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The synthesis and mapping of applications to configurable embedded systems is a notoriously complex
process. Design-flows typically include tools that have a wide range of parameters which interact in very
unpredictable ways, thus creating a large and complex design space. When exploring this space, design-
ers must manage the interfaces between different tools and apply, often manually, a sequence of tool-
specific transformations making design exploration extremely cumbersome and error-prone. This paper
describes the use of techniques inspired by aspect-oriented technology and scripting languages for defin-
ing and exploring hardware compilation strategies. In particular, our approach allows developers to con-
trol all stages of a hardware/software compilation and synthesis toolchain: from code transformations
and compiler optimizations to placement and routing for tuning the performance of application kernels.
Our approach takes advantage of an integrated framework which provides a transparent and unified view
over toolchains, their data output and the control of their execution. We illustrate the use of our approach
when designing application-specific hardware architectures generated by a toolchain composed of high-
level source-code transformation and synthesis tools. The results show the impact of various strategies
when targeting custom hardware and expose the complexities in devising these strategies, hence high-

lighting the productivity benefits of this approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of mapping applications expressed in high-level
imperative programming languages to heterogeneous reconfigura-
ble computing architectures (as is the case of FPGA-based architec-
tures) is exacerbated by the variety of mapping tools and
computing paradigms these architectures expose [1]. The best de-
sign solution for specific requirements, such as input data rates,
may simply not be feasible for another set of requirements, such
as the ones imposed by architectural constraints such as size,
power or stage. Strict non-functional requirements (NFRs), such
as reliability, safety, performance and energy consumption, are
commonly out of the scope of existing tools or cannot be easily ex-
pressed using current high-level programming languages. Devel-
oping a feasible design that meets a set of competing, and often
conflicting NFR is an extremely complex process.
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The traditional mapping cycle targeting an embedded platform
begins with an application description commonly used for valida-
tion in a software-only execution context (possibly executed in a
General Purpose Processor - GPP). While aiming at specific target
performance metrics, developers engage in global and localized
code restructuring transformations, also bearing in mind the tools
they have at hand. As such, starting from the application code, de-
sign-flows will lose complementary information about the compu-
tations, data-structures, and interfaces to other components
involved in the system. This may lead to solutions that are only de-
rived from a subset of the design-space. The use of specifications
capturing this complementary information would make design-
flows aware of important characteristics and may allow them to
achieve more efficient implementations by early consideration of
a variety of NFRs such as energy consumption, power dissipation,
execution time, and fault-tolerance. One important issue related
to complementary information is that it can be used to achieve
specialized hardware/software implementations. This specializa-
tion may result from the knowledge of distinct properties such
as possible value ranges of variables, loop iteration counts, and
branch frequencies.
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In addition, mapping applications to FPGA-based systems using
current design practices requires developers to take into account
various factors: to use and master a diverse set of tools, having
to modify the application code according to the features supported
by the tools in the design-flow, having to tune the application
using code transformations, having to guide the toolchain in the
design-flow according to the compiler optimization sequences,
among other tasks [1]. Another issue contributing to an increased
mapping complexity derives from the need to target the same
application specification to distinct product lines, which is of par-
amount financial significance in terms of maintainability.

These factors lead to very long and error prone development
processes, in practice forcing developers to settle for sub-optimal
design solutions given the sheer size of the corresponding de-
sign-spaces. Even when pragma-based interfaces are provided,
developers are confronted with the unpleasant prospect of having
to annotate the source code. As the system evolves, these annota-
tions and code specializations invariably lead to code obfuscation,
and thus to designs that are difficult to port and maintain. Worse,
they might simply become obsolete and interfere with existing and
newer directives.

We have addressed these issues by proposing a novel synthesis
toolchain for embedded systems which uses a methodology based
on aspect-oriented programming (AOP) [2,3] concepts. This tool-
chain goes beyond the aforementioned issues related to hardware
synthesis and spans also to compilation process and tools that are
controlled and guided by aspect descriptions. The toolchain maps
applications described in high-level imperative languages such as
C to FPGA-based computing systems. For that purpose, the input
application code is complemented with a LARA aspect-based lan-
guage specification [4]. LARA allows developers to convey to the
toolchain key input or domain-specific knowledge that can be
exploited in the hardware and software tool-flows. Furthermore,
LARA allows users to express compilation and synthesis strategies.
These strategies can be very important as they may represent de-
sign patterns, compiler/synthesis sequences the user would like
to experiment with, and/or the user may consider as good choices
from previous design experiences. In addition, these sequences
might be used to both reveal and/or prune certain design points
when performing Design-Space Exploration (DSE).

The LARA aspect-based language [4] offers two significant ben-
efits. First, it provides a uniform mechanism to convey to the
underlying tools (using a common tool-independent interface) sys-
tem attributes and NFRs [5] that are inaccessible in the current
high-level programming paradigms. Second, by implementing an
interface that decouples non-functional specifications from the
application code, we preserve a clean functional description of
the computations while taking advantage of a wealth of program
and mapping transformations. One of the goals of LARA is to allow
developers to specify compiler and synthesis strategies for hard-
ware/software systems [6].

This paper makes the following specific contributions:

o It describes an automated hardware and software design-flow
that combines tools from academia and industry. We have
developed a weaver interface for each tool that allows them
to be controlled from an external process.

o It describes the use of LARA, an aspect-based language used to
control toolchain components via their weaver interfaces. LARA
specifications allow developers to convey important non-func-
tional application-specific requirements as well as compila-
tion/synthesis strategies.

o [t presents experimental results of the use of LARA strategies in
the search of good loop unrolling factors and hardware loop
pipelining. The case study presented here highlights the flexibil-
ity and tool interoperability in our aspect-based framework.

o It describes and presents experimental results about the control
of the toolchain, including its back-end synthesis tools. This
control mechanism allows outer-loop cycles over the toolchain.
In particular we present LARA implementations of design-space
exploration strategies involving the control and guidance of the
different stages of the toolchain.

We see the flexibility of aspect-oriented approaches, such as
LARA, as a key programming technology that will enable develop-
ers to meet increasingly demanding challenges in designing
embedded systems. Our evaluation suggests that our approach of-
fers a valuable mechanism to promote both performance and code
portability while enhancing design reuse in the face of current and
future architectures.

The remainder of this paper is structured as follows. In the next
section we outline a possible LARA-based design-flow by providing
a series of examples. These examples illustrate the structure and
potential application of aspects in DSE. Section 3 describes a case
study of the application of DSE to the mapping of a non-trivial ker-
nel code to an FPGA device. In Section 4 we present experimental
results of the use of LARA in the exploration of many hardware de-
signs for this case study. In Section 5 we survey related work and
then conclude in Section 6.

2. LARA-based design-flow

The REFLECT research project [7,8] aimed at supporting the
multiple stages of mapping applications described in high-level
programming languages such as C to multi-core embedded archi-
tectures. In particular, the project focused on the complete auto-
mation of the entire mapping process by building and evaluating
the compiler/software toolchain, and providing a framework to ad-
dress maintainability, verification and validation, as well as trace-
ability issues when targeting these challenging platforms. We now
provide an overview of the REFLECT toolchain, followed by a brief
introduction of the key programming concepts for hardware syn-
thesis using a domain-specific language, LARA, that relies exten-
sively on aspect-oriented mechanisms.

