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Abstract—Design for test is an integral part of any VLSI
chip. However, for secure systems extra precautions have to
be taken to prevent that the test circuitry could reveal secret
information. This paper addresses secure test for Physical
Unclonable Function based systems. In particular it provides
the testability analysis and a secure Built-In Self-Test (BIST)
solution for Fuzzy Extractor (FE) which is the main component
of PUF-based systems. The scheme targets high stuck-at-fault
(SAF) coverage by performing scan-chain free functional testing,
to prevent scan-chain abuse for attacks. The scheme reuses
existing FE sub-blocks (for pattern generation and compression)
to minimize the area overhead. The scheme is integrated in
FE design and simulated; the results show that a SAF fault
coverage of 95.1% can be realized with no more than 50k clock
cycles at the cost of a negligible area overhead of only 2.2%.
Higher fault coverage is possible to realize at extra cost.

Keywords: PUF-based systems, Fuzzy Extractor, Secure
Testing, Scan-chain free test

I. INTRODUCTION

Physical Unclonable Functions (PUFs) based systems are
becoming popular solutions for secure key storage against
physical attacks; they use the unique, random, uncontrollable
and intrinsic physical properties of Integrated Circuits (ICs)
to derive a cryptographic key. The robustness of such a
system is evaluated by means of its reproducibility, i.e.,
ability of the system to recover the cryptographic key from
the same IC, and its uniqueness; i.e., the ability of the system
to generate a unique cryptographic key for each IC [1,2].
A Fuzzy Extractor (FE) is one of the main components
of a PUF-based system; its responsibility is to assure the
system’s reproducibility and uniqueness [3,4]. Hence, FE
flawless operation is essential for the robustness of PUF-based
systems. Testing a PUF-based system, and FE in particular,
is a challenge. Testability demands excellent accessibility and
observability, while security demands poor/no accessibility
and observability to the chip, especially during the operation
mode where an attacker could easily retrieve partial or
complete cryptographic key. The trade-off between testability
and security is the main challenge.

Design-for-Test and testability of secure devices have
recently gained a lot of attention [5–11]. Overall, the
published schemes can be classified into two classes:
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enhanced scan-chains [5–8] and functional based Built-In Self
Test (BIST) [10,11].

Enhanced scan-chains target the protection of chains from
being misused by attackers. In [5], B. Yang et al. developed
a test solution for crypto cores based on a type of register
that cannot be scanned out during test mode until being reset.
In [6], A. Das et al. developed a test wrapper for secure
test that authenticates legitimate testers. In [7], D. Hely et
al. introduced spy flip-flops in the scan-chain that detect
malicious shifts. In [8], J. Lee et al. applied a technique
that makes the scan-chain operate unpredictably for untrusted
users. However, the industry strongly believes that enhanced
scan-chains cannot provide 100% secure IC and therefore
they are reluctant to include them in designs targeting secure
applications [9].

On the other hand, functional test based BIST targets the
enhancement of security, although reaching a very high fault
coverage with these schemes is a major challenge. In [10], M.
Doulcier et al. presented a technique to reuse an Advanced
Encryption Standard (AES) for self-testing. The work showed
that AES cores have enough randomness to be used as test
pattern generators and used this property to seft-test the AES
core in a loop fashion. In [11], di Natale et al. proposed
a generic self-test scheme for crypto cores. The work is an
extension of the work presented in [10]; it performs the same
analysis but for a Data Encryption Standard (DES). However,
both [10] and [11] are not suited for testing PUF-based systems
for two main reasons. First, AES/DES crypto cores are not
available in all PUF-based systems and second, PUF-based
systems comprise, on top of the crypto cores, error correction
blocks which make it more challenging to test functionally.

Although the research in hardware security including test
is getting more attention due to the importance of the field,
there is almost nothing published on testing PUF-based sys-
tems. This topic is addressed in this paper. In particular, it
targets testing and testability analysis of Fuzzy Extractors
(FEs), which are the main blocks of such systems; FEs are
challenging to test as they comprise not only a crypto core,
but also error correction blocks, which are typically hard to test
functionally. The paper proposes an efficient scan-chains free
secure test scheme that realizes a high test quality based on
pattern generation for stuck-at-faults by performing functional
testing. The proposed solution reuses FE existing sub-blocks
(for pattern generation and compression) to minimize the area
overhead.

