents the difference
in response time between the two executions in the first and
second scenario, respectively. This difference is presented
per iteration, and each application is scheduled following a
RR policy. The illustrated graphs in Figure 7 shows that the
response time difference between the H264 application exe-
cutions is zero and therefore it is unaffected by the change
in task scheduling strategy of the other application. Simi-
lar results are shown in Figure 8 for the JPEG application.
We observed the same behaviour for starting times, i.e., un-
changed regardless of the task scheduling strategy of other
application. This indicates a composable co–existence of
application- and OS-time task schedulers for different appli-
cations executing concurrently on the platform.

5.2 Performance
Figures 9 and 10 present the H264 and JPEG finish-

ing time per iteration, as a function of the duration of the
slot, for the three task schedulers introduced in the begin-
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ning of this section. We ensure that applications start at
a fixed point in time, thus smaller finishing times indicate
better performance. The slots are varied starting with 10000
and ending with 300000 and 100000 cycles for the H264 and
JPEG, respectively. We stop the slot duration investigation
when no significant difference in performance is observed for
the application-time task scheduling.

The experiments suggest that in the OS-time case, the
performance generally decreases with the increase of the slot
duration, for both the JPEG and the H264 applications.
For small slots, the performance slightly improves up to a
certain point after which the tasks iterations start to fully fit
inside of a slot. For larger slots, the performance decreases
due to increased internal slack waste. This is not the case
for application-time scheduling where the internal slack is
eliminated, thus the performance increases, and saturates
at the point when tasks iterations entirely fit within a slot.

Moreover, we found that TDM yields the worst perfor-
mance because it is non work-conserving. Application-time
scheduling always yields better performance than the OS-
time scheduling with the same policy. Over the investigated
task slots range, the finishing times in case of application-
time scheduling decrease up to 33%, and to 37% when com-
pared to the OS-time scheduling, for the the H264 and JPEG,
respectively. Further increase in slot duration would de-
crease performance in OS-time due to increased internal
slack waste, whereas the performance in application-time
would remain constant, growing the gap between the two.
The experiments also indicate that the overhead due to ex-
tra context switches in application-time scheduling does not
impact the overall performance. In these experiments we en-
forced the same RTOS duration, thus the application-time
scheduling performance would further improve if we would

exclude the task scheduling time from the RTOS.

6. CONCLUSION
This paper proposes a light-weight RTOS implementation

for composable, robust execution of applications with mixed
time-criticality on the same SoC platform. The top schedul-
ing level, inter-application, is composable, and it is per-
formed in the OS-time; the second level, intra-application,
may follow whatever cooperative policy the application de-
signer sees fit, and it is performed in application-time. This
RTOS has two contributions when compared to prior com-
posable RTOSes: (i) it achieves a higher processor utili-
sation by not wasting any user-time; (ii) it shifts the re-
sponsibility of intra-application scheduling from the RTOS
designer to the application designer, who typically has the
required knowledge, without compromising on system ro-
bustness. The RTOS offers native support for streaming
applications with iterative tasks that communicate through
FIFO buffers, and basic general support for inter-processor
communication, such that other types of applications can
be executed. Furthermore we demonstrate this RTOS on
an SoC on FPGA with two large applications, an H264 de-
coder and a JPEG decoder, and three different task schedul-
ing policies. The experiments indicate that application-time
task scheduling delivers up to 37% higher performance when
compared to OS-time task scheduling, and the OS-time and
application-time scheduling strategies may be utilised con-
comitantly by different applications, and the platform is
composable.
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