2.1. Design-flow in REFLECT

The design-flow takes as input two types of specification as de-
picted in Fig. 1, namely:

o Input Application: The application’s source code in an impera-
tive procedural programming language such as C organized as
one of more files.

o LARA Specification: The LARA descriptions capture non-func-
tional requirements in the form of aspects and strategies. In
particular, they define application characteristics such as preci-
sion representation, input data rates or even reliability require-
ments for the execution of specific code sections, as well as
actions that guide the toolchain in an attempt to satisfy these
requirements. In our context, a strategy defines a sequence of
actions that are applied by compiler/synthesis tools to generate
a specific hardware/software implementation.

The output of the toolchain is a complete hardware/software
design. In the current implementation, the software component
of the design is specified in source C files which can be compiled
to the target processor using a native C compiler for that specific
processor. The hardware component of the design is specified in
RTL Verilog/VHDL and is used as input to synthesis tools such as
Xilinx’s ISE, which ultimately produces a bit-stream that can then
be loaded onto an FPGA device for execution.
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Fig. 1. The REFLECT project design-flow.

This design-flow is structured in three major components:

o LARA Front-End: The front-end converts LARA descriptions
into Aspect-IR (Aspect Intermediate Representation) to be pro-
cessed by the weavers which understand and process them as
described below. The Aspect-IR is a low-level representation
in XML format in which information is structured in a way to
facilitate the parsing and interpretation of aspects and
strategies.

Source-to-Source Weaver: This stage performs, using an

extended version of the Harmonic tool [9], source-level trans-

formations (C to C) which include: arbitrary code instrumenta-
tion and monitoring, hardware/software partitioning using cost
estimation models, as well as insertion of primitives to enable
communication between software and hardware components.

The result of this stage is a source file for each processing ele-

ment reflecting each partition. Additional code is generated to

implement remote procedure calls between the software and
hardware partitions.

o Compiler Tool Set: This stage includes the front-end, middle-
end and optimization phases of the input source-code compiler.
The last two phases are common to both software and hardware
partitions, which are target architecture independent. The back-
end includes assembly code generators from software sections
for the GPP, and VHDL/Verilog generators for specific hardware
cores.

The REFLECT compiler tool set, named as reflectc, is based on the
CoSy™ compiler framework [10] and integrates code generators
for microprocessors and the DWARV 2.0 [11] hardware compiler
(an enhanced CoSy-based version of the previous DWARV hard-
ware compiler [12]), as VHDL generator. The reflectc compiler is

thus based on a highly modular CoSy® design centered on a generic
and extensible intermediate representation (IR), named as CCMIR
[13,14], and integrating available CoSy code generators. An impor-
tant component of reflectc is the weaver which interprets input
LARA aspects and executes CoSy engines according to those aspect
specifications. The CoSy weaver works at the CCMIR level.

One of the target architectures supported by reflectc is the Mo-
len machine organization [15]. Molen is a reconfigurable architec-
ture composed by three main elements: a shared memory and a
General Purpose Processor (GPP) tightly coupled with Custom
Computing Units (CCUs) and/or DSPs. The Molen architecture al-
lows developers to exploit coarse-grained task-level parallelism
by partitioning code sections that are computational intensive to
dedicated hardware units (CCUs) while keeping control-intensive
sections of an application in software (GPP). The DWARV 2.0 tool
[11] is used to support the generation of these CCUs by translating
C kernels to VHDL. In particular, DWARV 2.0 is a C-to-VHDL hard-
ware compiler built with CoSy, and is composed by a set of engines
that perform various standard transformations and optimizations
on the input program at the CCMIR level.

In reflectc, the IR is generated by the C front-end CoSy standard
engine. Then DWARV 2.0 engines perform both standard and hard-
ware specific transformations and translate the control flow graph
to a Finite State Machine (FSM), whereas the computations in each
basic block are translated to hardware logic. For example, function
variables become registers, function parameters are communi-
cated through Molen eXchange registers [15], and local arrays
can be mapped to both the FPGA (distributed) logic or to the local
memories (implemented as FPGA BRAMs) directly connected to the
CCUs. The current version of DWARV generates the VHDL repre-
sentation of each CCU, including the interface used to communi-
cate data and control information with the enclosing Molen
machine organization.

To facilitate the integration of compilation and synthesis tools
while providing a unified design-flow, we leverage the notion of
weaver in our modular aspect-oriented framework. In particular,
to integrate a new tool to our aspect-oriented design-flow, devel-
opers must implement a tool-specific interface to an existing LARA
weaver, and/or must develop their own weaver with interface to
the available LARA engine. This interface is responsible for commu-
nicating sequences of actions from the weaver to the tool, and
attribute values and join points from the tool to the LARA weaver.
Weavers can be seen as control engines that use the information
captured in aspects to orchestrate the operation of corresponding
tools. The current REFLECT design-flow includes two weavers,
one integrated with the source-to-source transformer and the
other incorporated in the compiler tool set. To show the capabili-
ties and power of this mechanism for tool integration, we have
conducted a number of experiments using alternative hardware
compilers such as Catapult-C [16], which takes C source code and
generates a Verilog design specification.

An additional benefit of the aspect-oriented approach lies in the
fact that aspects can encapsulate a variety of strategies regarding
the mapping, compilation or synthesis that provide the design-
flow with the flexibility and modularity needed to derive combined
hardware/software designs with desired characteristics or behav-
ior. The experimental results presented in Section 4 clearly reveal
this flexibility and productivity enhancements achieved by the cur-
rent design-flow.

2.2. LARA aspects: goals, structure and examples

LARA is an aspect-oriented language geared towards hardware/
software system design. LARA has been designed to capture non-
functional requirements and to guide compilation and synthesis
tools so that users can quickly develop design solutions that meet
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these requirements, and which cannot be easily expressed using
common programming languages such as C. In addition, LARA al-
lows the definition of strategies as specifications that capture
which aspects to apply and in what order. Ultimately, strategies
can be seen as rules that implement specific hardware/software
design patterns.

Fig. 2 depicts an aspect that maps a function named filter_sub-
band to hardware to be synthesized for example on an FPGA device
using a hardware synthesis tool. In this process, it invokes an as-
pect named “strategy1” which may include optimization rules,
user knowledge, mapping strategies, target architecture properties,
and other information specific to the function. This aspect also
specifies two constraints related to input data ranges and noise
power.

A second aspect, presented in Fig. 3, instructs the toolchain to
fully unroll all innermost for-type loops in which the number of
iterations is known at compile-time and does not exceed 32. LARA
aspects can have input and output parameters. Input parameters
give the possibility to execute the same aspect code with different
values (e.g., loop unrolling factors). Since this aspect parameterizes
the function name, it can be reused with other functions/applica-
tions as part of an optimizing strategy. In addition, users can in-
crease its potential reuse by defining the number of iterations
(32 in this example) and the unrolling factor as two additional as-
pect input parameters.

These two examples highlight the structure of an aspect defini-
tion. In addition to the name and possible parameters (the input
section), an aspect includes three (3) main sections. A first section,
the select section, defines the points (or artifacts) from the input
program where an action is to take place. These points can corre-
spond to statements, variables, and/or procedures in the source
program. For each of these points there is a set of attributes that
can be manipulated by an aspect. As an example, a loop can have
as an attribute its type, control variable or even number of itera-
tions. A second section, the apply section, specifies a sequence of
actions to be performed at the selected set of points. It is thus an
executable section and it is the responsibility of the programmer
to ensure that these actions are consistent with the selected set
of program artifacts. Lastly, the condition section, if not empty, de-
fines under which conditions the apply section should be executed.