The rest of the paper is organized as follows: Section II
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Fig. 1: PUF-based Key Storage System

briefly reviews the background on PUF based-systems. Section
III analyzes the testability of FE sub-blocks. Section IV defines
the test requirements, proposes a secure test method, presents
and discusses the results and provides a generic list of step-
by-step instructions on FE secure testing. Finally, Section V
concludes the paper.

II. PUF-BASED SECURE SYSTEMS

In this section, we first briefly show how PUFs are deployed
in a key storage system. Thereafter, we briefly describe the
Fuzzy Extractor, which is the main block of such a system
and the primary focus of this work.

A. Key-storage based on PUFs

Fig. 1 shows the flow of a PUF-based key storage sys-
tem [1,2] implemented with a Fuzzy Extractor (FE) [3,4],
which typically consists of two phases:
(a) Enrollment: a cryptographic key is generated from a PUF.

First, a PUF measurement is taken and used as PUF
Reference Response (PRR). Next, PRR and Random Seed
are processed by the FE into a cryptographically strong
Cryptographic Key, and helper data is generated as a FE
byproduct. Finally, the helper data is stored in an external
Non-Volatile Memory (NVM); hence, it becomes public
information.

(b) Reconstruction: the earlier enrolled Cryptographic Key
is reliably recovered. First, a PUF measurement is taken
and used as PUF Response (PR). Typically, some bits of
PR are different from the original PRR; hence, PR is a
noisy version of PRR. Next, PR is processed by the FE in
combination with the helper data which is retrieved from
the external NVM. If the noisy PR is close enough to the
PRR measured during enrollment (i.e., the PUF response
is reproducible up to a limited amount of noise), then
the FE succeeds in reliably reconstructing the enrolled
Cryptographic Key.

B. Fuzzy Extractor

A Fuzzy Extractor (FE) is the fundamental component of
a PUF-based key storage system; it has two main functions.
(a) Error correction: it uses the helper data to correct errors
on the measured PUF response; and (b) Privacy amplification:
considering that the helper data contains information on the

PRR, privacy amplification is needed to make sure that the
helper data does not reveal any information on the derived
cryptographic key; the FE compresses the resulting data into
a cryptographic key with maximum entropy making it hard
for the attacker to retrieve the key [3,4]; it also removes any
biasing (unequal distribution of zeros and ones) in the error-
corrected PUF response.

III. FUZZY EXTRACTOR AND ITS TESTABILITY ANALYSIS

Fig. 3 shows the six main blocks of a Fuzzy Extractor; this
implementation is based on the one used for the UNIQUE
project [17]. The Peripheral Circuitry has two main functions;
it selects between both functional modes and it performs an
XOR function between either the PUF and the output of the
Repetition Encoder (RE O) generating the Helper Data, if
during enrollment or, between the stored Helper Data and
PUF generating the input of the Repetition Decoder (RD I),
if during reconstruction. The other five blocks are mostly
computation intensive and are responsible for enrollment and
reconstruction. Each of the five blocks is explained next.

1) Golay Encoder: first block of the enrollment phase. Its
responsibility is to prepare the data for the error correction.
This block maps the input Random Seed (12 bits) to GE O (24
bits) by appending twelve parity bits used for error correction.
This makes it feasible for the Golay Decoder in Reconstruction
phase to correct up to three bits [14,15]. The main core of this
block comprises a loop that generates the Golay space (space
of perfect code words). Our implementation of the Golay
Encoder has a latency of two clock cycles and it comprises
6.5% of the total number of FE gates.