As an illustrative example, applying the aspect presented in
Fig. 3 results in the code shown in Fig. 4 in which loop 1:1 has been
fully unrolled.

As loops are important computational structures, we have pro-
vided in LARA a wide range of pre-defined attributes for loops.
Loops in LARA can be identified by attributes such as is_innermost,
is_outermost, and rank or pragmas. The rank attribute describes the

aspectdef maximizePerformance
input funcName = “filter_subband”; end

select function{name==funcName}.arg{name=="s"} end
apply $Sarg.noise_power <= 1E-3; end

select function{name==funcName}.arg{name=="z"} end
apply Sarg.range = “[-40..120]”; end
select function{name==funcName} end
apply
Sfunction.map(to:“processor”, id:"virtex5");
call strategyl();
optimize(kind: “datarepr”);
call map2BRAMs(funcName);
end
end

Fig. 2. Example of an aspect specifying non-functional requirements and mapping
to hardware.

aspectdef strategyl
input functionName end
select function{name==functionName}.loop{type=="for"} end
apply optimize(kind: “loopunroll”, k:“full”); end
condition Sloop.numlterlsConstant &&
Sloop. num_iter <= 32 && S$loop.is_innermost
end
end

Fig. 3. Aspect module for fully unrolling innermost loops with a number of
iterations no greater than 32.

relative position of loops in the code taking into account their pos-
sible nested structure. The identifiers of the loops in the example in
Fig. 4 are defined by the following rank values: 1, 1:1, 2, and 2:1.

Fig. 5 shows three aspect versions that perform loop unrolling
on four (4) loops from the filter_subband example (Fig. 4) according
to individual loop unrolling factors passed as parameters to the as-
pect. The first version (Fig. 5a) considers 4 input parameters
(ky,...,ks) as unroll factors. The second version (Fig. 5b) considers
an array of factors as input. Both these two versions are very spe-
cific to the code of the filter_subband example as they both use rank
values referring to the loops in the example. The third version
(Fig. 5c¢) uses a reusable aspect that receives an array of loop
unrolling factors as the input argument, and performs loop unroll-
ing for all the for-type loops according to those factors. This exam-
ple considers that each factor in the array is associated to a specific
loop by the order the loops are woven (in this example:
1-1:1-52-2:1)

For instance, using this approach, the reflectc compiler can be
executed over the code of the filter_subband function using the
LARA aspect and specifying the inputs of the aspect in the com-
mand line to produce C, assembly, or VHDL code. This allows users
to easily try different combinations of the loop unrolling factors.

2.3. Design-space exploration in LARA

We have extended the LARA language to provide an outer-loop
design-flow mechanism for toolchains as depicted in Fig. 6. In our
outer-loop approach, aspects can capture design-space exploration
strategies by controlling single or multiple executions of tools in a
design-flow. Moreover, iterations of the toolchain can be codified
allowing the toolchain to repeat execution with possibly different
parameters while certain conditions are satisfied. Outer-loop as-
pects can be captured by LARA scripts to exploit the semantics of
the select-apply-condition sections [4], including the use of impera-
tive code in apply sections. By extending the portfolio of executable
commands and feedback report mechanisms, the apply section of a
LARA aspect can support the definition and implementation of DSE
schemes. The LARA outer-loop mechanism can be applied to LARA-
based toolchains (as the ones represented in Fig. 6) or to other
toolchains.

The LARA outer-loop is responsible for executing the tools in the
toolchain and to acquire the information provided by these tools.
This information can then be used to decide which strategy to be
applied and/or the values of parameters to be used by these strat-
egies. The decisions may need calculations and or DSE algorithms
which can all be specified in LARA. DSE outer-loop schemes ex-
pressed in LARA may include executing the toolchain multiple
times (e.g., a pre-defined number of times or while some condition
applies).

The LARA outer-loop interpreter, named larai, is a LARA weaver
with core interpreter engine based on Rhino [17], an open-source
implementation of a JavaScript interpreter written entirely in Java.
The main objective of larai is to provide an outer-loop (external)
aspect-oriented mechanism to control the components of a
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void filter_subband(double z[512], double s[32], double m[32][64]) {

1

2 double y[64];

3 inti,j;

4 for (i=0;i<64;i++) { // Ioop

8] ylil=0;

6 for (j=0; j<8;j++) //loop
7 yli] += z[i+64*]];

8 }

9 for (i=0;i<32;i++) { // Ioop
10 s[i]=0;

1 for (j=0;j<64;j++) // loop
12 s[i] += milG) * vIil;

13 }

14 }

Fig. 4. Code of the filter_subband function. Loop 1:1 is fully unrolled when using the aspect shown in Fig. 3.

aspectdef UnrollLoopsByRank
input k1, k2, k3, k4 end
select function.loop end
apply apply
if(Sloop.rank =="1") {
optimize(kind:"unroll", k:k1);
} else if(Sloop.rank == "1:1") {
optimize(kind:"unroll", k:k2);
}else if(Sloop.rank == "2") {
optimize(kind:"unroll", k:k3);
} else if(Sloop.rank == "2:1") {
optimize(kind:"unroll", k:k4);
} }
end end
end end

input factors end

aspectdef UnrollLoopsByRank
select function.loop end

if(Sloop.rank =="1") {
optimize(kind:"unroll", k:factors[0]);
}else if(Sloop.rank == "1:1") {
optimize(kind:"unroll", k: factors[1]);
}else if(Sloop.rank == "2") {
optimize(kind:"unroll", k: factors[2]);
} else if(Sloop.rank == "2:1") {
optimize(kind:"unroll", k: factors[3]);

aspectdef UnrollLoopsByRank
input factors end
var i =0; // index to factors
select function.loop{type=="for”} end
apply
optimize(kind:"unroll", k:factors[i++]);
end
end

(a) (b)

(c)

Fig. 5. Aspect module for loop unrolling considering four (4) for-loops from the filter_subband example: (a) using 4 input parameters, one per loop; (b) using an input array
with the unrolling factors instead of 4 parameters; and (c) using an input array with the unrolling factors and assuming the ordering given by the order of the join points.

toolchain. LARA aspects input to larai can include instructions to
execute tools, explore configurations and/or command line op-
tions, get attribute values from reports, and decide whether to con-
tinue to explore different configurations and/or options based on
the results achieved at a particular stage of the design-flow.

Fig. 6 shows how the LARA outer-loop interpreter is integrated
with the REFLECT toolchain. Note, however, that the LARA outer-
loop can be easily coupled with other toolchains and the feedback
mechanism using information obtained from tool reports is the
only extension required.

The LARA outer-loop design-flow mechanism can be used at dif-
ferent levels of the toolchain. This can be in fact a useful strategy to
DSE as the user may start exploring the components of the tool-
chain at a higher-level where decisions and options can be evalu-
ated faster, and then explore the lower parts of the toolchain
where feedback information is more accurate, but where design
points are evaluated more slowly.

The LARA outer-loop interpreter (larai) receives the report
information through a global object identified by the attributes
(or by the abbreviation: @) variable. It can then easily access re-
ported values, reassign values to existent attributes, or even add
new attributes and values. Fig. 7 shows a LARA code which prints
the value of a specific attribute of function “f1” (the value of that
attribute is accessed by the LARA code: @function{"f1”}.cost_vir-
tex5) and adds a new attribute to the same function (using the
LARA statement: @function{"f1”}.new_attribute = “value”’;).

As illustrated in Figs. 8 and 9, developers can explore different
mapping parameters while exercising the execution of specific

tools. In these examples, the aspects define search algorithms for
the most effective loop unrolling factors and loop pipelining initi-
ation intervals. At each step of this search, the LARA engine
(through its weaver) invokes, and observes the output metrics of
the hardware design derived by the use of a given set of transfor-
mations. The weaver first invokes the optimization of a source code
representation (via the run command) followed by the invocation
of a high-level synthesis tool (via the run command). It then ob-
serves resulting design metrics, such as “Latency” and “maxFreq”,
exposed internally to the LARA code. The best hardware design is
then selected using a specific metric of efficiency.

These two examples highlight the modularity of our LARA-
based approach. Two external LARA aspects, simul and xilinx, are
called in the examples. Those aspects include the LARA code to
execute the ModelSim simulator and the Xilinx ISE™ tools and
are thus reusable aspects.

We have developed an API that allows LARA code and larai to con-
trol and execute third-party tools such as the Xilinx ISE tools. The
LARA outer-loop environment uses this Java API and its methods to
run each tool in command line mode [18], to pass execution options,
and to extract the information from the output report files. With this
interface the LARA strategies can control the execution and extract
important information from reports output by Xilinx ISE tools (such
as xst [19], map, par, and xpwr [20]). Fig. 10, shown below, provides
an excerpt of LARA code defining values for the input parameters
for the Xilinx xst tool, and the execution of the Xilinx tools: xst, ngd-
build, map, par, and xpwr. Note that the input parameters of the other
tools, besides xst, can be defined in LARA in a similar way.
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Fig. 6. LARA-based design-flow considering the LARA outer-loop mechanism for controlling and iterating over toolchains (in this case, we show a LARA-based toolchain). The
two large arrows represent outer-loop actions and feedback information to/from the LARA-based toolchain.

attributes.set({
function:{
f1:{
cost_virtex5: 13245,
cost_ppc: 21137,

aspectdef MonitoringAttributes

}
} end

1

println(“Virtex cost: “+@function{“f1”}.cost_virtex5); // print attribute cost_virtex5
@function{“f1”}.new_attribute = “value”; // define a new attribute and assign it to a value

Fig. 7. Using attributes: (a) code example used to communicate values of attributes (returned by tools or extracted from reports) to the LARA outer-loop and (b) code of an

aspect using attributes.

The Java code methods extract the information from the reports
and return excerpts of JavaScript code (such as the one given in
Fig. 11) which are then run by larai and exposed to the LARA code
through the global variable attributes. This process makes our ap-
proach very easy to extend and allows a smooth integration of
other tools.

In order to have a feedback loop from simulations of the gener-
ated HDL (Hardware Description Language) code, we provide in
our Java report API a method that extracts the number of clock cy-

cles and the final status of the simulation (whether it failed or not).
This information is extracted from the report produced by Model-
Sim™ after simulating the generated VHDL code.

3. Case study: Aspects in action
We now describe the application of optimization and communi-

cation mapping aspects presented in the previous section. In this
case study, we focus on filter_subband, a critical function of the
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import simul; // external LARA aspect

aspectdef ExploreLoopUnrolling
input

end

// evaluate loop unrolling
for(var i=0; i<factorsi.length; i++) {
for(var j=0; j< factorsj.length; j++) {
for(var |=0; I< factorsl.length; I++) {
for(var k=0; k< factorsk.length; k++) {

u( “« ”on

param:

factorsi =[1, 2, 4, 8, 16, 32, 0]; factorsj = [1, 2, 4, 0];
factorsl = [1, 2, 4, 8, 16, 0]; factorsk = [1, 2, 4, 8, 16, 32, 0];

run(tool: “reflectc”, file: “filter_subband.c”, gen:“vhdl”, asp: “UnrollLoopsByRanks”,
+factorsi[i]+”,”+ factorsj[j]+”,”+factorsl[I]+”,”+factorsk[k]+")");
call simul(design: “filter_subband”);

printIn(“#clock cycles: “+@design.filter_subband.Latency);

Fig. 8. Example of a LARA aspect exploring designs resulting from distinct values of loop unrolling factors for 4 loops.

import simul; // external LARA aspect
import xilinx; // external LARA aspect

aspectdef ExploreLoopPipelining
input function_name = “filter_subband” end

var execTime = Number.MAX_VALUE;
var newExecTime;
var selectedll;
for(var i =0; i< iiVals.length; i++) {
var ii = iiVals[i];

run(tool: “hls-tool”, name: function_name);

if(newExecTime < execTime) {
execTime = newExecTime;
selectedll = ii;
}
}

end

println(“Selected initiation interval (I1): “+selectedll);

variiVals =[1, 2, 3, 4, 5, 8, 12, 16]; // initiation interval (l1) values to be explored

run(tool: “harmonic”, name: function_name, opts:{ opt: “looppipelining”, Il: ii});

call simul(name: function_name); //call to other aspect
call xilinx(tool:”xst”, name: function_name); // call to other aspect
newExecTime = @function[function_name].Latency / @function[function_name].maxFreq;

Fig. 9. Example of a LARA aspect exploring designs resulting from distinct values of pipelining initiation intervals.

MPEG Audio Encoder (MPEG-2 Layers I and II) application. Fig. 4
presents the C code implementation of this function, which is used
in the Polyphase Filter Bank, a key component of the encoder.
This function receives 512 audio samples and outputs 32 equal-
width frequency sub-bands. The C code is structured as four (4)
for-type loops computing arithmetic convolutions and accumula-
tions using, in one instance, filter coefficients stored in array vari-
able m.

This function offers a wide range of transformations and thus
optimization opportunities at the loop level, namely:

e To transform the double-precision floating-point data types
used to single-precision floating-point or fixed-point
representations.

To apply, given constant loop bounds, strength-reduction to
array index calculations and use small bit-width representa-
tions for loop control variables.

To unroll loops in order to expose vast amounts of instruction-
level-parallelism (ILP) leveraged by concurrent hardware adder
and multiplier blocks.

To privatize the storage associated with the y array in local RAM
modules. The values of this array are written in the first loop
nest (Fig. 4, lines 4-8) and read in the section loop nest
(Fig. 4, lines 9-13). This transformation will reduce the number
of load and store operations by replacing them with internal
memory read and write operations.