2) Repetition Encoder: second block of the enrollment
phase. It adds extra robustness to the error capabilities of the
Golay Encoder. The block replicates each of the GE O 24 bits
11 times resulting in 264 bits serial output RE O; it enables
error correction up to five bits for the Repetition Decoder in
reconstruction phase. The enrollment phase completes after 86
rounds, i.e., the computations described above are performed
86 times. At each time, the 12 bits of the 1032 bit Random
Seed are used with a 264 bits fraction of the PUF to generate
Helper Data. The total size of both PUF and Helper Data
equals 2.8kB (264×86). The main part of the block comprises
two counters. The first counter loops over the 24 bits of GE O,
while the second counter replicates each bit of GE O 11 times.
Our implementation of the Repetition Encoder has a latency
of 267 clock cycles and it comprises 7.3% of FE gates.
The reconstruction phase starts with performing a new mea-
surement of the PUF and XORing it with the Helper Data.
The result of this operation is the serial input of the Repetition
Decoder block.

3) Repetition Decoder: first block of the reconstruction
phase. It is also the first stage of error correction. The block
performs majority voting on each of the 24 groups (each of 11
bits) scanned serially via RD I, and produce 24 bits at the out-
put GD I. This sub-block performs the inverse operation of the
Repetition Encoder and its main core comprises three counters:
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one counter, repetition counter and destination counter. The
one counter counts the number of ones in a chunk of input
RD I (see Fig. 3) and its value is reset after the repetition
counter processed n=11 input bits. Next, a single output bit is
written on the index provided by the destination counter which
is subsequently incremented. The written output bit presents
the majority voting result of the processed input chunk derived
from the one counter. Our implementation of the Repetition
Decoder has a latency of 290 clock cycles and comprises 6.5%
of FE gates.

4) Golay Decoder: second block of the reconstruction
phase responsible for error correction. The block recovers Ran-
dom Seed, i.e., HF I (12 bits), as long as the provided input
GD I is within the error capabilities of the error correction
system. Also during the reconstruction phase, the Repetition
Decoder and the Golay Decoder repeat their operations 86
times; each time, they serially process 264 bits generated based
on PUF and Helper Data. The results of each iteration is a
12 bits buffered inside the Hash Function block. The Golay
Decoder is the most complex block in the circuit. It contains
a Finite State-Machine (FSM), with nine states for vector
decoding. As stated previously, a Golay Decoder can correct
up to three errors. Its input GD I comprises 12 message bits
and 12 parity bits (as the outcome of the Golay Encoder).
Fig. 2 shows the states dedicated to error correction; these are
selected depending on the location and number of errors in
GD I. Error wise, five different cases are possible, denoted in
Fig. 2 as case (i) till (v).

(i) GD I is error-free; thus, the four states where the error
correction takes place, i.e., case (ii) to case (v), are
skipped.

(ii) there are three or less errors in the message bits of GD I
and none in the parity bits.
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(iii) there are one or two errors in the message bits of GD I
and exactly one in the parity bits.

(iv) there is exactly one error in the message bits of GD I
and two or less in the parity bits.

(v) there are no errors in the message bits of GD I and three
or less in the parity bits.

The Golay Decoder has a variable latency depending on its
input, with a maximum of 10 clock cycles and it comprises
61.5% of FE gates.

5) Hash Function: last block of the reconstruction phase.
It performs privacy amplification. This block concatenates the
1032 bits (12×86 iterations) received from the Golay Decoder
and applies the hash function on it to calculate the 128 bit
Cryptographic Key.

Our Hash Function comprises three main components: an
input buffer, a Linear Feedback Shift Register (LFSR) and an
accumulator register. First, the input HF I is copied to the
input buffer. The input buffer is then analyzed bit per bit: if a
bit is one, the current LFSR output (which updates itself each
cycle based on its polynomial function) is added (XORed) with
the accumulator; however, if the bit is zero, the accumulator
keeps its value. When all input bits are analyzed the value of
the accumulator register is propagated to the output. The Hash
Function has a latency of 32 clock cycles and it comprises
18.2% of FE gates.

It is worth noting that the Fuzzy Extractor presented here is
a generic and simplified construction of an industrial imple-
mentation [17]; therefore, any test method developed for this
circuit can be applied also to any other implementation.

IV. EXPERIMENTS RESULTS

In this section, first, we define test and security requirements
considered for the development of our test solution. Then, we
present our test method and the experiments. Thereafter, we
present the results. Finally, we provide a list of recommenda-
tions for secure testing of FE.