To replace accumulation variables, such y and s arrays, to scalar
variables in order to promote them to registers.
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var DesignName = “f1”;
var xstOpts = { // specify xst options and values

b

run(tool: "ngdbuild", args: {design: DesignName});
run(tool: "map", args: {design: DesignName});
run(tool: "par", args: {design: DesignName});
run(tool: "xpwr", args: {design: DesignName});

"-opt_mode": "Area", "-opt_level": "1", "-power": "NO", "-keep_hierarchy": "NO", "-fsm_encoding": "Auto",
"-fsm_style": "LUT", "-ram_extract": "Yes", "-ram_style": "Auto" , "-rom_extract": "Yes",

"-mux_style": "Auto","-decoder_extract": "YES", "-priority_extract": "YES",
"-shift_extract": "YES", "-xor_collapse": "YES", "-rom_style": "Auto", "-auto_bram_packing": "NO",
"-mux_extract": "YES","-resource_sharing": "YES", "-use_dsp48": "Auto", "-register_duplication": "YES",
"-register_balancing": "NO", "-slice_packing": "YES", "-optimize_primitives": "NO",
"-equivalent_register_removal": "YES", "-slice_utilization_ratio_maxmargin": "5"

run(tool: "xst", args: {design: DesignName, folder: "VHDL-project", xstOptions: xstOpts});

"-shreg_extract": "YES",

Fig. 10. Example of LARA code to control the Xilinx back-end tools.

attributes.set({
design:{
f1:{

msgWarnings:0,
device:"5vIx50tff1136",
msglnfos:0,
delay:20.167,
numSliceLUTs:597,
msgErrors:0,

;

Fig. 11. Code with attribute values extracted from a Xilinx xst report.

e To apply, for each loop, e.g. in both loop nests and for both inner
and outer loops, hardware pipelining execution when offered as
one of the implementation choices of the high-level synthesis
(HLS) tool at hand.

We address here the use of LARA strategies to improve the per-
formance of the filter_subband function (Fig. 4). One possible strat-
egy is to unroll 2 x loop 1 and to jam the resulting two instances of
loop 1.1, and to unroll 2 x loop 2.1. Fig. 12 depicts the code consid-
ering that strategy, which results from the transformations speci-
fied by the two aspects shown in Fig. 13. These aspects include
two options (A and B) for identifying the two loops to be merged
(fused/jammed). Option A explicitly identifies the loops by using
the rank attribute. Option B identifies the first loop using the rank
attribute and considers that fusion is performed considering both
loops in the same hierarchical level.

The first aspect (filtersubbandStrategy1) presented in Fig. 13
starts by defining a variable functionName with the name filter_sub-
band (line 2). In line 3, a select expression is responsible to select all
the for-type loops in the code of the function with name given by
the functionName variable (i.e., filter_subband). This corresponds to
the four (4) for-type loops in the code in Fig. 4. For all these loops,
two optimizations are invoked: loopanalysis and loopscalar (see ap-
ply section in line 4). The apply section in line 5 also specifies ac-
tions to be applied to the same loops given by the select section
in line 3. However, in this latter case a condition section (line 6)
is able to filter the loops that will be affected by the loopunroll opti-
mization (with a factor k = 2). In this case, only the loop in rank 1
(loop in line 4 of Fig. 4) will be affected. The other loop to be un-
rolled twice is the loop corresponding to rank 2:1 (see lines 11
and 12 of Fig. 4). Line 12 of Fig. 13 has an apply section which in-
vokes the aspect loopjam passing as arguments the value of func-

1 void filter_subband(float z[512], float s[32], float m[32][64]) {
2

3 for (i=0;i<64; i+=2) {

4 y_auxl1l=0.0;y_aux2 =0.0;

5 for (j=0, j<8;j++) {

6 y_auxl += z[i+64%j];

7 y_aux2 += z[i+1+64*j];

8 }

9 yli] = y_auxl; y[i+1] = y_aux2;
10 }

11 for (i=0;i<32;i++) {

12 s_aux=0.0;

13 for (j=0, j<64; j+=2) {

14 s_aux += mli][j] * y[j];

15 s_aux += mli][j+1] * y[j+1];
16 }

17 s[i] ='s_aux;

18 }

19 }

Fig. 12. Code after double to float conversion, unroll and jam (first set of loops) and
unroll 2x (innermost loop in the second set of loops).

tionName and 1:1 and 1:2 (the actual ranks of the loops to be
fused).

The two options of the aspect loopjam are represented in lines
14-21 and 24-29. The first option (Option A) uses the rank attri-
bute (1:1 and 1:2) in the input source code to identify the loops.
The second option (Option B) only uses the rank attribute for the
original loop nest (i.e., loop in line 6 of Fig. 4) and assumes that
the optimization will fuse this loop with the instance of the loop
obtained by loop unrolling by two the outermost loop (i.e., loop
in line 4 of Fig. 4).

Instead of this indexing scheme with the rank attribute to iden-
tify loops in the code, one can use annotations placed in the origi-
nal C code. Fig. 14 shows the filter_subband function of Fig. 4, but
with annotations (using pragmas) to identify the three original
loops that will be affected by the strategy. Fig. 15 shows the strat-
egy defined above, but now with the identification of the loops
using the annotations presented in Fig. 14.

Fig. 16 shows a strategy defined with a LARA script that repeats
the application of compiler optimizations while changes are ob-
served. The objective is to fully unroll all for-type loops which ex-
hibit the following properties: the number of iterations is known at
compile time and is less or equal than 20 and does not contain in-
ner loops. The strategy starts from the innermost loop outwards
and iteratively traverses the loop hierarchy.
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1 aspectdef filtersubbandStrategyl

2 var functionName = “filter_subband”;

3 select function{name==functionName}.loop{type=="for”} end
4 apply optimize(“loopanalysis”); optimize(“loopscalar”); end
5 apply optimize(opt: “loopunroll”, k: 2); end

6 condition $loop.position == “1” end

7 apply optimize(opt: “loopunroll”, k: 2); end

8 condition Sloop. rank == “2:1” end

9 // needs a call to an aspect as the two loops to jam are the
10 //result from the apply in line 6 and their join points

11 // are not visible in this aspect

12 apply call loopjam(functionName, “1.1”,”1.2"); end

13 | end .

14 | aspectdef loopjam Option A
15 input funcName, pos1, pos2 end

16 L1: select function{funcName}.

17 (Sl1=loop){(type=="for”, rank ==pos1)} end

18 L2: select function{funcName}.

19 (SI2=loop){(type=="for”, rank ==pos2)} end

20 apply to L1::L2 Sl1.optimize loopfusion($I2); end

21 | end

22 apply call loopjam(functionName, “1.1”); end

23 | end

24 | aspectdef loopjam Option B
25 input funcName, looprank end

26 select function{name==funcName}.

27 loop{(type=="for”, rank == looprank)} end

28 apply Sloop.optimize(“loopfusion”); end

29 | end

Fig. 13. Aspects defining a strategy referring loops with the indexing scheme using
the rank attribute.

In addition to these code transformations, one could also exploit
transformations and implementation optimizations related to
arithmetic representations and operators. Using aspects, develop-
ers can specify the data type and scaling of the accumulator for
fixed precision arithmetic. In addition, aspects can also leverage
domain-specific knowledge indicating data rates associated with
specific variables and thus imposing latency requirements to gen-
erate feasible design solutions.

All these transformations can lead to very large design spaces
and thus beyond a reasonable manual exploration. In Fig. 17 we
illustrate how we can extend the strategy presented in Fig. 4 to
support a wide range of options based on a set of optimizations
(aspect definitions that drive a particular transformation) parame-
terized via a set of arguments, which are passed down to each opti-
mization. More complex and sophisticated search strategies can be
defined in LARA so that they can leverage an existing set of trans-
formational aspects.

It can be seen that LARA provides powerful integration mecha-
nisms which allows developers to easily code a DSE strategy, e.g.,
as the one using an approach similar to the DSE strategy proposed
in [22]. Fig. 18 shows the code section of a LARA strategy that con-

#pragma name="forl”
for (i=0;i<64;i++) {
ylil=0;
#pragma name="for2”
for (j=0; j<8;j++) ...

for (i=0;i<32;i++) {
s[i]=0;
#pragma name="for4”
for (j=0;j<64;j++) ...

Fig. 14. Use of annotations (in the form of C pragmas) to identify specific loops.

1 aspectdef filtersubbandStrategyl

2 var functionName = “filter_subband”;

3 select function{name==functionName }.loop{type=="for”} end
4 apply optimize(“loopanalysis”); optimize(“loopscalar”); end
5 apply optimize(opt: “loopunroll”, k: 2); end

6 condition $loop.name == “forl” end

7 apply optimize(opt: “loopunroll”, k: 2); end

8 condition $loop.name == “for4” end

9 // needs a call to an aspect as the two loops to jam

10 // are the ones resultant from the apply in line 6 and

11 // their join points are not visible in this aspect

12 apply call loopjam(functionName, “for1”,”for2”); end

13 end

14 aspectdef loopjam Option A
15 input funcName, loopnamel, loopname2 end

16 L1: select function{name==funcName}.

17 (Sl1=loop){(type=="for”, name==loopname1)} end

18 L2: select function{name==funcName}.

19 (S12=loop){(type=="for”, name==loopname2)} end

20 apply to L1::L2 SI1.optimize(“loopfusion”,$12); end

21 end

22 apply call loopjam(functionName, “loop1”); end

23 end

24 aspectdef loopjam

25 input funcName, loopname end

26 select function{name==funcName}. Obtion B
27 loop{(type=="for”, name==loopname)} end ption
28 apply Sloop.optimize(“loopfusion”); end

29 end

Fig. 15. Aspects defining a strategy for referring to loops by names defined in the
annotations.

tains a rule to decide whether to execute low-level hardware syn-
thesis tools (Xilinx xst [19], in this case). This strategy also gives
strong evidence of the sophistication provided by LARA and its
integrated environment.

4. Experimental results

This section presents experimental results using various hard-
ware/software transformations specified by mapping strategies
using aspects as described in the previous section. In particular,
we make use of the aspects described in Sections 2 and 3 for the
filter_subband kernel code. We target a Xilinx Virtex-5
(5vIx50tff1136) FPGA for our hardware designs using reflectc (with
embedded DWARV 2.0 [11] VHDL generation engines) and Xilinx
ISE 12.2 synthesis, mapping and placement and routing tools
(P&R). Note, however, that our approach is tool agnostic and is
capable of supporting other tools, such as Catapult-C [16] and
Mentor Graphics Precision 2010a synthesis tool [21], as well as
the Xilinx ISE placement and routing tools, as previously reported
in [23]. The latencies and execution times for each hardware de-
sign presented in this section are related to the execution of the
CCUs (hardware units) generated by reflectc. The tools were exe-
cuted in a machine with an Intel®Xeon®CPU E7330, @2.40 GHz,
with 2 GB de RAM and with a Linux-based operating system.

The design experiments presented here are organized in two
sets. The first set of experiments corresponds to the applications
of LARA strategies for loop unrolling in conjunction with other
compiler optimizations such as scalar replacement (identified here
as “loopscalar” as it is an optimization applied in the context of
loops). In this set of designs, we use aspect strategies that lead to
hardware implementations of the transformed codes exploring
various loop unrolling factors for distinct loops in the original code.
The second set of experiments considers LARA strategies with
other loop-based code transformations, namely, loop unrolling,
loop merge (also known as fuse or jam), scalar replacement, and
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1 aspectdef Strategy2

2 input functionName="f1" end

3 select function{name==functionName} end

4 apply

5 do {

6 call A:repeatloopunroll(functionName)

7 } while(A.change); // the use of a default output attribute
8 end

9 end

10

11 | aspectdef repeatloopunroll

12 input functionName end

13 select function{name==functionName}.loop{type=="for”} end
14 apply

15 optimize(“loopanalysis”);

16 optimize(“loopscalar”);

17 optimize(“loopunroll”,“full”); // fully unroll loop

18 end

19 condition Sloop.is_innermost && Sloop.numiterlsConstant && Sloop.num_iter<=20; end
20 | end

Fig. 16. A LARA strategy for performing optimizations while actions produce changes.

aspectdef ExploreStrategies

input // input parameters with default values
function_name = “filter_subband”
optimizations = [pipeline, unroll, s1, s2];
args = [[[1],[8L[16]], [[2L[31L, [ 1, [[1,2]1];
clock_freq = 200;

end

select function{function_name} end

apply
var exec_time = Number.MAX_VALUE;
var new_exec_time;

opts = combine(optimizations , args);
for(var i=0; | < opts.length; i++) {

opts [i][0] (opts [i][1]);

run(tool: “hls-tool”, name:function_name);
report(tool: “hls-tool”);

if(new_exec_time < exec_time) {
exec_time = new_exec_time;
strategyID =1i;
}
}
printIn(“Selected strategy id: “+strategyID);
end
end

/* opts=>[[pipeline,[1]], [pipeline,[8]], ..., [s2,[1,2]]] */

run(tool: “harmonic”, name: function_name, opts:{opt:“pipelining”, opts: opts [i][0] (opts [i][1])});

new_exec_time = @design[function_name]. latency / clock_freq;

Fig. 17. Example of a LARA aspect for exploring different optimizations and corresponding parameters values.

combinations thereof (e.g., unroll and jam). Although these trans-
formations are not exclusively used in hardware synthesis, they
are traditionally viewed as well suited for this purpose.

4.1. Exploring loop unrolling factors

To explore a large number of designs corresponding to different
loop unroll factors (power-of-two values) for the two innermost
loops of filter_subband, using the outer-loop LARA strategy mecha-
nism described in Section 2.3. With this strategy, the toolchain
automatically derives a VHDL specification of the input source
code computation and invokes ModelSim for simulating each de-
sign point. This code generation and simulation required about
10 min for a total of 28 distinct design points. The outer-loop LARA
aspect also uses the maximum clock frequency estimated using

Xilinx XST (xst) [19] after the simulation of each design point to
determine the expected time performance of each design. This
combined execution of the xst tool required approximately
62 min (and 2.4 h when considering also placement and routing)
when using a low level effort parameter setting.

Figs. 19-21 show the results obtained with two LARA strategies
when coupled with the outer-loop LARA aspect. The design points
are identified by the loop unrolling strategies. Table 1 shows some
examples of design points and their meaning. These design points
consider different loop unrolling factors for the two innermost
loops (i.e., loops 1.1 and 2.1) of the filter_subband function in Fig. 4.

The design with the lowest number of clock cycles corresponds
to the full loop unrolling of the two (2) innermost loops in fil-
ter_subband (Design Point 0:00). It achieves a 25.3% reduction of
clock cycles when compared to the design without loop unrolling
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aspectdef ExploreStrategies

// loop defining loop unrolling factors
// inner loop:
call A:CompileWithFactors(factors);
call B:simul("filter_subband");
latency = B.Latency;

// rule to decide to execute hw synthesis
if(latency < factor*BestDPMinLatency) {
call xilinx(tool: "xst", design:"filter_subband");
MaxFreq = @design.CCU.maxFreq;
RefFreq = MaxFreq;
ExecT = (latency/MaxFreq);
if(ExecT < BestDPExecT) {
BestDPMinLatency = latency;
BestDPMaxFreq = MaxFreq;
BestDPExectT = ExecT;
BestDesignPoint = factors.toString();
}
}

// end loop defining loop unrolling factors

end

Fig. 18. Example of a LARA aspect which considers low level toolchain stages.