A. Test versus Security Requirements

Efficient test solutions for FE must prevent compromising
the system security. The following requirements and assump-
tions apply:
(a) The signals PUF, Random Seed and HF I (see Fig. 3)

shall not be revealed at any time, partially nor fully.
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Fig. 4: Daisy-chain for a FE - different constructions

An attacker learning this information might derive the
Cryptographic Key, breaking the systems security.

(b) Helper data is assumed to be public knowledge and does
not have to be secured.

(c) Reverse engineering the Fuzzy Extractor is not an issue.
The Fuzzy Extractor uses algorithms that are standardized
and publicly known.

(d) The PUF circuitry has its own internal test method,
therefore it is outside the scope of this work.

B. Daisy-chain secure test method

Next, we propose and discuss a test method for FE, a daisy-
chain based test method. The method is scan-chain free, which
is a requirement in our case.

In this method, we propose to reuse the Linear Feedback
Shift Register (LFSR) of the Hash Function block to create
a random generator and test the FE in a loop-chain fashion,
i.e., the outputs of each block are directly provided as inputs
to next block as depicted in Fig. 4(a). This approach results
in a negligible area overhead. However, a high fault coverage
for the Golay Decoder cannot be guaranteed. This is because
the Golay Decoder receives always error free input messages
as provided by the Golay Encoder, which prevents the correct
checking of all the decoder’ states. Hence, reusing LFSR of
hash function with daisy-chain approach alone will not provide
the required test quality for Golay Decoder. To solve this
problem, the randomness of the patterns provided at the Golay
Decoder inputs (generated by the Golay Encoder) have to be
improved, in order to trigger all states of the Golay Decoder
FSM. This can be done by inserting a Multiple-Input-Shift-
Register (MISR) at the input of the Golay Decoder as seen
in Fig. 4(b). However, as the blocks are connected in a loop,
the desired effect of randomness improvement can also be
achieved by placing a MISR in any location between the Golay
Encoder output and the Golay Decoder input (such as at the
output of Golay Encoder in Fig. 4(c)), or a Single-Input-Shift-

Register (SISR) in case the location is just a serial line; see
Fig. 4(d). Moreover, a combination of MISR and SISR can be
also used as shown in Fig. 4(e) and Fig. 4(f).

Comparing the cost (area overhead) and randomness of the
several scenarios presented in Fig. 4 reveals that:

1) Scenario (d) results in the smallest area overhead.
2) Scenarios (b) and (c) as well as (e) and (f) are equivalent,

reducing the number of scenarios to four.
3) Scenarios (e) and (f) could lead to higher fault coverage,

as the combination of using SISR and MISR could
improve the randomness.

C. Experiments performed

We synthesize a Fuzzy Extractor described in VHDL in
0.35µm technology node with Synopsys Design Compiler. The
design compiler outputs a verilog netlist that is used to extract
a fault list with the Automated Test Pattern Generation (ATPG)
tool Synopsys TetraMAX. We use LIFTING fault simulator
optimized for functional BIST to analyze the fault coverage
[25]. The results are analyzed with MATLAB.

To evaluate the quality of the proposed solutions in Fig.
4 in terms of fault coverage and test time, we perform the
following experiments, as described next.

(i) Default: in this experiment, we simulate the circuit as in
Fig. 4(a) for 15× 104 clock cycles and analyze the fault
coverage. This number of clock cycles is assumed to be
our test time budget for all remaining experiments.

(ii) MISR: in this experiment, we simulate the circuit as in
Fig. 4(b) (equivalent to Fig. 4(c)).

(iii) SISR: in this experiment, we simulate the circuit as in
Fig. 4(d).

(iv) SISR + MISR: in this experiment, we simulate the
circuit combining SISR and MISR as in Fig. 4(e) (equiv-
alent to Fig. 4(f)).

(v) Default + SISR: in this experiment, we simulate the
circuit in two stages. First, as in Fig. 4(a), we simulate
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the FE using the default loop-chain for 25% of the test
time budget. Second, as in Fig. 4(d), we include the SISR
on the chain flow (between the Repetition Encoder and
Repetition Decoder blocks) and analyze its fault coverage
over the remaining 75% of the time. The goal of this
experiment is to analyze the impact of combining the
default scenario in Fig. 4(a) with the SISR in Fig. 4(d)
on the fault coverage.