(Design Point 1:01). Still, the fluctuations of maximum clock fre-
quencies according to the designs should be taken into account
when considering that systems will operate at close to maximum
clock frequencies. For the 28 designs, there is a maximum reduc-
tion of near 26% from the highest and the lowest clock frequency.
When considering the maximum clock frequencies estimated by
xst, the design with best performance is the one considering full
unrolling of the first innermost loop and unrolling 8 x the second
innermost loop (Design Point 0:08). This design achieves a 26.7%
reduction on execution time when compared to the design without
loop unrolling (Design Point 1:01).

LARA also provides an integrated environment that allows strat-
egies to exploit data derived from multiple tools without an extra
programming effort as is the case with estimation and simulation
tools. In order to avoid longer runtimes involved in executing
low level tools for each of the design points being evaluated, we
easily changed our strategy to explore loop unrolling factors and
consider only low-level toolchain stages under certain conditions.
We use a rule to decide, after the simulation with ModelSim, the
execution of the hardware synthesis tools to estimate the maxi-
mum clock frequency. In particular, the rule uses the condition
latencyCurrentDesign < factor = bestLatency to make that decision
(see the LARA code section presented in Fig. 18). Our strategy for
the clock frequency of the design points to which no xst execution
was performed (and thus, no estimation of the clock frequency is
available) was to use the previous clock frequency estimated by
xst. This way we reduce the time associated to the execution of
the DSE by avoiding the execution of xst for many design points.
Note that revising this strategy, which had a significant impact in
the design-space exploration, involved modifying a single script
and was performed in a few minutes. This highlights the potential
of LARA and its integrated environment.

With this approach, we explored the 28 design options/points
with a reduction of 13% of the time elapsed for running the DSE.
When using a factor equal to one, xst was executed for 17 of the
28 designs (a reduction in the number of xst executions of 33%).
When considering placement and routing we obtained a reduction

of 22.3% of the time elapsed for running the DSE. Note that LARA
strategies considering different toolchain stages with different lev-
els of estimations (from high-level to low-level estimations), and
sophisticated heuristics and/or iterative optimization schemes
(such as Simulated Annealing) are easy to program in our
approach.

Table 2 shows the number of design points considered and the
different execution times to run the experiments when applying
the two strategies, i.e., the first one considering that each stage
of the toolchain is executed over all of the 28 design points, and
the second one considering an approach that skips some of the
executions of the back-end toolchain stages (xst and P&R).

Fig. 22 shows the results obtained with our simple strategy.
When equals to 1, the line “level” represents the execution of the
xst tool to estimate the maximum clock frequency. The value of 0
means that xst was not executed for the respective design point
and the clock frequency used was the one estimated by the previ-
ous xst execution.! The line “Normalized Exec. Time (xst clkFreq)”
shows the results obtained during DSE and when estimating via
xst the maximum clock frequency for each design. The line “Normal-
ized Exec. Time (prev. clkFreq)” shows the results obtained during
DSE and using the strategy that avoids the execution of low-level
(back-end) stages for every design point (DSE-skip strategy). With
this DSE-skip strategy we were able to avoid the execution of xst
for 7 of the 28 design points and to identify a design (Design Point
0:16) which is 1.66% below the best performance obtained (Design
Point 0:08) when considering the execution of xst for each design
point evaluated.

4.2. Exploring more advanced LARA strategies

In the second set of experiments, we consider the application of
additional LARA strategies to the filter_subband function. Table 3
presents the optimizations considered for each LARA strategy.
We evaluate each of the 12 designs obtained by using simulation
(with ModelSim) and synthesis (with xst).

Fig. 23 illustrates the results achieved in these experiments. De-
sign 10 exhibits the minimum execution time and it allows a 79%
reduction (a speedup of 4.8 x) over the base implementation (De-
sign 0) for filter_subband. Fig. 24 shows the hardware resources
considering FPGA LUTs and registers. With respect to the base de-
sign (Design 0), the design with the lowest execution time (Design
10) requires about 4.9x and 7.5 x more registers and LUTSs, respec-
tively. Note that for this set of optimizations, a strategy as the one
experimented in Section 4.1 to reduce the number of hardware
synthesis (xst) executions was able to identify the design with
the best performance.

4.3. Summary

In summary, LARA and the REFLECT integrated environment
provide a framework for assisting developers in programming
and evaluating DSE strategies, such as sequences of compiler opti-
mizations and synthesis options. The integrated view allows devel-
opers to use the same environment to explore from source code
transformations, passing through compiler optimizations, to hard-
ware synthesis parameters as the ones in the Xilinx ISE tools such
as xst, map, and par. Besides other benefits of the LARA approach
(see, e.g., [4-6]), we believe that the features described in this arti-
cle make the approach very useful for the community developing
hardware/software systems.

! Note that this is a simple heuristic used and the main point here is to show that
programming this type of DSE schemes is easy using LARA and its integrated
environment.
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Fig. 19. Experimental results related to the number of clock cycles and execution time for the filter_subband function considering unrolling of the innermost loops by different
unrolling factors.
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Fig. 20. Experimental results capturing the maximum frequency and the impact on the execution time for the filter_subband function considering unrolling of the innermost
loops by different unrolling factors.
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Fig. 21. Experimental results regarding FPGA hardware resources related to LUTs and registers for the designs obtained with strategies considering different loop unrolling
factors.
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Table 1
Some design points automatically generated and their meaning.

Design point  Innermost loop 1 (rank 1:1) Innermost loop 2 (rank 2:1)
0:00 Fully unrolled Fully unrolled

0:01 Fully unrolled No unrolling

0:n Fully unrolled Unrolled nx

k:n Unrolled kx Unrolled nx

1:01 Not unrolled Not unrolled

2:00 Unrolled 2x Fully unrolled

Table 2

Number of runs for each main toolchain stage and the corresponding global execution
time to run the experiments considering the two strategies.

#Design Points (DPs) 28
Common to both Strategies #Hardware compilation runs 28
#ModelSim Simulations 28
Execution Time ~9.66 min.
Strategy considering the execution + 28
of all stages for each DP #xst executions
Execution Time 62.79 min

+ 28
#P&R (map + par) executions

Execution Time 244 h
Strategy skipping of some of the + 21
back-end stages #xst executions
Execution Time 54.63 min

+ 21
#P&R (map + par) executions

Execution Time 1.90h
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5. Related work

This section briefly describes the related work concerning com-
piler optimizations, automated high-level synthesis, and strategies
for back-end synthesis, mapping, placement and routing tools.

5.1. Compiler optimizations

Researchers have developed compilation systems for perfor-
mance tuning most notably in the context of scientific FORTRAN-
based programs. While earlier efforts focused on empirical-based
approaches (e.g., ATLAS [24]) where programmers would let their
applications run and use the output of metrics to decide which se-
quence of transformations were the best, later efforts focused on
more systematic approaches, and used a combination of perfor-
mance models (e.g., [25]) and special purpose (or domain-specific)
languages for defining compiler transformations sequences (e.g.,
[26]).