(vi) Default + MISR: in this experiment, we repeat the
procedure of (v), but replacing the SISR with a MISR.

D. Results

Fig. 5 shows the fault coverage (y-axis) versus number
of clock cycles (x-axis) of the experiments. Part (a) of the
figure shows four first experiments, while part (b) shows the
remainder experiments that include the default stage.

From Fig. 5 (a) we can observe the following.
1) During the default stage the Fuzzy Extractor realizes

a fault coverage of only 36%. This fault coverage is
realized quickly in the first 2k clock cycles. The figure
clearly shows that the fault coverage remains stable at
36% during the remaining clock cycles.

2) For the remaining schemes, after 5×104 clock cycles the
fault coverage reaches 95.1%. The remaining 10 × 104

clock cycles lead to an increment of only 1.2% (from
95.1% up to 96.2%) fault coverage.

3) There is no major difference in fault coverage between
SISR, MISR and their combination. All the techniques
realize the same fault coverage in similar test time, i.e.,
95.1% is achieved at 5× 104 (50k) clock cycles.

From Fig. 5 (b) we can observe the following.
1) Switching to SISR/MISR after the default stage strongly

increases the fault coverage, i.e, the fault coverage in-
creases from 36% up to 95.1% in 6.4×104 clock cycles.

2) After switching to SISR/MISR, it takes 5.8 × 104 clock
cycles to reach a fault coverage of 95.1%. Extending the
test time to 15×104 increases the fault coverage to 96.3%.

3) The impact of combining the default stage with either a
SISR or MISR on the fault coverage is negligible.

The area overhead is measured in 0.35µm technology with
the following results: 2.2% for SISR, 6.80% for MISR and
8.0% for SISR and MISR combined.

Analyzing the results, we can see that (i) it is critical to
randomize the output of the Golay Encoder block. (ii) the
final obtained fault coverage in both figures is similar. From
this we conclude that the default stage is superfluous. (iii) in
terms of fault coverage and test time, there is no difference
between a SISR, MISR and a combination of both. (iv) in
addition, if we consider the area overhead, the most efficient
solution is to use the SISR only.

The fault coverage of our method is in line with the
fault coverage reported in other self-test methods [10] and
[11]. However, due to the nature of the extra FE components
were required (such as SISR/MISR) to increase the fault
coverage. The area overhead of the proposed method is
negligible, which is intrinsic to methods that reuse hardware.

E. Recommendations

We provide a generic step-by-step procedure for secure
testing of FE based on our findings. These steps are:

• The first step is to identify each block and to deeply un-
derstand its functionality (which is critical for successful
functional testing).

• Second, the characteristics of each block need to be
assessed (e.g., its area overhead, if the block comprises
a state-machine or not, state-machine complexity, etc).

• Third, perform testability analysis of each block by
considering a random input source. Identify eventual
challenges by testing a certain block with this method.

• Fourth, identify if there is need of extra components in
order to increase the fault coverage, such as a SISR. If
so, analyze the trade-off of such components in terms of
its possible locations and of its impact on security, fault
coverage, test time and area overhead.

• Fifth, optimize the test solution; e.g., by using a SISR or
MISR to activate uncovered paths in a state-machine.

• Sixth, analyzed the FC test time and area overhead of



the test method separately and when combined with
complementary schemes.

• Finally, determine and select the best test method com-
bined with complementary schemes (such as SISR/MISR)
to meet the design requirements.

Following these steps will enable a secure test scheme with
low area overhead and high test quality for any construction
of Fuzzy Extractor.

V. CONCLUSION

In this paper we demonstrated a secure test method for
a Fuzzy Extractor, scan-chain free to make sure that secret
information stays inside the module and cannot be read out.
The secure test method is based on daisy-chains; it reuses
Fuzzy Extractor blocks for test pattern generation and output
compression. The results show that the method has an inherent
low area overhead 2.2%, while it realizes a fault coverage
of 95.1% using only 50k clock cycles. Finally, we provided
a generic step-by-step procedure to test any given Fuzzy
Extractor based on our findings.
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