Other approaches enable developers to customize the composi-
tion and parameterization of design transformations through
scripting, in order to automatically derive designs that can meet
goals specified by designers [27]. Other projects, (e.g., MULTICUBE
[28]) offer a DSE framework for multi-core platforms that can gen-
erate multi-objective optimizing strategies based on available per-
formance metrics and constraints. LARA complements the above
DSE approaches by providing a unifying DSE platform, which cap-
tures and enacts evolving strategies with full design-flow control.
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Fig. 22. Experimental normalized results using a DSE strategy that contains a rule to decide about the execution of low level stages (hardware synthesis in this case) of the
toolchain.
Table 3
Strategies considered for filter_subband.
Design Strategy
0 Double to float.
1 Double to float + Loopscalar.
2 Double to float + Loopscalar + Full Unroll of first innermost loop
3 Double to float + Loopscalar + Loop unroll (2x) and jam of first nested loops (1 and 1:1)
4 Double to float + Loopscalar + Loop unroll (2x) and jam of both nested loops
5 Double to float + Loopscalar + Loop unroll (2x) and jam of both nested loops + unroll 2 x second innermost loop
6 Double to float + Loopscalar + Loop unroll (2x) and jam of both nested loops + unroll 2 x both innermost loops
7 Double to float + Loopscalar + Loop unroll (2x) and jam of both nested loops + full loop unroll of resultant jammed loop in the first nested loops
8 Double to float + Loopscalar + Double to float + Loopscalar + Loop unroll (2x) and jam of first nested loops (loops 1 and 1:1) + unroll 2 x second innermost loop
(2:1)
9 Double to float + Loopscalar + Loop unroll (2x) and jam of first set of nested loops (loops 1 and 1:1) + Loop unroll (4x) and jam of second set of nested loops
(loops 2 and 2:1)
10 Double to float + Loopscalar + Loop unroll (2x) and jam of first set of nested loops (loops 1 and 1:1) + Loop unroll (8x) and jam of second set of nested loops
(loops 2 and 2:1)
11 Double to float + Loopscalar + Loop unroll (2x) and jam of first set of nested loops (loops 1 and 1:1) + Loop unroll (4x) and jam of second set of nested loops

(loops 2 and 2:1) + unroll 2 x second innermost loop (2:1)
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Fig. 23. Experimental results exploring different strategies for the filter_subband function and different stages of the design-flow.
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Fig. 24. Experimental results regarding FPGA hardware resources related to LUTs and registers for the designs with strategies mainly based on unroll-and-jam.

5.2. High-level synthesis

Compiling high-level programming languages to FPGAs is a to-
pic extensively addressed by academia and industry (see, e.g., [1]
for a survey of representative approaches). Given the large gap be-
tween software and hardware abstractions, compilers for FPGAs
cannot in general generate efficient customized architectures for
complex applications. In addition, the generated hardware de-
pends on the non-functional requirements, which are not embed-
ded in the application forcing designers to explore options and to
extensively modify the application code.

There are a number of commercial and open-source tools that
synthesize FPGA designs from high-level descriptions. Tools such
as Mitrion-C [29], Handel-C [30], and ImpulseC [31] support a sub-
set of C and provide a number of hardware-specific language
extensions, to support concurrency, timing and flexible word-
length. Libraries (e.g., SystemC [32]) are also used to extend lan-
guages to support hardware synthesis.

A number of high-level synthesis tools, such as Trident [33],
ROCCC [34], and MaxCompiler [35], target specific application do-
mains. In particular, Trident targets floating-point scientific appli-
cations, whereas ROCCC and MaxCompiler target applications that
can naturally be modeled to streaming architectures and FIFO
channels, such as DSP, digital signal processing and finance appli-
cations. Tools such as GAUT [36], C2H [37], Catapult C Synthesis
[16,38], and Vivado HLS [39] support behavioral ANSI-C programs,
allowing input programs to be compiled with minor software code
modifications thus facilitating hardware/software partitioning and
exploration. There are also tools specialized in compiler techniques

to generate efficient hardware for loops, as is the case of ROCCC
[34] and its data reuse techniques.

For all these tools, optimizations can be achieved either through
source-annotations (such as pragmas instructing the high-level
synthesis tool to unroll and pipeline), by revising directly the code,
and through scripting (e.g., Tcl). Such schemes can be captured as
part of a strategy and explored in the context of DSE using LARA’s
single weaving mechanism, and then performed by the weavers
according to the specific requirements of each tool in the design-
flow.

5.3. Scripting approaches to control tools

To the best of our knowledge our approach is the first to con-
sider an integrated view of controlling and guiding all the tools
in a toolchain. There have been, however, approaches for control-
ling specific tools with respect to directives and constraints. Be-
sides GUI possibilities, most solutions use pragma-based
approaches, which pollute the code and does not help maintenance
and retargeting. Furthermore, these approaches are not portable to
different tools. Others use script-based solutions. One example is
the use of Tcl (Tool Command Language) scripts by high-level syn-
thesis tools such as Catapult C [16] and Vivado HLS [39]. While Tcl
scripts can be used in a number of situations, they neither provide
advanced interfaces between the scripts, the tools, and the input
application code (e.g., Catapult C accepts script directives that refer
specific loops in the code by using C labels), nor provide an inte-
grated view and an integrated report mechanism that can be feed-
back to LARA aspects.
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5.4. Back-end stages for hardware synthesis

Hardware synthesis tools usually employ their own optimizing
strategies. One example occurs with a set of options that can be
used in Xilinx ISE tools [18,19] to define strategies devoted to de-
sign goals such as area or speed. These strategies are based on a
selection of design options provided in each of the tools in the
ISE toolchain, using command line, configuration files, or a GUI
Our approach is able to control these options and allow users to de-
fine their own custom strategies and perform design-space explo-
ration through the LARA outer-loop mechanism and its integrated
scheme to feedback report data.

To the best of our knowledge, the REFLECT project is the first to
use an aspect-oriented approach to holistically control and guide
design-flows, in order to compile C applications to embedded sys-
tems implemented using FPGAs. By extending the possible join
points to system artifacts, besides the artifacts in the source code,
and by applying to both those types of artifacts actions specified in
a programming language, we are exposing users to powerful mech-
anisms to control and guide the design-flow and to program strat-
egies (mostly defining design patterns) that best suit user
requirements.

6. Conclusion

This article described how LARA, a novel aspect-oriented do-
main-specific programming language, enables a separation of con-
cerns, including non-functional requirements and strategies, for
mapping high-level source descriptions to high-performance het-
erogeneous embedded systems. We described how design-flows
can be controlled in LARA. An approach based on aspect-oriented
programming, as is the case with LARA, allows developers to pre-
serve the form of the source code thereby enhancing design reuse,
and promoting developer productivity as well as architecture and
performance portability.

LARA is being evaluated using real-life industrial application C
codes including from avionics and audio domains. The experimen-
tal results provide strong evidence of the usefulness of our aspect-
oriented approach in the context of designing applications that tar-
get complex heterogeneous embedded systems.

Furthermore, the integrated environment leveraged by the
LARA approach provides a sophisticated and advanced framework
for programming and executing Design-Space Exploration (DSE)
strategies. The aspect-oriented concepts, scripting support for
strategies, the meta-attribute approach, modularity support, and
the integrated and transparent view to manipulate and acquire
both compiler and synthesis optimizations and options are fea-
tures well suited for DSE.

Ongoing work is especially devoted to designing LARA-based
DSE strategies considering both software and hardware optimiza-
tions, including hardware/software partitioning schemes. Future
work will consider the integration of more optimizations and code
transformations in the weaving phases of the toolchain. We also
plan to focus on the specification of LARA strategies that automat-
ically explore code optimizations and transformations for design-
space exploration, including the necessary toolchain support.
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